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Abstract
Bone marrow mesenchymal stromal cells (BMSCs) can differentiate into adipocytes and
osteoblasts, and are important regulators of the haematopoietic system. Ageing associates with
an increased ratio of bone marrow adipocytes to osteoblasts and immune dysregulation. Here,
we carried out an integrative multiomics analysis of ATAC-Seq, RNA-Seq and proteomics data
from primary human BMSCs in a healthy cohort age between 20 - 60. We identified
age-sensitive elements uniquely affecting each molecular level where transcription is mostly
spared, and characterised the underlying biological pathways, revealing the interplay of
age-related gene expression mechanism changes spanning multiple gene regulatory layers.
Through data integration with enhancer-mediated gene regulatory network analysis, we
discovered that enhancers and transcription factors influence cell differentiation potential in the
ageing BMSCs. By combining our results with genome-wide association study data, we found
that age-specific changes could contribute to common traits related to BMSC-derived tissues
such as bone and adipose tissue, and to immune-related traits on a systemic level such as
asthma. We demonstrate here that a multiomics approach is crucial for unravelling complex
information, providing new insights on how ageing contributes to bone marrow- and
immune-related disorders.

Introduction
Ageing in humans is characterised by molecular alterations that together affect cellular
functions, ultimately contributing to functional decline at the organism level (López-Otín et al.,
2013). The ageing of stem cells in particular is a fundamental mechanism in causing undesirable
age-related changes in tissues and organs since stem cells could accumulate a lifetime of
environmental, genetic and epigenetic alterations, and the effects amplified at the organism
level through clonal expansion (Ermolaeva et al., 2018). The age-related exhaustion of stem
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cells, where stem cells lose their differentiation and self-renewal potential, further exacerbates
the ageing phenotype of an organism (López-Otín et al., 2013). However, the molecular
mechanisms remain largely elusive.

The bone marrow (BM) harbours two important stem and progenitor cell types, haematopoietic
stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs). MSCs represent a
minor cell population, an estimated <0.1% of mononuclear cells (Nombela-Arrieta and Manz,
2017) in the bone marrow, and are the precursors of osteoblasts, chondrocytes and adipocytes
(Friedman et al., 2006; Short et al., 2003). MSCs are described as critical regulators of
hematopoietic cells and crucial for HSPC function (Morrison and Scadden, 2014; Yu and
Scadden, 2016). For example, they keep HSPCs in a quiescent stem-cell state in vivo
(Gottschling et al., 2007) and in vitro (Jing et al., 2010). MSCs have also demonstrated
immunomodulatory roles, potentially regulating immune cell functions via both cell-cell
interaction and secreted cytokines (Gao et al., 2016). Due to their low abundance, human MSCs
are mostly studied in in vitro models where primary BM-derived mesenchymal stem/stromal
cells (BMSCs) can be expanded in culture. Cultured BMSCs keep their multipotent
differentiation potential, and are thus a good model system to investigate MSC properties.

During ageing, human and mouse BMSCs have been described to lose both their general
function and differentiation potential (Kretlow et al., 2008; Mueller and Glowacki, 2001; Yin et
al., 2017), with the ratio of adipocytes to osteoblasts in the bone marrow increasing with age
(Meunier et al., 1971; Moerman et al., 2004; Short et al., 2003). The age-related adipogenic
shift has recently been further demonstrated at single cell resolution in mMSCs (Dolgalev and
Tikhonova, 2021; Woods and Guezguez, 2021; Zhong et al., 2020). The differentiation of
MSC/BMSCs into mature cell types is mostly driven by a specific set of transcription factors
(TFs) including CEBPs, RUNX2, FOXO and PARP (Chen et al., 2016). TFs driving BMSC
differentiation into osteoblasts and adipocytes in vitro have been shown to regulate a highly
interconnected network of enhancers to drive BMSCs differentiation into osteoblasts and
adipocytes in vitro (Chen et al., 2016; Rauch et al., 2019). TFs-enhancer networks therefore
represent a complex layer of information, inaccessible by individual genomic profiling methods,
on the potential of the cells to respond to cues during differentiation or perturbation, which only
becomes visible when integrating complementary omics approaches. While our previous study
uncovered the age-dependent synergistic misregulation of BMSC function in the central carbon
and glycolytic pathways in the cell proteome (Hennrich et al., 2018), the mechanisms of how
ageing affects the intricate TF-enhancer network and therefore cell potential is not understood.

The goal of this study is to jointly interrogate cellular function and differentiation potential in
human BMSCs during ageing to understand the molecular and cellular mechanisms that may
drive ageing-related changes in the bone marrow niche, and to explore how these changes may
contribute to age-dependent common traits and diseases. We performed an integrative
multiomics analysis in BMSCs in a cohort of healthy individuals between 20 and 60 years old,
combining chromatin accessibility profiling (ATAC-seq) with RNA expression (Pellagatti et al.,
2018) and protein abundance measured by mass spectrometry (Hennrich et al., 2018). Our
results suggest that ageing simultaneously impairs cellular function via post-transcriptional gene
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expression mechanisms, and cell differentiation potential via chromatin priming. Using
enhancer-mediated gene regulatory networks, we discovered that age-dependent priming of
BMSC enhancers could lead to adipogenic bias via synergistic TF activity changes acting on
their target gene. By further combining the BMSC adipogenic network with genome-wide
association study (GWAS) data, we identified age-sensitive TFs that could contribute to
immune-related GWAS traits on a systemic level. Here we showcase an integrative strategy, by
combining BMSC datasets together with publicly available databases, that is necessary to
uncover the complex layers of age-related effects on cell potential and function.

Results

Multi-omics data from ageing bone marrow-derived mesenchymal stromal cells

To study the molecular mechanisms of age-specific changes in the human bone marrow-derived
mesenchymal stromal cells (BMSCs), we assembled a dataset comprising of ATAC-Seq,
RNA-Seq and proteomics data, generated from BMSCs obtained from a cohort of healthy
donors between 20 to 60 years old, representing snapshots of the “ageing” process (Figure 1A).
Briefly, BMSCs were obtained by culturing mononuclear cells obtained from bone marrow
aspirates and harvested at passage four for the different molecular assays (see Methods). The
mass spectrometry and the RNA-Seq data were previously generated (Hennrich et al., 2018;
Pellagatti et al., 2018), and were reanalysed in this study (supplementary material, Figure
S1D-E) while chromatin accessibility data from the same cohort of donors was generated in this
study (see Methods).

In total, we profiled BMSCs using ATAC-Seq in 17 individuals with two replicated cell
cultures, and obtained RNA-Seq and proteomics data from 18 and 45 donors, respectively. The
ATAC-seq data was processed using our in-house pipeline, including mapping, peak-calling and
quality controls (see Methods). Only samples that passed all standard quality controls were used
for further analysis. We defined a consensus peakset of 140,635 peaks that are present in at least
4 of the 34 samples, equivalent to at least 2 individuals (Figure S1A). We defined promoter
peaks as ATAC-Seq peaks that are within 3 kb of the transcription start site (TSS) of a protein
coding gene. Promoter peaks account for about 14.5 % of all ATAC-Seq peaks. This resulted in
four types of quantified features: genome-wide ATAC-seq peaks, promoter ATAC-seq peaks,
RNA and protein abundances (Figure 1B).

We first examined the presence of BMSC positive (CD271, CD90, Nestin, CD73, CD105), and
negative markers (CD45, CD34, CD14, CD11b, and CD79a), as well as secreted niche factors
(CXCL12, VCAM1, ANGPT1, SCF) (Calvi and Link, 2015; Dominici et al., 2006; Nakahara et
al., 2019) in the promoter ATAC-Seq, RNA-Seq and proteomics data. The presence of all the
positive markers and niche factors, and the absence of the majority of the negative markers,
confirms the stromal identity of our cells across the three assays (Figure 1C). We further
compared the BMSC ATAC-Seq profiles with previously published BMSC DNase-Seq profiles
(Roadmap Epigenomics Consortium et al., 2015) to ensure that the accessible regions share a
similar global genomic distribution (Figure S1B-C). The BMSC-specific expression and
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accessibility profiles indicate that the cell population we obtained after four passages of
culturing in vitro retains bona fide mesenchymal multipotent stromal cell characteristics.

