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Abstract 

Some of the most striking biological responses to climate change are the observed shifts in the 

timing of life-history events of many organisms. Plants, in particular, often flower earlier in 

response to climate warming, and herbarium specimens are excellent witnesses of such long-term 

changes. However, in large-scale analyses the magnitude of phenological shifts may vary 

geographically, and the data are often clustered, and it is thus necessary to account for spatial 

correlation to avoid geographical biases and pseudoreplication. Here, we analysed herbarium 

specimens of 20 spring-flowering forest understory herbs to estimate how their flowering 

phenology shifted across Europe during the last century. Our analyses show that on average these 

forest wildflowers now bloom over six days earlier than at the beginning of the last century. 

These changes were strongly associated with warmer spring temperatures. Plants flowered on 

average of 3.6 days earlier per 1°C warming. However, in some parts of Europe plants flowered 

earlier or later than expected. This means, there was significant residual spatial variation in 

flowering time across Europe, even after accounting for the effects of temperature, precipitation, 
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elevation and year. Including this spatial autocorrelation into our statistical models significantly 

improved model fit and reduced bias in coefficient estimates. Our study indicates that forest 

wildflowers in Europe strongly advanced their phenology in response to climate change during 

the last century, with potential severe consequences for their associated ecological communities. 

It also demonstrates the power of combining herbarium data with spatial modelling when testing 

for long-term phenology trends across large spatial scales.  
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Introduction 

Since the industrial revolution anthropogenic global change threatens species and ecosystems. 

Climate warming in particular can cause shifts in the timing of annual life-history events of plants 

and animals (Root et al. 2003, Menzel et al. 2006, Cleland et al. 2007). Such phenological 

changes, including earlier leaf-out or flowering of plants, are some of the most striking large-

scale biological responses to ongoing climate change (Cleland et al. 2007). To understand why 

and how phenology shifts, it is critical to infer which attributes of the environment are the 

triggers (cues) or proximate causes (drivers) of life cycle events. As their phenology links plants 

to their environments, changes in the phenology can affect the local persistence and biotic 

interactions of plants (Inouye 2008, Willis et al. 2008, Wheeler et al. 2015, Cerdeira Morellato et 

al. 2016). For instance, Willis et al. (2008) found that plant species whose flowering time poorly 

tracked temperature variation declined in abundance during the last century. Unequal shifts of 

interacting organisms in trophic interactions can result in phenological “mismatches”, e.g. when 

the timing of the activity of consumers aligns less well with the availability of their resources, or 

when the phenology of plants and pollinators shift differently (Renner and Zohner 2018, Visser 

and Gienapp 2019). Such mismatches can have severe demographic and evolutionary 

consequences (reviewed e.g. in (Renner and Zohner 2018, Visser and Gienapp 2019). 

When studying phenology changes over time, we should keep in mind that phenology, and 

magnitudes of phenological responses to climate change, not only vary among species but they 

also vary in space. At smaller scales, phenology can vary because of microclimatic differences 

(Hwang et al. 2011; Ward et al. 2018; Willems et al. 2021), and at larger scales both (baseline) 

phenology as well as phenological responses are expected to vary because of macroclimatic 

variation, because the magnitudes of climatic changes differ geographically (Klein Tank et al. 

2002, IPPC 2019), and because phenological sensitivities to cues such as temperature may differ 
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between regions (Riihimäki and Savolainen 2004, Zohner and Renner 2014, Prevéy et al. 2017, 

Zohner et al. 2020, Kopp et al. 2020). Robust studies on phenology and climate change therefore 

require a larger-scale perspective, with spatial variation and autocorrelation explicitly taken into 

account. However, many previous studies on plant phenological responses to climate change had 

a limited geographical scope (Pau et al. 2011).  

In this context, herbaria offer unique opportunities because they allow tracking phenology 

at large temporal as well as spatial scales. Herbarium specimens are usually collected when plants 

flower, and most herbarium sheets provide collection dates and locations (Fig. 1). With many 

herbaria dating back to some 200 years, and hundred millions of specimens worldwide, herbaria 

are a tremendous treasure for studying phenology changes both long-term and large-scale. 

Previous studies have indeed found strong patterns of long-term phenology changes in herbarium 

data (Primack et al. 2004, Miller-Rushing et al. 2006, Davis et al. 2015, Willis et al. 2017, Lang 

et al. 2019, Park et al. 2019, reviewed by Jones and Daehler 2018), and they have also 

demonstrated that phenology trends estimated from herbarium data are comparable to those from 

field observations (Davis et al. 2015, Jones and Daehler 2018, Miller et al. 2021). However, 

almost all previous studies were done in the US, and there has been little work so far on herbaria 

and plant phenology in Europe (but see Robbirt et al. 2011, Molnar et al. 2012 and Diskin et al. 

2012). Most previous studies also did not consider geographic variation in phenology and spatial 

correlation of herbarium samples (but see Matthews and Mazer 2016, Park et al. 2019, Kopp et 

al. 2020). 

