1 Concomitant Pyroptotic and Apoptotic Cell Death Triggered

2 in Monocytes Infected by Zika Virus

- 3
- 4 Chunxia Wen¹, Yufeng Yu¹, Chengfeng Gao¹, Xian Qi^{2*}, Carol J. Cardona³, Zheng
- Xing^{1,3*} 5 6 7 1 Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing 8 University, Nanjing, China 2 Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China 9 10 3 Department of Veterinary Biomedical Sciences, College of Veterinary 11 Medicine, University of Minnesota at Twin Cities, Saint Paul, MN 55108 12 To whom correspondence should be addressed: 13 14 Zheng Xing, PhD. Mailing address: 300D Veterinary Science Building, 15 University of Minnesota at Twin Cities, 1971 Commonwealth Avenue, Saint Paul, MN 55108; E-mail: zxing@umn.edu Tel: (612) 626-5392; 16 17 Fax: (612) 626-5203 or Xian Qi, PhD. Jiangsu Provincial Center for Disease Control and 18 19 Prevention, Nanjing, Jiangsu; Email: gixiansyc@hotmail.com Tel: (86) 025-83594532 (0) 20 21 22 **Running Title:** ZIKV Induces Pyroptosis in Monocytes Key words: Zika virus; Pyroptosis; Monocytes; Caspase-1; ZIKV 23
- 24 **Word Count:** Abstract (228); Text (4,222)
- 25
- 26
- 27
- 28
- 29

30 ABSTRACT

31

32	Zika virus (ZIKV) is a positive-sense RNA flavivirus and can cause serious
33	neurological disorders including microcephaly in infected fetus. As a mosquito-borne
34	arbovirus, ZIKV enters bloodstream and is transmitted into the fetus through the
35	placenta in pregnant women. Monocytes are considered one of the earliest blood cell
36	types to be infected by ZIKV. As a first line defence, monocytes are crucial components
37	in innate immunity and host responses and may impact viral pathogenesis in humans.
38	Previous studies have shown that ZIKV infection can activate inflammasomes and
39	induce proinflammatory cytokines in monocytes. In this report, we showed that ZIKV
40	carried out a productive infection, which lead to cell death in human and murine
41	monocytic cells. In addition to the presence of cleaved caspase-3, indicating that
42	apoptosis was involved, we identified the cleaved caspase-1 and gasdemin D (GSDMD)
43	as well as increased secretion of IL-1 β and IL-18, suggesting that the inflammasome
44	was activated that may lead to pyroptosis in infected monocytes. The pyroptosis was
45	NLRP3-dependent and could be suppressed in the monocytes treated with shRNA to
46	target and knockdown caspase-1, or an inhibited for caspase-1, indicating that the
47	pyroptosis was triggered via a canonical approach. Our findings in this study
48	demonstrate a concomitant occurrence of apoptosis and pyroptosis in ZIKV-infected
49	monocytes, with multiple mechanisms involved in the cell death, which may have
50	potentially significant impacts on viral pathogenesis in humans.

51

52 INTRODUCTION

53

54	Zika virus (ZIKV) is a member of <i>Flaviviridae</i> family, which includes a large
55	group of viruses that cause West Nile encephalitis, Dengue Fever, Japanese encephalitis,
56	Tick-borne encephalitis and other important human diseases (1). ZIKV infection is
57	usually self-limited in most of cases, which are either asymptomatic or mild with only
58	fever, rash, conjunctivitis and malaise. ZIKV has been associated with Guillain-Barre
59	syndrome or other mild neurological symptoms in some adults (2) and caught the world
60	attention when it was linked to congenital infections, leading to spontaneous abortions
61	and severe neonatal birth defects including microcephaly when a severe outbreak
62	occurred in South America in late 2015 to 2016 (3).
63	Innate immunity plays a critical role in the early phase of viral infections and
64	host defense, in which monocytes and macrophages, originated from bone marrow
65	myeloid progenitor cells are key players (4). Once an infection occurs, monocytes
66	activate their phagocytic function and release a variety of cytokines and chemokines,
67	which will further promote their activation and differentiation (5, 6). Monocytes can
68	become macrophages when they egress from the bloodstream and reside into tissues and
69	organs via chemotaxis. In addition to cytokine and chemokine release,
70	monocytes/macrophages recruit lymphocytes and activate adaptive immunity through
71	antigen presentation (7) and help clear viral infection in the host. On the other hand,
72	monocytes infected with viruses are considered possible to serve as a Trojan horse under
73	certain circumstances that promotes virus spread and leads to virus dissemination within