To obtain a gene-centric global overview across the three omics assays, we assessed which
genes are quantified by promoter ATAC-Seq peak accessibility, RNA level and protein
abundance. Approximately 90% (15,966 peaks) of the genes with an accessible promoter peak
are quantified by RNA-Seq and 33% (5,857 genes) by mass spectrometry. Of the 14,199 genes
quantified by RNA-Seq, 44% (6287 genes) are captured by mass spectrometry. About 86% of
the genes measured by RNA-Seq (12,231) and 93% of the quantified BMSC proteome (5,857)
contained an ATAC-seq peak in their promoter region (Figure 1D).

We found that the promoter ATAC-Seq peaks are significantly more accessible when their
associated gene was measured by RNA-seq (Wilcox test, p < 2.2 × 10-16) (Figure 1E). Similarly,
the RNA-seq read counts showed a significantly higher level when their corresponding proteins
are detected by mass spectrometry (Wilcox test, p < 2.2 × 10-16) (Figure 1F). The different
levels of gene signals detected by RNA-seq vs mass spectrometry likely reflects the difference
in sensitivity of the methods, and also post-transcriptional and translational regulation. The
promoter regions where we detect an ATAC-Seq peak but no expression by RNA-seq, may
reflect poised promoters whose accessibility precedes the transcription of the gene in a
differentiation process as also observed on other stem cells (Bunina et al., 2020).

We found that genes captured by all three profiling methods, ATAC-Seq promoter peaks,
RNA-Seq and mass spectrometry, are depleted for being sequence-specific TFs while being
enriched in cell cycle, extracellular matrix organisation and other pathways such as
transmembrane transport of small molecules (Figure 1G). On the other hand, genes captured by
ATAC-Seq promoter peaks and/or RNA-Seq only, are significantly enriched for being TFs. The
results show that sequence-specific TFs are systematically missed in mass spectrometry
measurements relative to ATAC-Seq and RNA-Seq assays. This observation is in agreement
with previous evidence that TFs are low abundant proteins that are often difficult to capture by
proteomics approaches (Ding et al., 2013; Tacheny et al., 2012).

The different global profiling methodologies provided different coverage of the cellular
components, suggesting that specific gene categories, such as TFs, are understudied when using
proteomics data only. The results here showed the importance of capturing the epigenomic
landscape using ATAC-Seq to complement RNA-Seq and proteomics methodologies.
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Figure 1. Multiomics profiling in bone marrow-derived mesenchymal stromal cells
(BMSCs) across an ageing cohort of healthy individuals. A) Overview of the samples used in
this study for ATAC-Seq, RNA-Seq and mass spectrometry analysis. B) Number of peaks,
genes and proteins measured by ATAC-Seq, RNA-Seq and mass spectrometry. ATAC-Seq peaks
are further classified into promoter peaks near transcription start (+/-3kb) and other peaks. C)
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Positive and negative BMSC marker genes and niche factor genes measured in BMSCs by
different assays are shown as the percentage of individuals in which the marker was detected.
D) The log2-transformed signal of the normalised read counts (RNA-seq ATAC-seq) or protein
abundances are shown for each gene captured by ATAC-promoter peaks, RNA-Seq or mass
spectrometry in BMSCs. Numbers indicate the unique features in each category. Note that a
gene can have multiple promoter ATAC-seq peaks. E) Distributions of log2-transformed
normalised read count of ATAC-Seq promoter peaks are shown for all genes stratified by
whether or not they are detected in RNA-Seq data (p-value from Wilcox’s test). F) Distributions
of log2-transformed normalised read count of RNA-Seq transcripts are shown for genes
stratified by whether or not the gene was detected in proteomics data (p-value from Wilcox’s
test). G) Percentage of genes in different reactome pathway categories, captured by ATAC-Seq,
RNA-Seq and proteomics data. Enrichment e, depletion d (Fisher’s exact test, p-adjust < 0.1).
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Ageing hotspots in BMSCs affect multiple mechanisms regulating gene expression

Using the ATAC-Seq, RNA-Seq and proteomics data, we quantified the impact of ageing on
five different molecular levels: From ATAC-seq data, we obtained chromatin accessibility and
TF activity; from RNA-seq data we obtained RNA expression and differentially used exon
levels; from the proteomics data we obtained protein abundance (Figure 1A, see Methods). To
quantify age-related changes in the BMSC chromatin accessibility, we performed differential
peak analysis using DESeq2 (Love et al., 2014) (see Methods). We identified 3,852
differentially accessible peaks at 10% false discovery rate (FDR) from the consensus peakset of
140,635 peaks, of which 2,578 are ageing-down and 1,274 ageing-up (Figure 2A-B). Mapping
these age-sensitive ATAC-seq peaks to gene promoters (+/3kb from the TSS) revealed 659
genes with an age-sensitive promoter.

On the RNA level, we found only 12 differentially expressed genes using DESeq2 at 10% FDR
from 14,199 expressed genes (Figure S2A). To ensure this lack of differential signal was not a
result of hidden batch effects, we used surrogate variance analysis (SVA) and remove unwanted
variation (RUV) method, to remove hidden confounding factors (Risso et al., 2014), both of
which found no differentially expressed genes.

To assess age-related changes of RNA isoforms in BMSCs, we performed differential exon
usage analysis by DEXSeq (see Methods) using the BMSC RNA-Seq data, and identified 1,025
differentially used exons at 10% FDR and a minimum log2 fold change of 0.5. Amongst the
differentially used exons, 473 (in 335 genes) and 552 (in 465 genes) are differentially excluded
and included with increasing age, respectively (Figure S2A).

To quantify the effects of ageing on the BMSC proteome, we used the data from our previous
study, where the Spearman correlation of protein abundance with the donors' age was used as a
measure of age-specific changes in the BMSC proteome (Hennrich et al., 2018). Here, the
age-specific changes are represented as the relative increase or decrease in abundance (%)
across all the ages between 20 and 60 (Figure S2A). In total, 760 proteins are significantly
affected by ageing (Spearman p-value <0.05), of which 447 are ageing-up and 313 are
ageing-down (Figure S2A).

TF binding sites in genome-wide accessible chromatin regions can be used to estimate the
global TF activity, an approach implemented in the computational tool called diffTF (Berest et
al., 2019). To estimate age-related changes in BMSC TF activity, we carried out diffTF analysis
using the ATAC-Seq data and identified 350 from 678 sequence-specific TFs exhibiting
differential activity upon ageing in BMSCs at 10% FDR (Figure S2A, Table S8). Interestingly,
we identified IRF3 as an age-sensitive TF, which was previously described to be an important
TF for supporting HSC expansion, regenerative and engraftment capacity (Nakahara et al.,
2019), indicating the potential misregulation of the bone marrow niche environment during
ageing.
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Overall, we identified 2,152 age-sensitive genes in the BMSCs across all the molecular levels
that are significantly affected by ageing on at least one level. The majority of age-sensitive
genes (>90%) are affected by ageing only on one molecular level (Figure 2A). This lack of
connection between promoter chromatin accessibility and protein abundance is consistent with
the poor correlation between chromatin accessibility changes in promoters and protein
abundance (r = 0.0036, p = > 0.75) (Figure S2B).
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Figure 2. Age-hotspots exist on chromatin accessibility, splicing, protein expression and
transcription factor activity. A) The intersect number of age-sensitive genes that are
age-sensitive on the different molecular levels. B) Heatmap showing the row z-score of the
normalised ATAC-Seq peak read counts for all age-sensitive peaks. Columns represent samples
and are ordered from young to old, and rows represent ATAC-Seq peak stratified by whether
they are open in young or old. C) Enrichment of GO terms of genes that are age-sensitive on the
different molecular levels (ATAC: promoter accessibility, Protein: abundance, splicing: exon
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usage). D) Genes in the enriched GO terms that are age-sensitive on multiple layers are shown.
E) Enrichment of different BMSC ATAC-Seq peak types (stable, age-sensitive) over
background among in different BMSC ChromHMM states is shown (Fisher’s exact test; *
p-adjust < 0.1; **** p-adjust < 0.0001). Number of peaks indicated on the bars. F) Distributions
of differential accessibility (log2 fold-change old vs young) are shown for peaks in the different
BMSC ChromHMM states. For each BMSC ChromHMM state, peaks are grouped into
age-sensitive and background.
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The results here show that BMSCs ageing hotspots affect distinctive subsets of chromatin
regions, transcript isoforms, protein abundances and TF activities, but generally not the RNA
levels. The lack of correlation between RNA levels and protein abundances could be explained
by the post-transcriptional co-regulation of protein complex subunits. The complex subunit that
is expressed (RNA level) at a higher amount than the other subunits, are often degraded (protein
level) if they are not incorporated into the protein complex (Liu et al., 2017). The lack of
correlation between chromatin signal and gene expression levels suggests an additional
buffering mechanism between chromatin and transcription. This leads to the question of how
ageing hotspots at each molecular layer affect each other and whether this contributes to
changes in cellular function and potential.