In Europe, climatic conditions vary substantially across the ranges of many plant species, 

especially from north to south, and not only the overall timing of phenological events but also 

phenological responses (i.e. sensitivities to cues or drivers) may differ across this latitudinal 

gradient. For a similar climatic gradient in the eastern US, Park et al. (2019) found that long-term 
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phenological responses estimated from herbarium specimens substantially differed among 

climatic zones, with greater mean climate sensitivities, as well as greater among-species 

variability in sensitivities, in the warm and mixed-temperate climatic regions than in the cool-

temperate northeast and the Appalachians. Similarly, for the Pacific North West region of North 

America Kopp et al. (2020) found that sensitivity to temperature was greater at low elevations 

and in the maritime (western) regions. Another problem with large-scale herbarium data is that 

they are often, for historical reasons, strongly clustered, i.e. specimens are more frequently 

collected where collectors live, and around academic institutions. However, when modelling 

across a spatial range, standard methods such as linear regression ignore the spatial dependency 

between sampling locations and treats all data points as independent. This assumption is very 

likely not correct, since the proximity of spatial locations is usually related to their environmental 

similarity (Tobler 1970), and as explained above, this is certainly true for climatic conditions. 

Ignoring spatial dependency thus results in pseudoreplication, and it can strongly bias model 

results. The solution to this, spatial modeling with explicit incorporation of spatial structure and 

thus spatial autocorrelation, is computationally challenging, and it has therefore hardly been used 

in analyses of herbarium data. However, recent advances in statistical methods now allow to 

model such spatial data, e.g. using stochastic partial differential equations (SPDE) and integrated 

nested Laplac approximations (INLA) as implemented in the R package R-INLA (Rue et al. 2017, 

Bakka et al. 2018), and it is therefore possible to take the next step in herbarium studies and 

analyse large-scale phenology in relation to climate change in a spatially explicit framework.  

Here, we analysed long-term and large-scale trends in the flowering time of 20 common 

forest understory wildflowers, and their relationships with climate change, across Europe, using 

over a century of herbarium data. We focused on early-flowering understory plants, because they 

have a very distinct phenology, with a critical time window for flowering before the leaf-out of 
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deciduous trees. Because of this, they may be particularly sensitive to climate change and 

phenology shifts. Forest understory plants may also be exposed differently to climate change 

because climate warming is buffered under forest canopies (De Frenne et al. 2019). In our 

analyses, we employed R-INLA (Rue et al. 2009, 2017, Bakka et al. 2018) to account for spatial 

clustering and autocorrelation of climate and phenology data. We asked two main questions: (A) 

Did forest understory plants advance their flowering phenology during the last ~100 years? (B) If 

yes, are these phenological shifts associated with climate change in Europe? We answered both 

questions with or without accounting for spatial correlation in the statistical models, and thus also 

addressed the question of how important doing this was for the results and conclusions of our 

study. 

 

Methods 

Phenological data  

We mined three large German herbaria and the Global Biodiversity Information Facility (GBIF) 

for all European specimens of 20 common spring-flowering forest understory herbs (see Table 

S1). The three herbaria were at the University of Tübingen (international herbarium code TUB), 

University of Jena (JE) and at the State Museum of Natural History in Stuttgart (STU). Our 

criteria for including herbarium specimens were that: (i) they had flowers, and that open flowers 

represented at least 50% of the reproductive structures, (ii) they had an exact collection date and 

(iii) information on the sampling location that we could use to estimate GPS coordinates, and (iv) 

they were collected in Europe. In addition, we obtained all digital specimens of the same 20 

species from GBIF (GBIF 2020) that were from Europe and also had (i) an exact collection date 

and (ii) GPS coordinates of the sampling location, using the rgbif package (Chamberlain and 

Boettiger 2017) in R (R Core Team 2008). This resulted in an initial 3930 specimens from the 
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three herbaria and 3511 specimens from GBIF, with the collection years ranging from 1807 –  

2017. However, since reliable, gridded climate data were not available before 1901 we decided to 

restrict our analyses to data from 1901 onwards. Moreover, because there were only very few 

specimens from outside of these limits, we truncated our data to 40 to 65 degrees northern 

latitude and -5 to 30 degrees longitude, covering a broad geographic area in mainly Central and 

Northern Europe, but also Western and South-Eastern Europe (Fig. 1A). We further discarded all 

specimens with dates outside of the normal flowering range of our 20 study species (before day 

of the year (DOY) 50 and after DOY 200), because we suspected these to be recording mistakes. 

Also, the GBIF data contained unusually many specimens from May 1 and June 1 (DOYs 121 

and 152, respectively), which strongly indicated that they were from specimens without exact 

collection dates that were arbitrarily assigned to the first day of a month, and we excluded these 

data from our analyses. Lastly, we discarded six datapoints for which the assigned elevation 

value was below -10 m. Our final set of phenology data contained 6131 herbarium specimens, 

with 46 to 600 records per species (Table S1). 

