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Abstract: 
Uncovering cognitive representations is an elusive goal that is increasingly pursued using 
the reverse correlation method. Employing reverse correlation often entails collecting 
thousands of stimulus-response pairs from human subjects, a burdensome task that limits the 
feasibility of many such studies. This methodological barrier can potentially be overcome 
using recent advances in signal processing designed to improve sampling efficiency, 
specifically compressive sensing. Here, compressive sensing is shown to be directly 
compatible with reverse correlation, and a trio of simulations are performed to demonstrate 
that compressive sensing can improve the accuracy of reconstructed representations while 
dramatically reducing the required number of samples. This work concludes by outlining the 
potential of compressive sensing to improve representation reconstruction throughout the 
field of neuroscience and beyond. 

One-Sentence Summary:  
Perceptual representations are uncovered more efficiently than ever before, removing a 
major barrier to cognitive studies. 
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Main Text: 
Human perceptual experience is mediated by internal representations of the world around us. 
Representations bridge the gap between the raw information available from the senses and 
the abstract and often categorical nature of our perceptual experience by acting as reference 
patterns for everything from low-level spatial and temporal features (e.g., edges and shapes 
in the retina image (2)) to high-level characteristics of cognitive categories (e.g., faces (3)) or 
social constructs (e.g., the trustworthiness of a face (4)). Full understanding of perceptual 
experience therefore depends on the ability to characterize these internal representations, as 
they encapsulate important abstractions that are necessary to make sense of complex sensory 
inputs (Figure 1). While substantial progress has been made toward fully describing lower-
level representations (e.g., visual and auditory receptive fields), similar characterization of 
higher-level representations has proven to be more elusive. This is largely because, despite 
their central importance to perceptual experience and behavior (5), such representations are 
notoriously difficult to measure (1, 3, 6-8). 

One of the more promising methods to overcome this difficulty attempts to uncover higher-
level cognitive representations using a standard method for characterizing lower-level neural 
representations: reverse correlation (10). Reverse correlation reveals the latent representation 
in these low-level contexts by eliciting neural responses to richly varying stimuli (e.g., white 
noise) and regressing the observed responses against the stimuli over many trials. The same 
method can be utilized in the higher-level context by substituting voluntary responses for 
neural ones, in much the same way that one can report whether they “see” faces and other 
familiar shapes in clouds and other vague visual stimuli. Vague stimuli can thus be used to 
force the internal representations to exert their influence directly on elicited responses. In a 
pioneering study, Gosselin & Schyns sought to find representations of letters by asking 
participants that identify a letter “S” in visual noise stimuli (3); critically, the stimuli were 
purely white noise (and thus did not contain any actual letters), yet reverse correlation based 
on subject responses revealed a definitive “S” image recovered from each participant. 
Reverse correlation has subsequently been demonstrated to avoid the shortcomings of other 
techniques that bias expectations (11). Other groups have used reverse correlation to 
characterize the top-down processes of perception to abstract psychological categories, 
including the trustworthiness in voices (12), self-image (13), and “male” vs “female” faces 
(5) and shown that reverse correlation can quantitatively compare human decision-making to 
that of computers (14, 15). 
Despite this initial success in certain contexts, reverse correlation has severe limitations that 
have prevented its wide-spread use for uncovering higher-level internal representations. Most 
critically, standard applications of reverse correlation require a burdensome number of 
stimulus-response samples for accurate reconstruction of cognitive representations with an 
adequate signal-to-noise ratio (8). For example, Gosselin & Schyns’ 2003 experiment 
required 20,000 trials from each participant; another required 11,400 (6). In cognitive and 
psychological experiments, the large number of trials combined with the long latency for 
measurable behavioral responses from subjects results in data collection protocols that can 
last weeks for each individual subject. This inefficiency limits the feasibility of applying 
reverse correlation to only those experimental protocols where subject participation and 
motivation can be maintained over long timelines. Even in such cases, the large amount of 
data required from each participant means the number of participants in a given study is 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.02.458720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458720
http://creativecommons.org/licenses/by-nc/4.0/


 

3 
 

typically very low (usually <5 (1, 3, 7)). This severely limits any insight into the 
generalizability of existing findings to a broader population. 