the host. More importantly, this could happen to bring viruses into the immune privileged tissues and organs such as the placenta, testes, and brain when monocytes migrate across protective blood barriers in the host (8). Indeed several studies indicated that monocytes could severe as virus reservoirs and facilitate virus dissemination and transmigration into the brain through blood-brain barrier (BBB) (9, 10).

Despite the viremia in blood of Zika patients, knowledge about the exact target 79 cells and their responses in the blood during ZIKV infection remains limited. Blood 80 CD14+ monocytes appears to be the primary cells for ZIKV infection, which leads to 81 82 differential immunomodulatory response or M2-skewed immunosuppression during pregnancy (11). A recent report shows that monocytes exhibit more adhesion molecules 83 84 and abilities to attach onto the vessel wall and transmigrate across endothelia which 85 promotes ZIKV dissemination to neural cells (12). Several studies have shown that ZIKV infection can activate the NLRP3 inflammasome, which results in the secretion of pro-86 inflammatory cytokines (13-15). These findings make it complicated to assess the role of 87 88 monocytes in ZIKV infection, and in particular in viral pathogenesis in an infection during pregnancy. However, no study has shown what the fate is for the infected 89 90 monocytes or whether these cells die of pyroptosis due to the inflammasome activation (13-16), while placental macrophages appear to be resistant to cell death during ZIKV 91 infection (17). 92

Host cells can react by activating various innate defenses in response to viral
 infections. In addition to antiviral or pro-inflammatory cytokines and chemokines, cells
 could trigger programed cell death with complex outcomes, which may eliminate infected

96	cells and clear virus replicative niche (18). Apopotosis and pyroptosis are caspase-
97	dependent cell death and necroptosis is activated relying on the activation of
98	phosphorylated receptor interacting serine/threonine-protein kinase (RIPK)(19-23). In
99	this report, we showed the evidence that a productive ZIKV infection led to cell death in
100	both human and murine monocytes. Our data indicated that the infected monocytes died
101	of apoptosis and pyroptosis with the presence of cleaved caspase-1 and caspase-3 and
102	processed GSDMD. The pyroptosis in human and murine monocytes was dependent on
103	the NLRP3 inflammasome activation induced by ZIKV infection. Although previous
104	studies have indicated the significance of the inflammasomes in proinflammatory
105	cytokine responses(13-16) and inhibition of the cGAS-mediated interferon signaling in
106	ZIKV monocytes (13), concomitant apoptosis and pyroptosis may benefit the host by
107	removing a virus shelter and preventing viral spreading and disseminating, which could
108	be of significance to viral pathogenesis in human ZIKV infection.
109	
110	MATERIALS AND METHODS

111

112 Cell Lines and Cultures

THP-1 cells and human embryonic kidney cells (HEK293T) were purchased
from the Cell Bank of Chinese Academy Sciences (Shanghai, China). RAW264.7 cells
were purchased from the American Type Culture Collection (ATCC). RAW264.7 and
HEK293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM) (Gibco,
Grand Island, NY) supplemented with 10% fetal bovine serum (FBS, ExCell Bio.,