 

Climate and elevation data 

For associating plant phenology variation with long-term temporal and spatial variation in 

climate, we used gridded estimates of historic monthly air temperature (°C) and precipitation 

(mm) that were available for 1901–2017 and with a 0.5° × 0.5° grid resolution from the Climate 

Research Unit (CRU, https://crudata.uea.ac.uk; (Harris et al. 2020), version cru_ts4.04). We used 

these data to calculate mean winter (December – February) and spring (March – May) 

temperatures, as well as annual precipitation values for each year and grid cell. Each herbarium 

specimen was then assigned to a specific set of values of these three climate variables, based on 

its collection year and the geographic grid cell it was located in, using custom-made scripts in 
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python (Van Rossum and Jr. Drake 2009). We also estimated the elevation a.s.l. of each 

herbarium specimen using the raster package in R (Hijmans 2020).  

 

Statistical analyses 

Our statistical analyses generally had a two-step logic, relating to the two main questions of our 

study. We first tested for overall phenological shifts, i.e. temporal trends in flowering time, across 

our 20 study species, using a simpler statistical model (model A), and we then tested for 

phenology-climate associations with a more complex model B (details below). Both models were 

run with and without accounting for spatial correlation. 

To test for temporal trends in flowering time (model A) we modelled flowering phenology 

during the last 120 years as a function of the year of collection, while accounting for the effects 

of elevation and species. Model A was specified as: 

��� � �������	� 
 ������ 
 
� 
 ��⋅ ������ 
 �� 
 ��� , 

where Yij is the day of flowering of herbarium specimen i of species j, ���  is a vector containing 

all covariates (model A: collection year and elevation) as linear fixed effects, βij is the vector of 

estimated parameters (regression slopes), 
��� � ��0, ��������
	 � is the species random intercept, 

���� � ��0, ��������
	 � the species random slopes, both with a Gaussian distribution, and ��� �

��0, �	� the residuals. The species random intercept allows species to differ in their mean 

flowering times, and the species random slope means that temporal trends can be species-

specific, e.g. because species respond differently to climate change. ����� � ��0, �� represents 

the spatial structure (see below) that is additionally included as a random effect in the models 

accounting for spatial correlation. In model A, the slope of the linear relationship between the 

collection dates (= DOY of flowering) of specimens and their collection year is the formal test for 

long-term phenological shifts. 
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To test for phenology-climate associations (model B) we additionally included spring 

temperature, winter temperature and precipitation, plus the interactions between spring 

temperature (which is usually considered a key driver of spring phenology) and all other 

variables into the model described above (see Table 1 for more detailed explanations of the 

variables, and their expected effects on phenology). ���  again includes all these covariates and βij  

are their respective effects, i.e. regression slopes We thus modified the model equation to:  

��� � �������	� 
 ������ 
 
� 
 ��⋅ 
	�������	�� 
 �� 
 ���  

In model B the slopes of the linear relationships between the collection dates (= DOY of 

flowering) of specimens and the temperature or precipitation at the corresponding location and 

year estimates the sensitivities of phenology to climate changes. Here, the species random slopes 

are the species-specific shifts with temperature (�����, accounting for the fact that some species 

might be more temperature sensitive than others. As for model A, we also fitted model B with 

and without including the spatial structure Uij. 

To estimate spatial dependency, we used integrated nested Laplace approximation 

(INLA), an approximate Bayesian technique and faster alternative to MCMC methods for fitting 

Bayesian models (Bakka et al. 2018). A key challenge with spatial models is that the Gaussian 

random field, the most common tool for capturing spatial dependency, is hard to use with large 

data. R-INLA solves this problem through stochastic partial differential equations (SPDEs) that 

allow to model Gaussian random fields fast and efficiently, and to handle complex spatial data 

(Lindgren et al. 2011). The SPDE is the mathematical solution to the Matérn covariance function 

describing the statistical covariance between values at two different points. The covariance 

matrix of the Gaussian field is approximated as a Gaussian Markov Random Field (GMRF) using 

a Matérn covariance structure (Bakka et al. 2018). The GMRF models spatial dependence by 

defining a neighborhood structure on a mesh that divides the study area (in our case Europe) into 
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non-overlapping triangles (Fig. S1). The data points (in our case sampling locations of herbarium 

specimens) are then assigned to the adjacent nodes of the mesh according to their proximities (or 

to only one if they fall directly onto one). This creates an observation matrix for estimating the 

Gaussian Markov Random Field (Bivand et al. 2015, Cosandey-Godin et al. 2015). The mesh can 

have different shapes and sizes, and we used the default constrained Delaunay triangulation (a 

particular way to divide an area into triangles) together with vague priors that have little effect on 

the posterior distributions of the fixed effects. To select the mesh size, we compared models with 

different meshes and chose the finest mesh (with a maximum triangle edge length of 20 km and a 

minimum edge length of 5 km) as it resulted in the lowest DIC/WAIC values. The derived 

Gaussian Markov Random field is then represented by the term Uij in the model above, a smooth 

spatial effect that links observations to spatial locations, with the covariance structure Ω 

estimated via the Matérn correlation. The term Uij is thus spatially variable and captures spatial 

patterns not already modelled by the fixed covariates, thereby ensuring that the residuals εij are 

independent. We compared the results of models with and without including Uij. 