Post-transcriptional changes in ageing affect cell function

We characterised the functional impact of the 2,152 age-sensitive genes using Gene Ontology
(GO) enrichment analysis and found distinct biological processes enriched among each
molecular level. As observed previously (Hennrich et al., 2018), age-sensitive genes with
downregulated protein abundances are enriched in chromatin organisation and RNA regulatory
processes, while those upregulated are enriched in autophagy and extracellular membrane
organisation processes (Figure 2C). Extracellular matrix organisation processes were found
enriched for age-sensitive genes at the protein abundance and RNA isoform level, suggesting
altered abundances or ratios of protein isoforms which could affect the bone marrow niche
environment.

In agreement with the GO enrichment analysis on the protein level and RNA isoforms,
age-sensitive proteins assigned to autophagy-related (Golgi vesicle transport & autophagy) and
extracellular matrix organisation processes, are predominantly upregulated during ageing, while
age-sensitive proteins that regulate cell cycle (centromere & cell cycle proteins), translation,
alternative splicing (splice factors), polymerase II transcription, and chromatin remodelling
(epigenetic factors) processes, are predominantly downregulated (Figure S3D). As a validation,
we further studied some of the protein abundance changes in protein complexes (Figure S3E)
that are relevant to the enriched GO processes. In general, the protein abundances in the
complexes show very coherent up- or down-regulation (Figure S3E), suggesting that the entire
molecular machine rather than individual subunits are age-sensitive.

Notably, 7 of the 13 GO biological processes enriched for age-sensitive genes on the protein
abundance and RNA isoforms levels, are also enriched for genes that are significantly stable
during ageing on the RNA and chromatin accessibility level (Figure 2C, Table S1, see
Methods). Together with the observation that changes on the protein level correlates poorly with
those on the chromatin and transcription levels (Figure S2B), the results here corroborate the
notion that ageing affects protein abundance by affecting post-transcriptional regulation,
independent of chromatin and transcriptional changes.

To further characterise the link between the changes in splicing factor abundance (Figure S3D)
and differential exon usage upon ageing (Figure S2A), we studied the splice factor binding sites
at close proximity (+ and - 200 bp respectively) to the 5’ and 3’ splice sites of the differentially
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used exons compared to that of the exons not differentially used in ageing. We found 72 RNA
binding proteins whose binding sites are enriched in the close proximity of the differentially
used exons at 5% FDR, of which 16 are age-sensitive proteins (Figure S3F). The
downregulation of the splicing factors protein abundance in ageing could be responsible, at least
in part, for the RNA isoform changes observed. Among the age-sensitive genes affected on the
RNA isoform and protein abundance levels are ITGA5, COL4A2, PTK2 (FAK) and MAP4K4
(Figure 2D). In particular, ITGA5, COL4A2 and FAK together belong to the integrin signalling
pathway (Hynes, 2002), strongly implicating their role in age related changes in the BMSCs.

Misregulation of chromatin accessibility in ageing affects cell differentiation potential
While protein abundance and RNA isoform changes represent alterations in a cell’s functional
state, chromatin accessibility changes as measured by ATAC-seq could alter the cell’s potential
to respond upon stimulation or differentiation (Rendeiro et al., 2020). To investigate the BMSC
differentiation potential, we stratified the ATAC-seq peaks into the ChromHMM chromatin
states, which reflect genomic regions of distinct regulatory activity. We found age-sensitive
chromatin regions strongly enriched for bivalent regions (OR=3.5), heterochromatin (OR=3.5),
zinc-finger and repeat regions (OR=9.8), and moderately enriched in repressed polycomb
(OR=1.8) and active transcription (OR=1.2) regions (Figure 2E, S3A, S3C). Bivalent/repressed
polycomb domains regulate the process of stem cell differentiation by allowing the required
gene expression programmes to rapidly respond to differentiation stimuli (Voigt et al., 2013).
The enrichment of age-sensitive chromatin in bivalent and repressed polycomb regions,
indicates ageing affects BMSC differentiation potential. In contrast, chromatin regions
containing active transcription start sites are depleted from age-sensitive peaks (OR=0.66) and
instead are strongly enriched for stable regions in ageing (Figure 2E; Methods). This suggests
that the chromatin regions directly governing polymerase II transcription of RNA remains
largely stable during ageing, and could represent the buffering mechanism that explains the lack
of age-sensitive genes on the RNA level (Figure S2A) and the weak correlation between
chromatin accessibility changes in promoters and RNA levels in BMSCs (r = 0.009, p = 0.24;
Figure S2B). The ChromHMM states distribution of ATAC-Seq chromatin regions in BMSCs
are robust with regards to changes in the consensus peaksets (Figure S3B).

The enrichment of age-sensitive regions in bivalent, heterochromatin, repressed polycomb, and
zinc-finger genes and repeats regions, which are crucial for stem cell maintenance and function
(Zhou et al., 2011), is predominantly associated with chromatin that closes upon ageing (Figure
2E-F, S3A), indicating a loss of stem-cell potential during ageing. Furthermore, genes with
ageing-down promoter peaks are enriched for developmental processes (Figure 2B), indicative
of an impaired stem cell differentiation potential in BMSCs with age.

Overall, ageing shows a two-pronged effect on the BMSC gene regulatory landscape. The
biological processes affected by age-related protein abundance and RNA isoform changes
(Figure 2B) in BMSCs represent well known hallmarks of ageing such as epigenetic
misregulation and loss of proteostasis (López-Otín et al., 2013), recapitulating the universally
known cellular ageing processes. Age-related chromatin changes (Figure 2E), on the contrary,
are associated with the alterations of cellular differentiation potential in BMSCs. Amongst the
age-sensitive changes (Figure 2A), 64% affect the BMSC post-transcriptional landscape
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including RNA isoform and protein abundance without affecting RNA expression levels and
chromatin accessibility, whilst 31% affect the chromatin landscape without affecting gene
expression components. Chromatin changes bear a “universal” pattern of affecting stem cell
regulatory domains, a phenomenon also observed in other cell types (Liu et al., 2013; Rakyan et
al., 2010), thereby changing the “potential” of the cell to answer to perturbation or challenges.
We next investigate the effects of ageing on the “reactome” or “pertubome”, and hence
ultimately the cell fate of BMSCs.

Ageing-specific priming of early time point adipogenesis by age-sensitive TFs

We further investigated how ageing may alter the BMSCs’ differentiation into adipocytes and
osteoblasts. Differentiation processes are typically driven by TFs, therefore we annotated
age-sensitive TFs as adipogenesis or osteogenesis-related based on their GO biological
processes annotation (Ashburner et al., 2000; The Gene Ontology Consortium, 2019) (Table
S2). Of the 41 age-sensitive TFs, 16 are involved in adipocyte-, 20 in osteoblast-differentiation,
and 5 in both (Figure 3A). Notably, while all 41 TFs were captured by RNA-seq, only 17 TFs
are measurable by mass spectrometry (Figure 3A). We found adipogenesis-associated TFs
show increasing activity with age, while osteogenesis-associated TFs show decreasing activity
(Figure 3B).