enina), 100 e/ini penienini, and 100 µg/ini sueptomyeni suiphate (Deyotine
Biotechnology, China). Cells were cultured in an incubator at 37°C with a humidified
atmosphere of 5% CO ₂ .
Reagents and Antibodies
ZIKV-E antibody (#B1845) was purchased from Beijing Biodragon Immunotech
(Beijing, China). Antibodies for pro-caspase-1 antibody (#ab179515), phospho-MLKL
(#ab187091), phospho-RIPK3 (#209384) and GSDMD (#ab210070) were purchased
from Abcam (Cambridge, MA). Another GSDMD antibody (#A10164) was purchased
from ABclonal. Antibodies for NLRP3 (#D4D8T), pro-caspase-3 (#9555S), cleaved
caspase-3 (#9664S), pro-PARP (#9532S), cleaved-PARP (#9541S), and phospho-RIPK1
(#44590S) were purchased from Cell Signalling Technology (Beverly, MA). We also
purchased antibodies for cleaved caspase-1 (#AF4022) from Affinity Biosciences
(Taizhou, China) and GAPDH and β -actin from Proteintech (Wuhan, China). An MTT
Assay Kit was purchased from SunShineBio (Nanjing, China). ELISA kits for mouse
interleukin-1 β , mouse interleukin-18, human interleukin-1 β , and human interleukin-18
were purchased from BOSTER (Wuhan, China). Compounds VX765, ZVAD-FMK,
GSK'872, Nec-1s, and Phorbol-12-myristate-13-acetate (PMA) were purchased from
Selleck. RNAiso plus reagent was purchased from TAKARA.

138 Virus Infection

139 In this study ZIKV SZ01 strain (GenBank: KU866423), a gift from Dr Shibo

140	Jiang of Fudan University, was used. THP-1 cells were activated with 100 nM PMA for
141	24 to 48hrs (24). THP-1 and RAW264.7 cells were inoculated with 1 MOI of ZIKV SZ01
142	for infection at 37°C for 12 to 48 hrs. Cell medium was collected and cell lysates or total
143	RNA were prepared for further analyses.
144	
145	MTT Assay for Cell Viability
146	PMA-activated THP-1 cells and RAW264.7 cells were inoculated with ZIKV
147	(0.01, 0.1 or 1 MOI) for 12, 24, 36 and 48 hrs prior to addition of 3-(4,5)-
148	dimethylthiahiazo (-z-y1)-3,5-di phenytetrazoliumromide (MTT) for another 4 hrs. Cell
149	viability was determined as a ratio of absorbance at OD_{570} of ZIKV-infected cells to
150	uninfected cells. The assay was carried out at least three times for each group. Unpaired
151	Student's t-test was used to evaluate the data. The data shown are the mean \pm SD of three
152	independent experiments. *P<0.05, ***P<0.001.
153	
154	Quantitative Realtime PCR
155	Total RNA was extracted with RNAiso plus reagent for quantitative realtime
156	PCR (QPCR) following the manufacture's manual. QPCR was performed with 1 μ l of
157	cDNA in a total volume of 20μ l with SYBR Green QPCR Master Mix (Vazyme)
158	according to the manufacturer's instructions. QPCR primers were designed by Primer
159	Premier 5.0. Relative gene expression levels were normalized by β -actin housekeeping
160	gene. Relevant fold change of each gene was calculated by following the formula: $2^{\Delta Ct \text{ of}}$
161	gene- ΔCt of β -actin (ZIKV infected cells)/ $2^{\Delta Ct}$ of gene- ΔCt of β -actin (ZIKV - uninfected cells).

162

163 Lentivirus Packaging for shRNA

- 164 Lentivirus vectors were obtained from Shanghai Jiao Tong University. The
- 165 negative control was a pLKO.1 vector containing sequences encoding shRNA. To ensure
- 166 knockdown efficiency, we selected three shRNA sequences for each targeted gene. The
- 167 sense sequences for pro-caspase-1 shRNA are: CTCTCATTATCTGCAATGA,
- 168 AGCGTAGATGTGAAAAAAA, and CCAGATATACTACAACTCA. The sense
- 169 sequences for NLRP3 shRNA are: TCGAGAATCTCTATTTGTA,
- 170 ACGCTAATGATCGACTTCA, and AGGAGAGACCTTTATGAGA. PMA-activated
- 171 THP-1 cells were infected with the recombinant lentiviruses expressing shRNAs
- targeting pro-caspase-1 or NLRP3. 48 hrs later, the culture medium was discarded and
- the cells were inoculated with ZIKV at 1 MOI. The culture medium and cell lysates were
- harvested at indicated time points for enzyme-linked immunosorbent assay (ELISA) and
- 175 western blot analyses.
- 176
- 177 ELISA and Western Blot Analysis