To avoid biased parameter estimates because of unequal scales, we fitted covariates in the 

following forms: year expressed in decades, spring precipitation in mm⋅10-1, elevation in hundred 

meters [100 m] and spring and winter temperature in degree Celsius [°C]. We also mean-centered 

all covariates because this estimated the regression slopes of each covariate with all other 

covariates at their mean values (rather than zero; (Dalal and Zickar 2012), which greatly helped 

to interpret the results of the regression analysis. 

For both models we checked whether the residuals were normally distributed, plotted the 

distribution of residuals against fitted values and explanatory variables to check for heterogeneity 

or other patterns in the variances, and we plotted the observed vs fitted data to evaluate model fit 

and performance (Zuur et al., 2017). All statistical analyses were done in R version 3.6.2 (R Core 
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Team 2018) using the R�INLA package (http://www.r-inla.org, see also: Rue et al. 2009, 

Lindgren et al. 2011, Bakka et al. 2018).  

 

Results 

Model validation and spatial correlation 

The herbarium data analysed in our study covered a broad geographical range in Europe, but their 

spatial distribution was heterogenous (Fig. 1), and in addition the flowering time data were 

spatially correlated up to a distance of around 200 km and 100 km in models A and B, 

respectively (Fig. S2). If this spatial correlation was not included in the analyses, then the model 

residuals were clearly non-random in space, especially in model A (Fig. S3), and there were other 

violations of model assumptions, in particular non-random distribution of residuals in relation to 

several covariates (Fig. S4 and S5). Including spatial correlation strongly solved these problems. 

Moreover, models that included spatial correlation also generally had a better fit (see Fig. S6 for 

a comparison of DIC values and regression parameter estimates of model B with and without 

spatial correlation), and the fitted values were much closer to the observed values (r = 0.78 vs. 

0.57 for Model A and r = 0.82 vs 0.70  for Model B; Fig. S7). Overall, residual variation was 

reduced when spatial correlation was accounted for (Fig. S8). Thus, models that explicitly 

incorporate spatial correlation between data points are not only more statistically sound, but they 

are also stronger and more informative. In the next sections, we show that taking spatial 

correlation into account also substantially affects the model estimates answering the main 

questions of our study. 
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Temporal shifts in plant phenology 

Overall, the herbarium data indicated that the studied 20 forest understory plants significantly 

advanced their flowering time during the last century (Table 2, Fig. 2A, B). The estimated 

advancement of flowering time was -0.56 days per decade (credible interval: -0.74 to -0.39; see 

Table 2) according to model A with accounting for spatial correlation, and these responses were 

different from zero (posterior probability > 0.95) for all 20 species. For species-specific residuals 

see Fig. S9 and for a summary of all hyperparameters see Table S2. The observed phenology 

shifts corresponded with increasingly warmer spring temperatures during the last century (Fig. 

2C). If model A ignored spatial correlation, it severely overestimated the overall magnitude of 

phenology shifts, with an estimated -1.34 days per decade (CI: -1.69 to -0.98; Table S3, Fig. 2B), 

i.e. it estimated an average shift of around two weeks during the last century, more than twice as 

much as in model A with spatial correlation. One reason for this discrepancy was that datapoints 

from northern vs southern Europe were unevenly distributed in time, with more earlier data from 

the north, and an overrepresentation of southern data during the last decades (Fig. 2C). When 

spatial information is ignored in model A, this latitudinal bias thus distorts the estimated shift 

over time. The opposite is true for the relationship with elevation: in model A with spatial 

correlation plants flower later at higher altitudes (2.44 days/100m, 95% CI 1.98 to 2.89; Table 2, 

Fig. 2B), but when spatial correlation is ignored there is no relationship between elevation and 

flowering time (Table S3, Fig. 2B). Even with including spatial correlation, and after the effects 

of the covariates year and elevation have been accounted for there is still strong spatial variation 

in flowering time in model A, with plants from Northern and Eastern Europe flowering up to ~60 

days later than plants from Central and Southern Europe (Fig. 5). 
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Relationships with climate change 

Across the European sampling locations included in our study, spring temperatures increased 

during the last century (Fig. 2C), and the phenology of the plants was related to these climatic 

changes. Overall, plants flowered around 3.6 days earlier per +1°C (Table 2, Fig. 3 and 4). If 

spatial correlation was not included in model B, the strength of this relationship was 

overestimated with 5.4 days per +1°C (Fig. 3 and 4). The general temperature-phenology 

relationship was consistent across the 20 studied species, with negative slopes credibly different 

from zero (posterior probability > 0.95) for all (Fig. 3).  