Among the age-sensitive TFs we observe well known regulators of the BMSC adipo- and
osteo-differentiation, including PPARGamma, RUNX2, CEBPs, NOTCH1, CREB and
CTNNB1 (Huang et al., 2015). A similar analysis for adipo- and osteogenesis related genes on
the other molecular layers revealed no significant changes for age-sensitive genes, and only
minor changes in protein abundance and differentially used exons when considering all genes
regardless of whether they are age-sensitive or not (Figure 3B & S4F).

The fact that the increase in TF activity during adipogenesis does not lead to significant changes
on RNA and protein levels, are consistent with the view that the BMSCs are still
undifferentiated. However, they seem to be already lineage-primed on the TF activity and global
chromatin levels, suggesting the cells will more readily differentiate into adipocytes over
osteoblasts in the old age.
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Figure 3. TF activity and chromatin accessibility at enhancers prime BMSC
differentiation potential in ageing. A) The measures by which a TF is captured are shown for
TFs annotated in GO terms related to adipogenesis (orange), osteogenesis (blue), or both
(green). B) Differential signal between old vs young is shown for genes stratified based on
whether they are annotated in GO terms related to adipogenesis (orange) or osteogenesis (blue)
on the different molecular layers. From left to right: age-sensitive TFs (differential TF activity),
promoter ATAC-Seq peaks in all genes (differential accessibility), protein abundance for all
genes, alternative exon usage for all exons, and RNA expression level for all genes (Wilcox test,
* p < 0.05). C) Left: chromatin accessibility of dynamic enhancers during adipogenesis
differentiation time course taken from (Rauch et al., 2019) is shown as log2 fold change vs
undifferentiated BMSCs at each time point. Each line represents one dynamic enhancer.
Enhancers are split into four groups based on their pattern during differentiation: Adipo-OFF,
Transition-ON, Adipo-ON, No Change. Middle: distribution of differential accessibility in old
vs young BMSCs from our data is shown as log2 fold change and stratified by the enhancer
class of dynamic enhancer that overlap with the respective peaks. Only ATAC-Seq peaks whose
genomic positions overlap with dynamic enhancers are shown. Age-sensitive peaks are bold
colors, non-ageing peaks in light grey. Right: enrichment of ATAC-Seq peaks up vs down in
ageing BMSCs that overlap with enhancers in adipo- and osteogenic differentiation (Fisher’s
exact test; n.s. not significant; **** p-adjust < 0.0001; Figure S5). D) Left: TF activity changes
in adipogenic differentiation based on adipogenesis time course data from (Rauch et al., 2019).
TFs are grouped into three classes based on their dynamic during differentiation: Adipo-OFF,
Transition-ON, Adipo-ON. Middle: distribution of differential TF activity during ageing
(age-sensitive TFs in colour, other TFs in grey). Right: enrichment of age-sensitive TFs up vs
down in ageing BMSCs in TF classes. E) eGRN obtained from chromatin accessibility and
RNA-seq data of BMSC adipogenic differentiation. Connections (eGRN enhancers) depict the
relation between age-sensitive TFs and their target genes. The clusters of target genes are
grouped into four classes: Adipo-OFF, Transition-OFF, Transition-ON and Adipo-On, according
to their gene expression level changes during the course of the differentiation (Figure S7). F)
Enrichment of age-sensitive accessible regions among eGRN enhancers stratified by
age-sensitivity of the TF and target gene they connect. Colours indicate the age-sensitivity state
of accessible regions (Fisher’s exact test, ** p-adjust < 0.01). G) Enrichment of genes
connected to age-sensitive TFs that are up (left) or down (right) in ageing among the different
gene classes from E (Fisher’s exact test, * p-adjust < 0.1, ** p-adjust < 0.01).
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Gene regulatory network analysis identifies global mechanisms of age-dependent BMSC
differentiation bias

To further investigate the mechanisms of BMSCs lineage-priming during ageing, we integrated
our data with a recently published BMSC adipo-osteo differentiation time course dataset (Rauch
et al., 2019). The differentiation time course data consists of chromatin accessibility (DNase
hypersensitive sites), RNA expression, and TF activity measurements at 6 time points (0h, 4h,
1d, 3d, 7d and 14d) during adipogenesis or osteogenesis (Madsen et al., 2018; Rauch et al.,
2019). We re-processed the chromatin accessibility data to match our analysis pipeline, and
defined dynamic enhancers involved in BMSC differentiation according to the authors’
definition (Rauch et al., 2019). We replicated the findings of the original study that in general
more extensive remodeling is required for adipogenesis on the chromatin and RNA level
compared to osteogenesis (Rauch et al., 2019) (Figure S4A-E).

We grouped the dynamic enhancers and TFs from the differentiation time course according to
their signal (for enhancers)/activity (for TFs) across the differentiation into several classes using
partitioning around medoids followed by visual inspection: “Adipo-OFF” (signal/activity
decreases during adipogenesis), “Transition-ON” (signal/activity first increases and then
decreases during adipogenesis), “Adipo-ON” (signal/activity increases during adipogenesis),
and for enhancers also “No Change” (no change in signal/activity during adipogenesis)
enhancers and TFs (Figure 3C-D). Similar classifications were done for the osteogenesis
differentiation time course (Figure S5-S6).

To understand how changes in BMSCs ageing may impact their differentiation potential, we
overlapped the dynamic adipogenic enhancers with our ageing ATAC-seq data. We found that
ageing-up chromatin regions are strongly enriched in the “Transition-ON” enhancer class for
adipogenesis, suggesting a role of chromatin priming in early adipogenesis events (Figure 3C).
Since enhancers in the Adipo-ON (and similarly Osteo-ON) enhancer class are unlikely active
in the undifferentiated BMSCs in this study, the enrichment of enhancers in the “Adipo-ON”
enhancer class in young individuals corroborate the earlier observation of the loss of bivalent
region accessibility in BMSCs during ageing (Figure 3C). A similar analysis for osteogenic
differentiation (Figure S5) revealed also depletion of ageing-up regions in the “Osteo-ON”
enhancer class. Examination of TFs in adipogenesis revealed strong enrichments for ageing-up
TFs among the “Transition-ON” class (Figure 3D) while no significant association was found
for age-sensitive TFs in any TF class obtained from osteogenic differentiation pattern (Figure
S6). The association of age-sensitive chromatin and TFs with early adipogenesis events suggest
a general loss of early time point differentiation potential of aged BMSC, which is in line with
the closing of bivalent chromatin regions with age observed above

Since we observed an adipocyte early differentiation skew for both TFs and enhancers but no
differentially expressed genes in our BMSCs, we hypothesised that the altered activity of the
TFs and their impact on chromatin may prime BMSCs from older individuals towards
adipogenic differentiation, while gene expression still reflects the current cellular identity.
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To test this hypothesis, we constructed an enhancer-mediated gene regulatory network (eGRN)
that allows us to characterize the target genes of age-sensitive TFs in terms of their expression
dynamic during adipogenesis. Briefly, we applied our previously published algorithm
(Reyes-Palomares et al., 2020) to the chromatin accessibility and gene expression data from the
BMSC adipo-osteo differentiation time course data (Rauch et al., 2019), drawing TF-enhancer
and enhancer-gene links based on co-variation across time points and replicates (see Methods).
Our final eGRN comprises 160 TFs and 2034 target genes, forming 3066 TF-gene connections
mediated by 1269 accessible chromatin regions (eGRN enhancers) at 20% FDR (Figure 3E).
TF-gene pairs in which both of TF and gene are age-sensitive were strongly enriched for being
connected by an age-sensitive ATAC-seq peak (Figure 3F) indicating age-sensitive TFs act as a
mediator to propagate the age-sensitive chromatin signal through enhancers to its target gene.