Existing methods attempt to overcome this fundamental limitation of reverse correlation by 
biasing the input stimuli to decrease the number of required trials. This can be accomplished, 
for example, by generating stimuli through adding noise to known examples of some real-
world category (e.g., an image of a face) rather than using pure noise, as done in (13). This 
increases the probability that subjects will report the stimulus as belonging to the category of 
interest but also biases the results toward representations consistent with the initial example. 
In order to realize the full impact of reverse correlation in uncovering cognitive 
representations, it is necessary to reduce the number of trials required without introducing 
such biases. 
An alternative approach to improving the efficiency of reverse correlation is to impose 
constraints on the reconstruction process. Adding constraints can be a powerful way to 
improve reconstruction quality but can also severely limit the richness of the reconstruction 
in ways prespecified by the constraints themselves. For example, current approaches 
constrain reconstructions by smoothing with a 2D Gaussian kernel (1) or, more commonly, 
through low-pass filtering (e.g., (3)). While this can eliminate unwanted high-frequency 
noise from the reconstruction, it also presupposes that such high-frequency information does 
not form part of the underlying representation. For this reason, it is critical to assess the 
assumptions inherent in any added constraint and to be careful in deciding whether to utilize 
that constraint (16, 17). 
One constraint that seems especially appropriate for reconstructing perceptual representations 
is that of sparsity. Sparsity is the notion that representations are composed of a finite and 
relatively small set of essential features. Importantly, sparsity is widely considered to be a 
fundamental principle of organization in perceptual systems at all levels (18), with strong 
empirical and theoretical support (18-21). Thus, sparsity is a fairly innocuous assumption that 
is highly likely to preserve the essential aspects and important variation in cognitive 
representations. This assumption can also be exploited to improve estimation of internal 
representations (17). Mineault (17) incorporated sparsity constraints in a binary logistic 
regression model to reconstruct visual-domain representations more efficiently, 
demonstrating an approximately 80% reduction in the number of trials to produce an 
equivalent quality reconstruction. 

Recent advances in signal processing have resulted in a proliferation of efficient sampling 
methods based on the idea of sparsity, collectively known as compressive sensing (16, 17). 
To date, however, compressive sensing has not been applied to the reverse correlation 
paradigm. Here, we outline the underlying mathematical connections between reverse 
correlation and compressive sensing and provide a demonstration of the potential for 
dramatic efficiency improvements using the combined method. We will also show that, 
unlike previous approaches to incorporating sparsity constraints, it is possible to obtain 
reconstructions from compressive sensing analytically, using a closed-form solution. One 
such method by Zhang (22) is presented in detail and applied here in a novel way. 
Compressive sensing begins with the assumption that signals of interest, x, which can include 
latent cognitive representations (Figure 2), are sparse (or, in the language of compressive 
sensing, compressible). This means specifically that they can be represented by a small 
number of functions from an appropriately-selected basis set (s = Ψ!x, for basis Ψ and 
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weights s). If one assumes that responses, y, stem from a process of comparing stimuli to the 
latent representation (y=Φx, for stimuli Φ), it is possible to estimate the latent representation 
using only a small number of measurements by acquiring the basis function representation 
directly (i.e., y=ΦΨs) via sparse optimization approaches to find s. In practice, sparse 
representations can be found even when the chosen basis domain is quite general and 
incorporates no specific prior knowledge of the signal characteristics (e.g., the discrete cosine 
transform, wavelet transform). 

Critically for the applicability of this method for reverse correlation, it has been demonstrated 
both theoretically (23, 24) and empirically (17) that using random (e.g., white noise) stimuli 
to elicit responses is a highly effective way to ensure accurate reconstruction of latent 
representations within the compressive sensing framework. Moreover, a significant portion 
of the substantial literature on compressive sensing has focused on the problem of inferring 
representations from binary responses (e.g., yes-no), a variation of classical compressive 
sensing called 1-bit compressive sensing (22, 25, 26). In other words, the somewhat unusual 
model of sampling assumed by compressive sensing maps directly onto the reverse 
correlation paradigm. This opens the door to potentially providing all the efficiency benefits 
of compressive sensing to the reverse correlation paradigm. 