Besides the relationship with spring temperature, there was a significant, albeit weaker, 

relationship with winter temperature, but no relationship with precipitation, in the model B with 

spatial correlation (Table 2, Fig. 4). There were further relationships of phenology with elevation 

and the year of sampling (Table 2, Fig. 4). The direction of these results – later flowering at 

higher altitudes and earlier flowering in more recent specimens – was as in model A, only with 

smaller effect sizes. This is because both the year of sampling and elevation are systematically 

related to temperature, so the larger effects in model A are partly temperature effects. None of the 

interaction terms between spring temperature and the other covariates were significant (Table 2). 

Ignoring the spatial locations of specimens substantially affected also these parameter estimates: 

in model B without spatial correlation the relationship with elevation was underestimated, 

whereas the relationship with winter temperature was lost, and there was now a relationship with 

precipitation, and several significant interactions between covariates (Table S3, Fig. 4).  

As in model A, there was significant spatial variation in flowering time after the 

covariates and their interactions had been accounted for (Fig. 5, right panel). Although the 

residual spatial correlation was clearly much less and more small-scale than in model A, there 
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were still several regions with clustering of positive or negative residuals, showing the 

importance of incorporating spatial correlation also in model B. 

 

Discussion 

Herbaria are unique archives for studying long-term responses of plant phenology to 

anthropogenic climate change. Here, we studied herbarium specimens of 20 early-flowering 

forest herbs across Europe and show that these plants advanced their flowering during the last 

century, most likely in response to increasing spring temperatures. The herbarium data we used 

were substantially autocorrelated – even after accounting for elevation, climate and year, and 

including this spatial structure in our statistical models significantly improved the model fit and 

parameter estimates. Below, we therefore discuss only the results from models that accounted for 

spatial correlation. 

 

Temporal shifts in plant phenology 

We found that forest understory herbs from Central Europe advanced their flowering by an 

average of six days during the last century (-0.6 days per decade). This is at the moderate end of 

what other studies found. Previous herbarium studies conducted in the temperate zone, which 

included 28-186 herbaceous or woody species and covered 100-170 years of data, estimated 

flowering time shifts between -0.4 and -1.5 days per decade (Primack et al. 2004, Miller-Rushing 

et al. 2006, Panchen et al. 2012, Molnar et al. 2012, Bertin 2015, Bertin et al. 2017). All of these 

studies were geographically very restricted and, except for one study from Hungary (Molnar et al. 

2012), all came from the Northeastern US. There have been other longer-term studies on 

phenology trends in Europe, but these were based on field observations, and they did not go back 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.03.458850doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458850


15 

further than the 1970s. The trends reported in these observational studies tend to be much 

stronger (-2.5 to -4.5 days per decade; Fitter and Fitter 2002, Menzel et al. 2006), possibly 

indicating that phenological changes have been accelerating during the last decades in response to 

more rapid climate changes (European Environmental Agency 2020). Interestingly, while 

herbarium studies from temperate regions were all relatively consistent, studies from other 

climatic regions found very different results, e.g. weaker or no phenology shifts across >1700 

species in the subtropical southeastern US (Park and Schwartz 2015), or much stronger 

phenology shifts in some Himalayan species (up to -9 days per decade; Gaira et al. 2011, 2014). 

The stronger shifts in the Himalayas might at least be partly due to stronger climate changes at 

higher elevations, or due to greater temperature sensitivity of higher-elevation plants (see also 

discussion below). 

 

Relationships with climate warming 

The long-term changes in plant phenology we detected are likely responses to climate change, in 

particular rising spring temperatures, which were strongly associated with the average collection 

dates of our herbarium specimens. For each 1°C of temperature increase, plants were on average 

collected -3.6 days earlier. In Europe, land temperatures have increased around 1.5°C since 1900 

(Luterbacher et al. 2004, Harris et al. 2014, European Environmental Agency 2020), so the 

magnitude of overall phenological changes we observed is similar to what would be expected 

based on climate change and the observed temperature sensitivities (1.5°C x 3.6 days/°C = 5.4 

days – vs. our observed average shift of around 6 days). Our results for temperature-phenology 

associations fit well to what others observed. Previous herbarium studies from the temperate zone 

estimated flowering-time advancements of -2.4 to -6.3 days per 1°C temperature increase 

(Primack et al. 2004, Miller-Rushing et al. 2006, Panchen et al. 2012, Calinger et al. 2013, Hart et 
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al. 2014, Bertin 2015, Davis et al. 2015, Bertin et al. 2017). Again, most of these studies were 

from the Northeastern US, and they were often geographically very restricted. Two previous 

herbarium studies from Europe found stronger shifts of -6 to -13 days per 1°C (Robbirt et al. 