Following the age-dependent adipogenesis-priming hypothesis, we speculate that ageing TFs
would be connected to genes important in adipogenesis. To assess the hypothesis, we classified
the genes based on their expression during adipocyte differentiation into “Adipo-OFF”,
“Adipo-ON”, “Transition-ON” and “Transition-OFF” (expression first decreases and then
increases during adipogenesis) classes similar to the dynamic enhancers and TFs described
above (Figure S5-S7), and found that TFs more active in younger individuals are enriched for
being connected to genes in the “Adipo-OFF” class and depleted from the “Adipo-ON” class
(Figure 3G). The results indicate that a loss of activity in TFs connected with “Adipo-OFF”
genes with age could lead to the downregulation of genes programmed to be shut off during
adipogenesis, thus accelerating the differentiation process, in agreement with the initial
hypothesis that TFs in older individuals could be primed towards adipogenesis. Examples of
these TFs include known adipogenic TFs SNAI2 and CREB1 (Rauch et al., 2019).

Altogether, the eGRN revealed that age-sensitive chromatin regions could lead to the
physiological differentiation bias in BMSCs differentiation by controlling the genes that are
programmed to be shut-off in adipogenesis.

Age-sensitive TFs and chromatin regions in BMSCs are enriched for SNPs associated with
immune-related diseases/traits

Ageing is a major risk factor for many common diseases. To investigate how BMSC-ageing
may contribute to complex traits and diseases, we integrated the age-sensitive genes with
genetic variants that have previously been associated with common traits and diseases through
genome-wide association studies (GWAS). Using the stratified linkage disequilibrium score
regression (LDSC) enrichment method (Bulik-Sullivan et al., 2015) (see Methods) we identified
26 complex diseases/traits enriched among age-sensitive genes. The most enrichment we
observed in age-sensitive TFs (Figure 4A), in line with recent observations that trans-regulators
may be key drivers of diseases-associated processes (Freimer et al., 2021; Võsa et al., 2018). In
addition to the expected BMSC-related traits, such as body height, bone density, and body mass
index (BMI) traits, we identified several immune system-related traits and diseases, including
asthma, allergy, inflammatory bowel disease, Crohn’s disease, and white blood cell
measurements.
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To further investigate the cell type specificity of the enriched immune traits, we selected
age-sensitive genes in a +/- 10kb region from the top 15 GWAS SNPs with the lowest p-values
per enriched trait (Figure 4B) and divided the genes into three groups based on their expression
level in BMSCs and whole blood from GTEx data: (i) BMSC-specific genes - very high
expression in BMSCs and very low expression in blood, (ii) BMSC-dominant genes - higher
expression in BMSCs than in blood, and (ii) blood-dominant genes - higher expression in blood
than in BMSCs (Figure 4C). Notably, all genes are highly expressed in BMSCs across donors.

While the blood-dominant genes associate with more GWAS SNP regions in immune traits, a
number of immune trait-associated genes were either BMSC-specific or BMSC-dominant,
indicating that the ageing of BMSCs may contribute to altered immune system function. Several
age-sensitive genes are associated with both bone- and immune-related traits, potentially
reflecting BMSC-intrinsic processes underlying their immune-modulatory or HSPCs support
function. One example is PDLIM4, a bone- and immune-trait associated age-sensitive gene
specifically expressed in BMSCs, that plays important roles in bone development and
osteoporosis (Charoenpanich et al., 2014). Its link to many immune related processes through
age-sensitive ATAC-seq regions suggests that BMSC-intrinsic processes could regulate immune
system function in the bone marrow niche environment. Another interesting example is
HMGA2, known for its role in driving adipogenesis (Xi et al., 2016), which is associated with
bone mineral density and asthma.

A similar enrichment analysis among the age-sensitive chromatin regions, stratified into
chromatin states, revealed 20 traits, including several BMSC-related physical traits, such as
“visceral adipose tissue”, body mass index (BMI) and BMI-correlated traits such as “physical
activity” and “sleep measurement” (Jones et al., 2016; Klimentidis et al., 2018) (Figure 4D).
BMSC chromatin regions not associated with ageing are enriched for immune-function related
diseases/traits, again highlighting the potential contribution of BMSCs to immune system
regulation in the bone marrow niche. Age-sensitive bivalent, quiescent and repressed polycomb
regions are enriched for “visceral adipose tissue”, further corroborating the effects of ageing on
stem cell function and adipogenesis. Bivalent and heterochromatin are enriched for
immune-related, metabolic and physical traits and diseases, including “low density lipoprotein
cholesterol”, “reaction time (cognitive) measurement”, “inflammatory bowel disease” and
“ulcerative colitis”. Zinc-finger and quiescent regions are further enriched for blood and
immune traits.

The associations of BMSC age-sensitive chromatin regions with various immune phenotypes,
strongly support the role of BMSCs in age-related immune changes in the bone marrow niche
environment.
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Figure 4. BMSCs ageing and genome-wide association studies traits/diseases. A) The
heritability enrichment of trait/disease-associated SNPs among age-sensitive genes is shown.
Trait-linked SNPs are obtained from the GWAS catalogue, genes are stratified by molecular
level at which they are age-sensitive. SNPs are annotated to a gene if they lie within +/- 10kb of
the gene body. B) Overlap of age-sensitive genes with SNPs (+/- 10kb) from the enriched traits
in A are shown as the raw p-value per SNP in each GWAS. Traits/diseases are divided into 3
main categories, MSC-related traits (brown), blood/immune traits (blue) and other traits (grey).
Age-sensitive gene categories are shown on top. C) Age-sensitive gene expression levels of
human blood cells (from GTEx) and BMSCs. Genes are categorised into BMSC-specific,
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BMSC-dominant and blood-dominant genes based on gene expression levels in the two tissues.
D) The heritability enrichment of traits/diseases-associated SNPs is shown for different
age-sensitive ATAC-Seq peak categories (green boxes indicate p-adjust < 0.1). E) Left:
enrichment of trait associated SNPs in eGRN enhancers linked to genes that change expression
during adipogenic differentiation (up in BMSC=Adipo-OFF class; up in Adipo=Adipo-ON;
classification from SFigure 7) (Fisher’s exact test, * p-adjust < 0.1). Right: enrichment of
trait-associated SNPs in eGRN enhancers regulated by age-sensitive TF (Fisher’s exact test, *
p-adjust < 0.1, ** p-adjust < 0.01). F) Examples of eGRN in selected traits. Diamonds represent
TFs, small squares represent target genes. Colours indicate age-sensitive TF activity, and
adipogenic differentiation category.
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Down-regulation of age-sensitive TFs in BMSCs could orchestrate systemic immune traits

To understand the wider impact of BMSC adipogenesis and the age-dependent effects on
chromatin and TF priming in the context of adipogenesis (Figure 3), we next investigate i) how
eGRN enhancers in adipogenesis could contribute to common traits and diseases, and ii) how
age-sensitive TFs in the context of the eGRN associate with common traits and diseases. We
first overlapped the eGRN enhancers with GWAS SNPs (p-value < 5e-03) of the traits that we
found enriched among age-sensitive genes and peaks from Figure 4A,D. For each trait, we then
quantified whether its associated SNPs are enriched in i) eGRN enhancers connected to
Adipo-ON or Adipo-OFF genes (Figure 3E left), indicating the contribution of the BMSC
differentiation program, or ii) in eGRN enhancers regulated by age-sensitive TFs, implicating
age-dependent priming of BMSCs, to the corresponding common traits  (Figure 3E right).

We found trait-associated SNPs enriched among enhancers of the BMSC differentiation
programme for two traits: enhancers of “Adipo-ON” genes (programmed to be turned on in
adipogenesis) for subcutaneous adipose tissue measurement, and enhancers of “Adipo-OFF”
genes (programmed to be turned off in adipogenesis) for CCL5 measurement. Among eGRN
enhancers regulated by age-dependent priming we found trait-associated SNPs of five traits
enriched, including traits related to BMSC-derived cells. For example, ‘heel bone mineral
density”-associated SNPs are enriched for being regulated by TFs with activity higher in young
individuals, whereas SNPs associated with “visceral adipose tissue” are enriched for being
regulated by TFs with activity higher in old individuals, further corroborating our observations
above that ageing primes adipogenic potential (Figure 4E-F). Interestingly, age-primed
enhancers are also enriched for asthma, an immune-related trait, in the young, which is
consistent with previous findings that found allergic asthma more frequently in younger
individuals (Pakkasela et al., 2020).