To directly assess the applicability of compressive sensing to recovering cognitive 
representations, we compare the results of simulations of Gosselin & Schyns’ original study 
on representations of “S” (Figure 3 top) using both conventional reverse correlation (3) and 
compressive sensing approaches. We used an image of the letter “S” as the target cognitive 
representation for reconstruction (Figure 3 top A). Specifically, the reshaped, vectorized “S” 
image was used as the representation vector, x (Figure 2), the basis for generating simulated 
subject responses in light of random stimuli contained in the stimulus matrix, Φ. The 
elements of Φ were generated by randomly sampling from a uniform distribution over the 
interval 0 and 1 and rounding those values to the nearest integer.  A total of 10,000 subject 
responses were simulated using this procedure, representing the subject responses in (3). 
Additionally, a similar simulation was run using auditory spectrograms as stimuli. In both 
simulations, as in most cognitive experiments, we assume binary responses. 

The simulated subject responses were used as the basis for reconstructing the latent 
representation, x, using both conventional regression-based estimation and compressive 
sensing-based estimation. Reconstructions were generated using both the full set of stimulus-
response pairs (10,000 or 20,000) and on a limited subset of a randomly-selected 10% of 
pairs (1,000 or 2,000). Estimation accuracy for a given reconstructed representation was 
assessed using 2-dimensional correlation coefficient (r2) between the target representation 
and the reconstructed estimate. Results (Figure 3) indicate that the image quality obtained 
using 10% of the samples via compressive sensing is effectively equivalent to that obtained 
using the full cohort of samples via conventional reconstruction, implying a 90% 
improvement in sampling efficiency. When allowed to operate on the full complement of 
samples, compressive sensing additionally shows improved accuracy over conventional 
reconstruction of approximately 15%. 