178 Secretion of cytokine IL-1 β and IL-18 in culture medium was measured using

- 179 commercial ELISA kits. Each group of testing was replicated for three times and
- resultant data were analysed by Student's t-test. Cell lysates from the THP-1 (wild type,
- 181 knockdown cells for NLRP3 and pro-caspase-1) and RAW264.7 (wild type and knockout
- cells for NLRP3) cells were prepared by RIPA lysis buffer with 1% PMSF. Protein
- 183 concentrations were determined by a Bradford assay (BCA). Cell lysates (40 µg) were

184	electrophoresed in 10-15% SDS-PAGE and the proteins transferred to a PVDF
185	membrane for subsequent western blot analyses. Protein signals on the membrane were
186	visualized by a GelCap ECL analyzer (Canon).
187	
188	Confocal Immunofluorescence
189	ZIKV-infected THP-1 or RAW264.7 cells on chamber slides were fixed by 4%
190	paraformaldehyde at room temperature for 15 min and permeabilized with 0.1% Triton-
191	X-100 for 10 min. The cells were washed three times with PBS and then blocked with
192	5% BSA for 1 hr at room temperature. The cells were then incubated with an antibody for
193	GSDMD overnight at 4°C, followed by four washes with PBS. The slides were incubated
194	with Alexa Fluor 594-conjugated Affinipure goat-anti-rabbit IgG (H+L) (Proteintech) for
195	1hr at room temperature. After four more washes, the cells were incubated with DAPI
196	solution for 10 min to stain the nuclei. The cells were finally analysed under a confocal
197	laser scanning microscope (FV3000, Olympus).
198	
199	Statistical Analysis
200	Student's t-test was used to evaluate the data. The data shown are the mean \pm SD
201	of three independent experiments. The differences with a value of $p < 0.05$ were
202	considered statistically significant.
203	
204	RESULTS

206 Infection of ZIKV in Monocytes Triggered Cell Death

207	As an arbovirus, ZIKV enters bloodstream and may infect and replicate in some
208	blood cells. We chose monocytes, which are susceptible to ZIKV as reported previously,
209	for infection to examine the ultimate fate of the infected cells. Two monocytic cell lines,
210	THP-1 (human) and RAW264.7 (mouse), were pre-treated with PMA, followed by
211	inoculation of ZIKV virus at 1 MOI. Morphological changes were observed under a
212	microscope, which showed that the cells became swelling, detached, and their membrane
213	deteriorated. Eventually the cell body broke up into debris after 24 or 48 hrs post
214	infection (p.i.) (Figure 1A-B). The cell death caused by ZIKV infection was dose
215	dependent. When the cells were infected with the virus at MOIs of 0.01, 0.1, or 1, cell
216	death occurred at various time points p.i. and more death was observed in the culture
217	infected with higher amount of viral doses (Figure 1C-D). To confirm that a productive
218	infection occurred, we detected viral RNA replication which showed that viral E gene
219	copy numbers increased over time p.i. by realtime RT-PCR in both THP-1 and
220	RAW264.7 cells (Figure 1E-F). Viral E protein could also be detected starting mainly at
221	12 hrs p.i. in the infected cells (Figure 1G-H).
222	
223	Programed Cell Death Induced in Monocytes with ZIKV Infection

We tried to understand the mechanism about how the monocytes died in response to ZIKV infection. THP-1 and RAW264.7 cells were pre-treated with ZVAD-