BMSC transplantation as a therapeutic option in animal models of asthma strongly indicates the
immunosuppressive function of BMSCs in alleviating asthamtic symptoms (Mirershadi et al.,
2020). The results here (Figure 4E), together with our observation of age-sensitive genes and
peaks enrichment in immune-related traits (Figure 4A-D), strongly indicate that age-dependent
priming of BMSC differentiation could simultaneously alter the immune-regulatory pathways
shared, contributing to altering the bone marrow niche environment. The eGRN allowed us to
study how age-sensitive TFs may enhance the effect of common trait-associated SNPs during
ageing and to gain insights on the genes they may regulate (Figure 4F).

Altogether the results here indicate that both differentiation-related cellular changes in BMSCs
as well as alterations of BMSC function during ageing, could contribute to the changes in
inflammatory conditions, various physical and metabolic changes on the systemic level via
enhancers associated with trait- or disease-associated common polymorphisms.
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Discussion
Bone density loss during normal physiological ageing has long been known to associate with
BMSC differentiation bias as a result of increased bone marrow adipocytes and decreased
osteoblasts formation (Justesen et al., 2001; Meunier et al., 1971; Moerman et al., 2004). While
several studies have investigated the effects of ageing on different signalling pathways that
could contribute to the BMSC adipo-osteogenic differentiation bias (Almeida et al., 2009;
Stolzing et al., 2008; Sun et al., 2006), the underlying mechanisms remained poorly understood.
The results of our study suggest a molecular mechanism, by which age-sensitive TFs prime
BMSCs towards early adipogenesis already in their MSC fate. Overall, our study on the ageing
of bone marrow mesenchymal stromal cells (BMSC) has shed light on the molecular
mechanisms underlying the physiological ageing of the bone marrow niche.

The multiomics angle of our study allowed us to investigate the impact of ageing in BMSCs on
three different regulatory levels: chromatin, RNA, and protein. Amongst the different gene
regulatory levels in our datasets, changes in protein abundance represent the most direct readout
for variations in biological pathways activities, while chromatin accessibility and TF activity
inferred from chromatin accessibility are more reflective of the differentiation potential of the
cells. Previous studies on bone marrow niche ageing have focused on proteomics and RNA-seq
and have identified processes such as extracellular matrix remodeling being affected during
ageing (Hennrich et al., 2018). While TFs represent a readout of the differentiation potential of
BMSCs, they are highly underrepresented in proteomics experiments, thus highlighting the
importance of integrative analyses, such as profiling chromatin accessibility and TF activity
(diffTF analysis) to characterise TF functions (Weidemüller et al. 2021).

On the chromatin level, bivalent/repressed polycomb domains regulate the process of stem cell
differentiation by allowing the required gene expression programmes to rapidly respond to
differentiation stimuli (Voigt et al., 2013), while zinc-finger genes often directly regulate the
expression or act as co-factors of the TFs in differentiation (Cassandri et al., 2017).
Heterochromatin mediates various biological processes including centromere function and cell
differentiation (Allshire and Madhani, 2018). The destabilisation of heterochromatin is a major
hallmark of ageing and cellular senescence, contributing to increasing genome instability and
transposable element activity (Criscione et al., 2016; O’Sullivan and Karlseder, 2012). The
enrichment of differentially accessible peaks in bivalent, heterochromatin and zinc-finger
regions suggests that many age-specific chromatin accessibility changes in the BMSC
specifically affect the regulatory elements for stem cell function during ageing.

The fact that most age-sensitive genes are only present on one molecular layer highlights the
complexity of biological ageing. Our observations that very few genes are age-sensitive on the
transcriptomic level, yet pervasive changes occur on the chromatin and protein level, could be
explained by the enrichment of “stable” chromatin peaks observed on the majority of the TSS,
and the general age-specific alterations in most transcriptional related processes on the
proteome level (Liu et al., 2017). This indicates that the effects of ageing on transcription are
unlikely to happen in a unified and predictable manner. In a previous study we found that
differential RNA expression is predictable by variation of RNA levels across individuals
(Sigalova et al., 2020). Thus, an alternative explanation for the lack of age-sensitive genes on
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the RNA-level could be that the heterogeneity of the ageing cohort masks whatever small
signals are there. The overall downregulation of the proteome responsible for chromatin
organisation, including components of the polycomb group complex that regulates the
repression of bivalent chromatin regions, could explain the strong changes observed at the
chromatin ageing-hotspots that are not translated to the RNA level which is presumably at
steady state.

The bone marrow and BMSCs have been shown to directly affect the common traits enriched
(Figure 4), including inflammatory conditions (Allakhverdi et al., 2013; Yagi et al., 2010),
granulocyte traits (Brigger et al., 2020), bone density, and other physical traits. With the results
of our study, we can now propose hypotheses about the mechanisms by which common
polymorphisms in BMSCs may play a role in immune-regulatory pathways. Specifically, we
can use our eGRN to identify the genes that may be targeted by these SNPs and the TFs that
may modulate their activity.

The bone marrow is recognised to function on a systemic level as a lymphoid organ that has
immune regulatory roles (Zhao et al., 2012). Immune cells from both the adaptive and innate
immune system reside and migrate into and out of the bone marrow, where both BMSCs and
various immune cells regulate each other and the bone marrow microenvironment via cell-cell
contact and/or soluble factors (Zhao et al., 2012). MSC-derived osteoblastic cells can also
regulate the function (Calvi et al., 2003), homing after transplantation (Lo Celso et al., 2009)
and lineage maturation (Ding and Morrison, 2013; Yu and Scadden, 2016; Zhu et al., 2007) of
HSPCs, while adipocytes reduce hematopoietic activity (Naveiras et al., 2009) and inhibit
lymphoid differentiation (Bilwani and Knight, 2012). Thus, in addition to affecting bone
density, the age-induced balance shift from osteocytes to adipocytes may also have a crucial
role in HSC maintenance, evidenced by the associations of age-related MSC changes in the
bone marrow niche environment with the misregulation of HSC function and differentiation,
potentially contributing to undesirable haematological changes such as cancer development
(Kovtonyuk et al., 2016).

GWAS have revealed hundreds of thousands of genetic variants associated with common traits
and diseases. Ageing, and specifically the ageing of the immune-system are likely to contribute
to many common diseases. Indeed, our study revealed several common traits and diseases,
including diseases related to altered immune system function are enriched for age-sensitive
genes. By integrating the data from our ageing cohort at the level of an enhancer-mediated gene
regulatory network, with several common and age-dependent diseases, our study provides a
stepping stone towards investigating the molecular links between common immune-related
traits and the ageing of the bone marrow stem cell niche.

Methods
Isolation of BMSCs from bone marrow
NMSCs were obtained as previously described (Hennrich et al., 2018; Pellagatti et al., 2018).
Briefly, healthy donors were punctured at the posterior iliac crest using a Yamshidi needle.
Aspirations of 10ml were taken at 5-7 different levels. The procedure took place at the
University Hospital Heidelberg and the study was approved by the Ethics Committee for
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Human Subjects at the University of Heidelberg, and written informed consent has been
obtained for each participant. The distribution of donors is shown in Figure 1A. These aspirates
were washed with phosphate-buffered saline (PBS, Sigma-Aldrich #D8537). The eluates were
laid on FICOLL-Paque (15 mL, Biochrom), centrifuged (800g, 30 minutes) to separate
mononuclear cells (MNCs). The MNC fraction was seeded in T75 cell culture flasks with
Verfaillie medium (VM) at a density of ~106 cells/mL, and cultured in fibronectin coated flasks
until adherent colonies formed (at least 4 days). The adherent colonies were defined as passage
0 and for expansion of the cells, freshly isolated or thawed BMSCs were culture-expanded in
VM for one passage and then seeded in parallel into VM at 37 °C with 5% CO2.