2011, Diskin et al. 2012), but both were based on single species in rather restricted geographic 

areas. More robust European data comes from field observations: a long-term (1954-2000) 

observational study in England found advances of -1.7 to 6.0 days per 1°C across 385 plant 

species (Fitter and Fitter 2002), and a meta-analysis of long-term observation data found an 

average advancement of plant phenology of 2.5 days per 1°C temperature increase (Menzel et al. 

2006). In a field monitoring study of a subset of 16 of this study’s species, we recently related 

plant phenology to forest microclimates and found a similar advancement of -4.5 days per 1°C 

temperature increase (Willems et al. 2021). So the overall pattern of 3-4 days earlier phenology 

per degree warming appears rather robust across a range of species and temperate regions, and 

our study strongly indicates that this large-scale biological response to anthropogenic climate 

change has also been taking place in Europe during the last century. As for the temporal shifts, 

our conclusions are restricted to temperate regions. Some studies from other climatic regions 

have found very different results, e.g. delayed rather than advanced flowering in response to 

increased spring temperatures in the subtropical southeastern US (Park and Schwartz 2015), or 

much stronger climate-related shifts in both directions in studies from Australia (Gallagher et al. 

2009, Rawal et al. 2015). That the plants in our study also flowered earlier with warmer winter 

temperatures suggests that their potential chilling requirements (indicating that winter has passed) 

are yet still fulfilled – however if winter temperatures warm further if climate change intensifies 

this might change. 

 

Other drivers of phenology variation 
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While temperature may be a key driver of phenology, it is not the only one, and often does not 

explain all observed phenology variation (Marchin et al. 2015, Piao et al. 2019). In our study, we 

found that, across the study area, plants flowered later at higher elevation, and this pattern 

remained significant even if temperature was included as explanatory variable. Thus, the later 

flowering at higher elevations must be more than a temperature effect, and it indicates that 

phenology advances are generally slower at higher altitudes. One explanation could be that plants 

at higher elevation are less sensitive to temperature changes (Vitasse et al. 2010, Dai et al. 2014). 

On the other hand, the residual spatial variation we observed in model B indicates that in some 

mountainous regions (especially the Alps) plants flowered earlier than expected (after accounting 

for all covariates) and therefore, on the contrary, might be more sensitive to temperature changes 

(Chapman 2013, Liu et al. 2014). A solution for this apparent contradiction could be that the 

relationship between elevation and phenology is non-linear or is confounded with other 

environmental variables. Several other studies that related phenology to altitude provide mixed 

results, from slower to faster phenology changes at high elevations (Defila and Clot 2005, Ziello 

et al. 2009, Čufar et al. 2012, Kopp et al. 2020). Clearly, the relationship between elevation and 

phenology changes is not well understood yet, and large-scale herbarium plus climate data that 

correct for spatial autocorrelation have the potential to shed more light on this and to help to 

understand how, when, where and for which species elevation influences phenology.  

Besides temperature, another climate factor that could potentially influence plant 

phenology is precipitation. We had expected a significant interaction with temperature, with 

strongest phenology advances where both temperature and precipitation were increasing, but 

there was no evidence for precipitation-phenology relationships in our data at all. Previous 

research found that changes in rainfall and water availability can influence phenology but with 

substantial geographical differences, e.g. in Mediterranean forests and shrublands (Peñuelas et al. 
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2004). Another complication with precipitation effects on phenology is that if precipitation 

occurs as snow this may influence phenology in very different ways than rain fall. Increased 

snow fall often delays plant growth and flowering (Park and Mazer 2018) – another potential 

explanation for why overall plants flowered later at higher elevations in our study. As global 

warming is expected to change snow melt more severely at higher elevations, it might have quite 

different effects on species at higher altitudes than on those at lower elevation (Cornelius et al. 

2013), which in turn can cause problems for migrating or hibernating animal species across 

altitudinal gradients (Inouye et al. 2000). 

 

Spatial variation in phenology 

Spatial autocorrelation has so far been largely ignored in herbarium-based studies of long-term 

phenology changes. However, it is important to take spatial variation into account not only 

because herbarium data are generally strongly spatially clustered, but also because neither 

phenology nor phenological responses to climate change are expected to be spatially homogenous 

across larger geographic scales. For previous studies that were geographically very restricted 

(Bertin 1982, Primack et al. 2004, Miller-Rushing et al. 2006, Miller-Rushing and Primack 2008, 

Bertin et al. 2017), the problem may be minor, but larger-scale analyses will require to take 

spatial variation into account. Recently, Park and Mazer (2018) studied phenological shifts across 

several climatic zones and Park et al. (2019) and Kopp et al. (2020) explicitly tested for 

geographic differences in phenological sensitivities in North America. To our knowledge, our 

study is the first herbarium-based study that modelled and mapped such spatial variation as a 

continuous variable in an analysis of large-scale phenology variation. 