The simulations reconstructing “S” and spectrograms showcase compressive sensing’s utility 
for analyzing novel data, yet compressive sensing is not limited to use solely in new studies. 
Rather, compressive sensing can also be retrospectively applied to existant data to improve 
results. To demonstrate this, further simulations were conducted to replicate the work of 
Smith, Gosselin, & Schyns, in which they used reverse correlation to reconstruct internal 
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templates of faces (1). In that study, five subjects were each shown 10,500 white noise 
images and asked to identify those stimuli with a face in them; their results are recapitulated 
in Figure 4A. Compressive sensing simulations were implemented with the same number of 
samples as in the original work. To estimate the original stimulus-response data, a candidate 
measurement matrix, Φ!, was randomly generated and used as the basis for estimating 
subject responses, 𝑦, via the assumed data generating process 𝑦 = 𝑠𝑖𝑔𝑛(Φ!𝑥), where 𝑥 was 
the reconstructed face representation presented by (1). The estimated subject responses were 
then used to reconstruct an estimated face representation, which was subsequently subjected 
to smoothing using a Gaussian-shaped image filter as described by (1) to produce 𝑥!.  This 
procedure was repeated 1000 times, with the final measurement matrix and simulated subject 
responses being selected from the iteration which maximizes the image correlation between 𝑥 
and the estimate from that iteration, 𝑥!. As may be expected in a sparse image, the 
compressive sensing reconstructions have a smoother, more face-like appearance (Fig 4B). 
Furthermore, Smith, Gosselin, & Schyns identified several facial structures in their 
reconstructions (e.g., a hairstyle on S3 and a nose, mouth, and chin outline for S1, S2, and 
S3), and these are more clearly observable in the reconstructions using compressive sensing. 
The reconstructions presented here are notably symmetric and lack high frequency variation. 
These properties are not enforced by the compressive sensing method. Rather, faces 
themselves are largely symmetric, and these reconstruction properties are driven by the data. 
While validation on real data is necessary, these preliminary simulation results suggest that 
compressive sensing can reduce the number of trials required for accurate estimation of 
cognitive representations using reverse correlation by up to 90% without any loss of 
accuracy. Alternatively, more accurate reconstructions could be generated even while still 
reducing the number of trials, though by a smaller amount. Such a drastic increase in time- 
and cost-effectiveness would substantially increase reverse correlation’s potential for wide-
spread use. Cognitive studies that would presently take weeks to complete could instead be 
performed in one sitting, and those studies that would otherwise impose limiting constraints 
on either the stimuli or the reconstructions (e.g., (13)) could be conducted with assumptions 
only about sparsity; this will lead to clearer, less biased representations. Outside of cognitive 
science, compressive sensing holds promise for drastically improving the efficiency and 
accuracy of analysis in any domain where reverse correlation is used, including a broad range 
of electrophysiology paradigms (e.g., (10, 28, 29)), calcium imaging (30), and auditory 
system function (31). That the reverse correlation responses can be continuous (e.g., neural 
firing rates (29)), ordinal (e.g., similarity scores (32)), or binary (e.g., yes/no (22, 25, 26)) 
gives compressive sensing widespread utility in areas of science even where reverse 
correlation is not currently in common use. 
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Fig. 1. A schematic overview of perception. At its most fundamental level, perception is 
maintained by a complex cognitive system in the perceiver, involving the combined efforts of 
bottom-up and top-down processes that bridge the gap between sensory input and cognitive 
representations. Bottom-up processes extract relevant features from the raw sensory signal, while 
top-down processes relate incoming features to perceptual categories by comparing against prior 
expectations in the form of internal, cognitive representations. Such top-down theories are 
widely posited across multiple domains of human perception (e.g., (9)).  
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Fig. 2. Process of reconstruction in reverse correlation and compressive sensing. (A) In 
reverse correlation, the vector of subject responses is modeled as resulting from the 
multiplication of a latent representation vector (x) and a stimulus matrix (Φ), which can be 
thought of as a similarity calculation between the latent representation and a vector 
representation of each presented stimulus.  (B) An estimate of the latent representation (𝑥) is 
then reconstructed by regressing responses against the stimuli. (C) In compressive sensing, the 
vector of subject responses is modeled as resulting from the multiplication of a sparse latent 
representation vector (s) and a compressive sensing matrix (Θ). The compressive sensing matrix 
is formed by multiplying a matrix of basis functions by the stimulus matrix (Θ=ΦΨ), which 
amounts to a similarity calculation between the stimuli and the known basis functions. (D) An 
estimate of the sparse latent representation (𝑠) is then reconstructed by regressing the responses 
against the compressive sensing matrix, soft-thresholding the resulting regression coefficients, 
and then normalizing by ζ=||P(m-1ΘTy)||,where m is the dimensionality of the stimulus vector and 
P is a soft thresholding function. The full representation estimate (𝑥) can be subsequently 
calculated using the estimated sparse representation and the known basis functions (𝑥 = 𝛹𝑠). 
Note that the response vector y in compressive sensing is generally assumed to contain many 
fewer entries than in reverse correlation, and without sacrificing reconstruction accuracy. 
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Fig. 3. Comparison of conventional regression-based estimation and compressive sensing 
estimation. The template image (A) is estimated in (B-E). An example white noise stimulus for 
each domain is shown in (F). The method of estimation and number of samples used (n) is 
indicated below the image. The correlation coefficient (r2) between the template and the estimate 
is shown above the image, indicting estimation quality. Top row shows a simulation of the “S” 
from Gosselin & Schyns (3), and bottom row depicts a simulated time-frequency auditory 
spectrogram (an average phoneme spectrogram presented by Mesgarani et al. (27) is used as the 
template for reconstruction). In both simulations, compressive sensing provides equivalent 
accuracy as the conventional approach with only 10% as many trials. 
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Fig. 4. Comparison of conventional regression-based estimation and compressive sensing 
estimation of faces. (A) shows the reconstructions from (Smith, Gosselin, & Schyns 2012 (1)), 
and (B) depicts the compressive sensing reconstruction. Structural features identified in (A), such 
as a nose, mouth, and chin outline on S1, S2, and S3, are more noticeable in (B). 
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