ATAC-seq library preparation:
ATAC-Seq library was prepared by either the “Fast-ATAC” protocol (Corces et al., 2016) or the
“low mitochondrial read” protocol (Litzenburger et al., 2017) as previously described. Fifty
thousand BMSCs were harvested at passage 4 and were washed with 50 μL of ice cold PBS.
Lysis and transposition were performed according to the protocol used.

For “Fast-ATAC”, lysis and transposition reactions were performed simultaneously in 50 μL
buffer (25 μL 2x TD buffer, 2.5 μL Tn5 Transposase TDE1, 0.5 μL 1% digitonin, 22 μL
nuclease-free-water) (Illumina FC-121-1030 Nextera DNA library prep kit). For “low
mitochondrial read” protocol, cells were simultaneously lysed and nuclei pelleted in 50 μL cold
lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630,
0.1% Tween-20) at 500 rcf for 10 mins at 4oC. Immediately after lysis, DNA transposition was
performed in transposition buffer (25μl 2x TD buffer, 2.5 μL TDE1, 22.5μl H2O, and 0.5 μl 1%
Tween-20, 22 μL nuclease-free water) at 37 °C for 30 min.

Libraries were prepared by PCR amplification and barcoding as previously described
(Buenrostro et al., 2015) using Illumina Nextera i7 and i5 primers. The prepared libraries were
quantified and sequenced paired-end 75 bp on an Illumina NextSeq 500 at EMBL Genomics
Core Facility.

Processing of ATAC-seq data
Libraries were processed with our in-house ATAC-Seq data processing Snakemake pipeline as
previously described (Berest et al., 2019). FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess sequence
quality. Adapter sequences were removed using Trimmomatic (Bolger et al., 2014) with the
parameters ILLUMINACLIP:NexteraPE-PE.fa:1:30:4:1:true TRAILING:3 MINLEN:10.
Sequencing reads were aligned to hg38 genome assembly using Bowtie2 (Langmead and
Salzberg, 2012) with parameters --very-sensitive -X 2000, followed by various post alignment
cleaning steps (Picard tools CleanSam, FixMateInformation, AddOrReplaceReadGroups, and
ReorderSam) (https://broadinstitute.github.io/picard/).

Base quality recalibration was performed using GATK (McKenna et al., 2010) with known
variants from the GATK bundle for hg38 (SNPs: dbSNP version 138, Indels:
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Mills_and_1000G_gold_standard.indels) to increase the data quality by correcting for
systematic errors by the sequencer when estimating the quality score of each base call.

Further cleaning steps were performed, including mitochondrial reads removal, non-assembled
contigs or alternative haplotypes removal, reads filtering with a minimum mapping quality of
10, removal of duplicate reads by Picard tools, start sites adjustment as previously described
(Buenrostro et al., 2013), and insertions or deletions removal Samtools.

Peak calling was performed using MACS2 (Zhang et al., 2008) (--no lambda, --nomodel, -qval
0.1, --slocal 10000) and blacklisted regions removed. Transcription start site (TSS) enrichment
score and the irreproducibility discovery rate (IDR) (Li et al., 2011) were used to exclude
samples with ATAC-Seq peaks of relatively poor reproducibility.

Defining consensus peak set for ATAC-seq
Consensus peak set was generated from a total of 404,421 peaks using DiffBind (Ross-Innes et
al., 2012). There are 36k (0.9%) shared across all 17 individuals and 34 replicate samples. As a
final consensus peakset, the peaks were required to be present in at least 4 of the 34 samples,
equivalent to 2 individuals, resulting in 140,635 peaks.

ChromHMM chromatin state annotation
ATAC-Seq peaks were overlapped with mesenchymal stem cell DNase hypersensitivity data in
the chromatin 15-state model annotation (E026_15_coreMarks_hg38lift_mnemonics.bed) and
from ENCODE (Roadmap Epigenomics Consortium et al., 2015). The 15 states were further
grouped into several general states for some analysis: Bivalent (TssBiv, BivFlnk, EnhBiv),
Quiescent (Quies), Transcribed (TxWk, Tx, TxFlnk), Enhancer (Enh, EnhG), TssA (TssA,
TssAFlnk), Heterochromatin (Het), ZNF_Rpts (ZNF/Rpts), and Repressed PC (ReprPCWk,
ReprPC).

Differentially accessible peak analysis
DiffBind (Ross-Innes et al., 2012) and DESeq2 (Love et al., 2014) bioconductor packages were
used to calculate differentially accessible peaks. Peak-summits were recentered and extended
+/-250bp. Different sequencing runs (i.e. Illumina flowcell) and donor genders were considered
batch effects, and were removed in DESeq2 analysis. Differential analysis on the 140,635
consensus from a minimum overlap of 4 samples (Figure S1A) were calculated using an
age-group study design (young: ≤29 years, middle: ≥30 ≤50, and old ≥51) in DESeq2 with the
design (design = ~Batch_effect + Age_group), parameters (test = “LRT”, reduced =
~Batch_effect), following the standard workflow.

Robustness analysis of differential ATAC-seq enrichment with chromHMM
The peak distribution in various chromatin states was found to be conserved when the
differential peaks are identified from different consensus peaksets derived from the sequential
removal of each individual in the differential analysis (Figure S3B), indicating that the
differentially accessible peaks identified are robust.

Processing of RNA-seq
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RNA-seq data was obtained from (Hennrich et al., 2018; Pellagatti et al., 2018) and
re-processed using DESeq2 using the standard workflow with the age-group study design
(young: ≤29 years, middle: ≥30 ≤50, and old ≥51). The normalised RNA-Seq read counts per
donor (Figure S1D), and the number of proteins characterised by mass spectrometry across
donors (Figure S1E) were used to assess data quality. The variation of the normalised RNA-Seq
read counts are comparable between donors, where the log10 median read counts of the samples
centre around two (Figure S1D). SVA package (Leek et al., 2012) was used to further confirm
the lack of signal following the standard workflow.

Differentially used exon analysis
The transcript information from 29509 filtered genes was used for exon mapping using
DEXSeq (Anders et al., 2012). To improve the biological relevance of the analysis, we applied a
log2 fold change threshold of 0.5 for the differential exons, corresponding to a minimum
1.4-fold change, a deviation level higher than the 1.2-fold that is generally regarded as
biologically relevant (Bray et al., 2003; Caffrey et al., 2008; Yan et al., 2002).

Stable ATAC-seq /RNA-seq analysis
To complement the differential analysis, a stability analysis was performed to identify
chromatin regions and RNA transcripts that are significantly more stable between old and
young using DESeq2 with the following parameters: (lfcThreshold = 0.7, contrast = c(“Group”,
“Young”, “Old”, altHypothesis = “lessAbs”). We identified 26,450 stable chromatin regions at
10% FDR and with a log2 fold change threshold of less than 0.7 (Figure S2B), while the
expression of 710 genes that are stable at 10% FDR (Figure S2B). In addition to the stably
expressed genes and stable chromatin regions, we found 8,323 genes to contain at least one
stable ATAC-Seq peak in the promoter region, of which 134 genes also contain a differentially
accessible promoter peak.

diffTF analysis
TF binding sites used in this study are obtained from the HOCOMOCO and Remap databases
(Chèneby et al., 2018; Kulakovskiy et al., 2013). TF activity was calculated using diffTF
(Berest et al., 2019) using the following parameters (regionExtension 100,
conditionComparison “Old,Young”, nPermutations 1000, nBootstrapts 0, nCGBins 10,
minOverlap 4, regGenome Homo_sapiens_assembly38). Non-expressed TFs in BMSCs were
removed from further analysis. We used 1% false discovery rate as a threshold for statistical
significance. Different sequencing runs (i.e. Illumina flowcell) and donor genders were
considered batch effects, and were removed in the analysis

QC of proteins
Proteomics data were obtained from (Hennrich et al., 2018). A total of 6287 proteins were
quantified by mass spectrometry. Briefly, proteins were quantified by tandem mass tag
labelling, followed by liquid chromatography-tandem mass spectrometry analysis (Hennrich et
al., 2018). Over 85% and 65% of the proteins characterised by mass spectrometry are present in
more than 10 and 40 out of the 45 samples, respectively, indicating that the majority of the
proteins are consistently and confidently identified across samples.
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Mapping of genes to reactome pathways
Reactome pathways (Fabregat et al., 2018) were grouped at the highest hierarchy, as previously
described in (Hennrich et al., 2018). We then also added TF genes defined as the genes that
have a specific DNA binding motif in the HOCOMOCO database (Kulakovskiy et al., 2013)
(Figure 1G).