The most conspicuous pattern in the residual spatial variation of our data was that there 

appeared to be systematic differences in phenology associated with latitude, even in model B that 
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accounted for climatic variation. In particular, plants from Central Europe (especially around the 

Alps) flowered earlier than predicted by our model. Such deviations indicate that we are either 

missing an important driver, or that plant responses to some of the covariates in the model differ 

geographically. Previous studies often found phenology shifts at high latitudes to be stronger in 

absolute terms (Root et al. 2005, Parmesan 2007, Ge et al. 2015) but weaker in relative terms (= 

per degree warming) than at low latitudes. This is usually explained by stronger temperature 

increases in northern regions (IPCC 2014), but lower temperature sensitivity of norther 

populations (Dai et al. 2014, Shen et al. 2015, Ge et al. 2015, Wang et al. 2015a, 2015b, Park et 

al. 2019, but see Wolkovich et al. 2012). The later may be a (late frost) risk-avoiding adaptation 

to variable, less reliable climates, causing plants populations to rely more on photoperiod (Renner 

and Zohner 2018). However, some studies also found that plants from (far) northern regions are 

more sensitive to temperature and require less warming to trigger leaf�out or flowering 

(Riihimäki and Savolainen 2004, Pudas et al. 2008, Liang and Schwartz 2014, Prevéy et al. 

2017), ensuring that plants start growing as soon as growth conditions become good in early 

spring, which may be crucial in cold regions with short growing seasons. Consequently, 

phenological sensitivity to temperature might decrease from southern to mid-northern latitudes 

but increase again in far-northern regions. This could indeed explain the earlier-than-expected 

phenology that we observed in Central Europe and the Alps. The missing consensus among 

studies about the association between latitude and phenology may be partially due to differences 

in spatial scale and because their relationship is complex, confounded with other environmental 

factors such as temperature, elevation or non-linear (Riihimäki and Savolainen 2004, Chmura et 

al. 2019, Kopp et al. 2020). These are challenges, that can be tackled by investigating geographic 

patterns via a continuous spatial field (as we did here, using R-INLA), that can depict 

differentiated geographic variability of phenology.  
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Conclusions 

The flowering time of forest herbs in Europe has substantially advanced during the last century, 

and these advances are strongly associated with climate warming. Our study demonstrates how 

herbarium specimens can be used to expand not only the temporal but also geographic and 

taxonomic scope of phenology research, and to contribute to understanding global environmental 

change (Wolkovich et al. 2014). Herbarium data from large geographic ranges are particularly 

powerful but they also come with challenges, and we showed that accounting for spatial 

autocorrelation significantly improved model fits and parameter estimates. Future studies should 

more frequently employ such spatial modeling techniques when analysing large-scale phenology 

variation and its different drivers, ideally across multiple climatic regions (Park et al. 2019). 

The long-term phenology changes we observed in our study reflect physiological 

responses to climate warming, i.e. plants have adjusted to climate change (Munguía-Rosas et al. 

2011). While this may to some extent be considered good news, the phenological shifts can have 

further consequences for the species and their associated ecological communities. For individual 

plant species, phenology shifts could be detrimental e.g. if they do not track warming 

temperatures well enough (Willis et al. 2008, Munguía-Rosas et al. 2011) or if earlier leaf-out or 

flowering increases the risk of late-frost damage (Wipf et al. 2006, Inouye 2008, Zohner et al. 

2020). In addition, if climate change affects plants and their interacting organisms such as 

pollinators or herbivores unequally, then the phenology shifts of plants could result in temporal 

“mismatches” between interacting organisms (Renner and Zohner 2018). Finally, changes in 

plant phenology also influence ecosystem functions such as productivity or carbon cycling 

(Menzel et al. 2006, Cleland et al. 2007, Piao et al. 2019). Understanding not only phenology 
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changes but also their further consequences for communities and ecosystems is an important goal 

for future research. 
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Table 1. All explanatory variables (fixed and random effects) that were included in our analyses, together with the reasonings 

for including them, and their expected effects on plant phenology. Model A included elevation, year and the two random 

factors, model B also the climate variables, and the interactions of spring temperature with the other covariates. 

Variable Why did we include it? What do we expect? 

Elevation Climate conditions, including snow-melt patterns, vary with altitude, which should 
influence flowering patterns (Inouye 2008; Bucher and Römermann 2020). 

Plants flower later at higher altitudes. 

Year Long-term trends of rising temperatures should result in corresponding long-term 
trends in plant phenology. 

Plants advanced their flowering during the 
last century.  

Spring temperature Temperature drives plant phenology (Piao et al. 2019; Tang et al. 2016). For early-
flowering understory plants, spring temperature should be particularly relevant. 

Plants flower earlier with warmer 
temperatures. 

Winter temperature To start leaf-out or flowering in spring, some plant species depend on a preceding 
chilling period (vernalization) indicating that winter has passed (Piao et al. 2019; 
Tang et al. 2016). 

Unclear, if winter chilling requirements are 
still meet, plants will flower earlier with 
warmer temperatures if not later. 

Precipitation  Since plant growth depends on water availability, precipitation could also influence 
plant phenology (Matthews and Mazer 2016, Peñuelas et al. 2014). 

Precipitation effect alone unclear; maybe 
temperature-dependent. 

Spring temperature × 
Winter temperature 

If plants experience  insufficient chilling in warm winters they can be less sensitive to 
warm spring temperatures (Tang et al. 2016). 

We expect a negative interaction, with 
plants flowering earliest when winters are 
sufficiently cold but springs are warm. 

Spring temperature × 
Precipitation 

Since plant growth depends on both temperature and precipitation, phenology may be 
driven by the interaction of the two. Mattews and Mazer (2016) showed that (in 
western North America) phenological responses to warming were strongest where 
precipitation was high. 

We expect a positive interaction, with plants 
flowering earliest where both temperature 
and precipitation are increasing. 

Spring temperature × 
Elevation 

Previous studies suggested, that that plants at high elevation are more sensitive to 
temperature changes (Cufar et al. 2012, Chapman 2013, Liu et al. 2014, but see 
Vitasse et al. 2010, Dai et al. 2014). 

We expect a positive interaction, with 
greater temperature-sensitivity at higher 
elevations. 

Spring temperature × 
Year 

If plants have evolved in response to climate change, then sensitivity to spring 
temperature might have changed over the years. 

We expect an interaction between 
temperature and collection year. 

Spatially dependent 
random intercept (Uij) 

Environmental conditions are variable and correlated across space. Plants that are 
closer to each other experience more similar conditions, and may also show more 
similar phenological responses (Park et al. 2019). 

We expect substantial geographic variation, and 
that this will influence model estimates for other 
covariates. 

Species (random 
intercept and slope) 
(Si, Ti) 

Flowering time, as well as its sensitivity to climate, differs between plant species.  There is variation in mean phenology (intercept) 
and phenological responses (slopes) of the study 
species. 
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Figure 1. (A) Example of an herbarium specimen, with the collection date and location on the 

herbarium label. This Anemone nemorosa was flowering on April 16 (DOY = 107) in 1895, and 

it was collected in the “Metzinger Wald” forest close to Tübingen (lighter purple point in the 

map). (B) Sampling locations of the 6131 herbarium specimens included in our analyses.  
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Figure 2. Temporal trends of flowering time and spring temperature over the last century, and the 

results of model A. (A) Shifts of flowering time since 1901 estimated by model A with spatial 

correlation (solid blue line) and without spatial correlation (dashed magenta line). With spatial 

correlation, plants advanced their flowering on average by around six days, and the responses 

were different from zero (posterior probability > 0.95) for all 20 species (thin grey lines). In the 

model without spatial correlation the estimated phenology shift is more than twice as large. (B) 

Differences in parameter estimates (posterior probability distributions) for model for model A 

without (magenta) and with (blue) spatial correlation. (C) Long-term trends in spring temperature 

in the locations of the studied herbarium specimens, separately for southern, central and northern 

European data. The histograms at the bottom show the temporal distributions of these data. 
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Table 2. Model estimates (slopes), with standard deviations and 95% credible intervals, for all 

variables included in models A and B with spatial autocorrelation. 

 Estimate SD 95% CI 

Model A    

Intercept 136.09 4.07 128.02, 144.03 

Years [Decades] -0.56 0.09 -0.74, -0.39 

Elevation [100 m] 2.57 0.24 2.08, 3.02 

Model B    

Intercept 138.62 2.52 133.57, 143.48 

Spring temperature [°C] -3.61 0.22 -4.04, -3.18 

Winter temperature [°C] -1.05 0.13 -1.31, -0.79 

Precipitation [mm/10] 0.07 0.15 -0.23, 0.37 

Elevation [100 m] 1.42 0.21 1.00, 1.84 

Year [Decade] -0.22 0.09 -0.40, -0.04 

Spring temperature × Year 0.05 0.04 -0.03, 0.13 

Spring temperature × Elevation 0.06 0.05 -0.04, 0.16 

Spring temperature × Precipitation -0.04 0.06 -0.16, 0.07 

Spring temperature × Winter temperature -0.06 0.03 -0.12, 0.01 
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Figure 3. Relationships between the spring (March-May) temperature in the year of collection 

and the date of collection (= flowering day) of European herbarium specimens of 20 early-

flowering forest understory plants. The blue and magenta lines indicate slope estimates from 

statistical models with and without taking spatial autocorrelation into account, respectively. 
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Figure 4. Model coefficient estimates for relationships between different covariates (climate in 

the year of collection, year of collection, elevation of collection site) and the date of collection (= 

flowering time) of herbarium specimens of 20 forest wildflowers in Europe. The blue vs. 

mangenta curves show the differences between the parameter estimates (posterior probability 

distributions) from model B with and without taking spatial autocorrelation into account. 
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Figure 5. Spatial variation in flowering time [days] in model A (left) and model B (right) after the effects of the covariates (model A: 

year and elevation; model B: year, elevation, spring and winter temperature, and spring precipitation) have been accounted for  
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