GO term enrichment
Due to the similarities of many GO terms, both in their associated genes and semantics, similar
GO terms were grouped together using clusterProfiler (Yu et al., 2012) and the most significant
GO terms are displayed (Table S1; Figure 2E).

GO IDs for differentiation
We defined genes involved in adipogenesis using the following GO ids: 0045599, 0045600,
0045598, 0050873, 0045444, 0090335, 0090336, 0050872, 1903444. We defined genes
involved in osteoblast differentiation using the following GO ids: 0045669, 0045668, 1905241,
0001649, 0045667, 0002076, 0002051, 004339, 1905240.

Splice factor and protein complex analysis
Splice factor motifs data were downloaded from MotifMap (http://motifmap.ics.uci.edu/) (Daily
et al., 2011) (Xie et al., 2009). Motifs overlapping a 200bp 3’ and 5’ regions in introns were
included in enrichment calculation. Enrichment was calculated by Fisher’s exact test, 5% false
discovery rate for statistical significance. Protein complexes data were downloaded from
CORUM database (https://mips.helmholtz-muenchen.de/corum/) (Giurgiu et al., 2019), only
complexes with at least 10 proteins are included.

Reprocessing of the RNA, DNase hypersensitivity, and TF activity data from Rauch et al
Data was obtained from (Rauch et al., 2019) (direct communication). We selected all
differentially accessible DNase hypersensitive sites across all time points, and clustered their
normalised counts using partitioning around medoids clustering into 12 groups. Similarly, we
clustered the normalised read counts for the RNA data. For TF activity, we clustered the activity
levels of the TFs provided by the authors. The resulting clusters were manually classified into
“Adipo-OFF” if the accessibility was decreasing throughout the timepoints; “Transition-ON” if
there was an early upregulation followed by a decrease; “Adipo-ON” if there was a consistent
increase, “Transition-OFF” if there was an early decrease followed by an increase, and “No
Change” if there was no obvious changes across the time points (Figure S5-S7). We followed
the same approach for classifying enhancers, genes and TFs according to their behaviour during
osteogenesis (Figure S5-S7)

Overlapping BMSC and Rauch et al datasets
To overlap our ATAC-Seq peaks with the DHS peaks from Rauch et al, GenomicRanges was
used and with a minimum overlap of 1bp. There are 44,533 overlaps (32% of ATAC-Seq peaks)
in total. To overlap TFs in BMSCs with those in Rauch et al. data, ENSEMBL ids of the TFs
were used for matching. There are 305 TFs (34% of diffTF results) matching in Rauch et al.
data.
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Construction of the gene regulatory network (GRN)
Gene regulatory network was constructed as previously described (Reyes-Palomares et al.,
2020). Briefly, DNase hypersensitivity and RNA data from Rauch et al. were used for linking
enhancers to putative target genes by correlating the accessibility of enhancers with the
expression of the putative target genes that are within 250 kb of the peak. Links between TFs
and enhancers are identified by correlating TF expression and enhancer accessibility signal at
peaks that contain the TF motif. Each enhancer therefore is linked to at least 1 TF and 1 target
gene, establishing the TF to target gene relation. We used a 20% false discovery rate to remove
results that are considered not statistically significant. Both TF motifs from the HOCOMOCO
and Remap database were used.

GWAS enrichment analysis by LDSC
We first obtained and reformatted a total of 853 GWAS datasets from the GWAS catalog
(Buniello et al., 2019) by converting the summary statistics columns into a format required by
the LDSC tool (https://github.com/bulik/ldsc) for enrichment analysis (Bulik-Sullivan et al.,
2015; Finucane et al., 2015). Input peaks and gene set files were converted as required by the
LDSC tool. p-value adjustment was performed individually for each trait/disease.

GWAS-gene analysis
To ensure that the enrichment in immune traits is indeed specific to BMSCs and not dominated
by genes mostly expressed in immune cells, we determined the tissue specificity of GWAS gene
sets by comparing gene expression of our BMSCs with blood and adipose tissue from GTEx.

P-value adjustment
Unless otherwise stated, all p-values adjustment by Bejanmin-Hochberg method.

Ethics statement
The study has been approved by the Ethics Committee for Human Subjects at the University of
Heidelberg, and written informed consent was obtained from each individual.
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Column names and the containing information are as follows in the format “column_name:
containing_information”.
Supplementary Table 1 contains information of all of the GO term enrichment used in Figure
3. ID: GO ID; Description: GO ID description; p.adjust; geneID: ENSEMBL ID for foreground
genes in the GO term; allGenes: ENSEMBL ID for foreground genes in the GO term and all
other GO terms that were grouped together based on similarity; type: gene omics type.
Supplementary Table 2 contains eGRN connections with their enhancers overlapping with
GWAS SNPs. from: TF name; to: target gene name; from.2: TF ENSEMBL ID; to.2: target
gene ENSEMBL ID; ATAC_peak_id; RSID: GWAS SNP IDs; gwas_P: p values of SNPs in the
GWAS; gwas_lowestP: lowest p value of SNPs; gwas_lowestP_id: RSID of SNP with lowest p
value; gwasID: GCST ID from GWAS Catalog; peakType: ageing peak type of enhancer in
eGRN: traitName: name of GWAS; traitType: type of trait classified in Figure 4.
Supplementary Table 3 contains all age-sensitive genes and the omics level they belong.
ATAC: 1 (age-sensitive) and 0 (not age-sensitive) on promoter ATAC-Seq level; Splicing: 1
(age-sensitive) and 0 (not age-sensitive) on RNA splicing level; RNA: 1 (age-sensitive) and 0
(not age-sensitive) on RNA level; Protein: 1 (age-sensitive) and 0 (not age-sensitive) on protein
level; diffTF: 1 (age-sensitive) and 0 (not age-sensitive) on TF activity level; ensg: ENSEMBL
ID; hgnc_symbol: gene symbol; count: on how many omics levels the gene is age-sensitive;
type: which omics levels the gene is age-sensitive.
Supplementary Table 4 DESeq2 results for chromatin accessibility data.
log2FoldChange_old/young: log2 fold change of read counts in old vs young individuals;
pvalue: DESeq2 p values; padj: p adjusted values; samplePeakID: ATAC-Seq peak coordinates
as IDs; msc_peakType: age-sensitive as ageing, not age-sensitive as background.
Supplementary Table 5 DESeq2 results for RNA-Seq data. log2FoldChange_old/young: log2
fold change of read counts in old vs young individuals; pvalue: DESeq2 p values; padj: p
adjusted values; ensembl.id: ENSEMBL ID.
Supplementary Table 6 DEXSeq results for differential exon usage. Ensembl_gene_id:
ENSEMBL ID; featureID: exon ID; pvalue: p values from DEXSeq; padj: p adjusted values;
log2fold_Old_Young: log2 fold change of read counts in old vs young individuals; transcripts:
ENSEMBL transcript ID; type: age-sensitive as ageing, not age-sensitive as background.
Supplementary Table 7 Proteomiccs data. Ensembl_gene_id: ENSEMBL ID; approv.sym:
gene symbol; spearman.pvalue: spearman correlation p values; spearman.cor: spearman
correlation values; relativeChange20To60(%): relative changes in protein abundance from 20 to
60 years old.
Supplementary Table 8 diffTF results. Ensembl_gene_id: ENSEMBL ID; Transcription.factor:
transcription factor names; TF_activity_old/young: TF activity old vs young; pvalueAdj: p
adjusted values; pvalue: p values; database: TF motif database.
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