226 FMK (40 μ M), Nec-1s (50 μ M), and GSK'872 (20 nM), the inhibitors for pan-caspases,

227 RIPK1, and RIPK3, respectively, followed by infection with ZIKV. First, we observed

228	the cell morphological changes in infected cells with or without the treatment of
229	inhibitors. In the cells untreated with the inhibitors, the infected cells underwent cell
230	death. It appeared that ZVAD-FMK could relieve the cell death in both THP-1 and
231	RAW264.7 cells, although Nec-1s or GSK'872 had no apparent impact on the cell death
232	at 24 and 48 hrs p.i. (Figure 2A-B), indicating that caspases could be involved in the cell
233	death. We quantified the cell death by measuring cell viabilities with an MTT assay. The
234	treatment with ZVAD-FMK significantly relieved the monocytes from cell death at 24
235	and 48 hrs p.i. in both THP-1 (Figure 3A) and RAW264.7 (Figure 3B) cells. On the other
236	hand, the treatment with Nec-1s did not relieve the cells from death until 48 hrs p.i. in
237	THP-1 cells and had no effect on cell death in RAW264.7 cells; the treatment with
238	GSK'872 did not reverse cell death in both THP-1 and RAW264.7 cells. Taken together,
239	these data suggest that caspases, but not RIPKs, may play a role in the cell death
240	triggered by ZIKV infection.
241	We analysed the cell lysates prepared at various time points p.i. from the
242	infected cells for western blot analyses. As shown in supplemental Figure S1, pro-caspase
243	3 was cleaved and activated, together with the presence of the cleaved substrate PARP, at
244	the early stage of infection, confirming that apoptosis was activated in ZIKV-infected
245	monocytes. We could also detect increased phosphorylation of RIPK1 and RIPK3, as
246	well as phosphorylated MLKL, which indicates an activation of necroptosis. However,
247	the activation of RIPKs may not have efficiently triggered a programed necrosis. These
248	data suggest that caspases-dependent programed cell death could be the main cause
249	involved in ZIKV-infected monocytes.

250

Pyroptosis was induced in both human and murine monocytes during ZIKV infection

253	Considering that caspases are involved in not only apoptosis but also pyroptosis,
254	we decided to examine what types of caspases were required for the cell death in ZIKV-
255	infected monocytes. Pro-caspase-1 was activated as shown in the early studies indicating
256	that inflammasomes were activated in monocytes. We confirmed that in both THP-1 and
257	RAW264.7 cells (Figure 4A-B) pro-caspase-1 was processed and cleaved caspase-1 was
258	detected at various time points p.i. by western blot analyses. In fact, expression of pro-
259	caspase-1 was upregulated in both cell lines after ZIKV infection. In addition, GSDMD, a
260	substrate of caspase-1, was cleaved to become cleaved GSDMD, an executor of
261	pyroptosis, indicating that ZIKV infection activated inflammasomes, and induced
262	pyrotosis in monocytes, probably via a caspase-1-dependent canonical pathway.
263	Quantitative analyses showed the significant pro-caspase-1 upregulation (Figure 4C-D)
264	and increases of cleaved caspase-1 (Figure 4E-F) and GSDMD (Figure 4 G-H) in
265	infected THP-1 and RAW264.7 cells than in the cells uninfected.
266	
267	Upregulation of the Components for Inflammasome Formation and Its

268 Activation in ZIKV-infected Monocytes

We examined the transcription and post-transcriptional processing of the inflammasome components in infected cells. RNA transcripts of the pro-caspase-1

271 (Figure 5A & D), NLRP3 (Figure 5B & C), and ASC (Figure 5 C & F) genes increased

272	significantly over the time p.i. in both human and murine monocytes infected with ZIKV.
273	We also examined the transcripts of pro-IL-1 β and pro-IL-18 and found their RNA copy
274	numbers increased as well in infected THP1 (Figure 6 A-B) and RAW264.7 cells (Figure
275	6 C-D). We confirmed that IL-1 β and IL-18 were released to the culture medium of the
276	infected THP-1 (Figure E-F) and RAW264.7 (Figure G-H) cells by ELISA.

277

Inflammasome Activation Led to Cell Death Induced by ZIKV in monocytes 278 Pyroptosis can be triggered by processing of pro-caspase 1 via a canonical 279 280 inflammasome activation, or processing of pro-caspase 4, 5, or 11 via a non-canonical approach. To confirm the mechanism for pyroptosis that occurred in monocytes infected 281 with ZIKV, we chose to use Belnacasan, or VX-765, a specific caspase-1 inhibitor to pre-282 283 treat the cells prior to viral infection. Cell lysates were prepared at various time points p.i. for western blot analyses. As shown in Figure 7, cleaved caspase-1 did not appear or the 284 level of cleaved caspase-1 was greatly reduced in VX765-treated monocytes, in 285 286 comparison to the cells without treatment, indicating that VX765 effectively suppressed the activation of pro-caspase-1 in infected THP-1 (Figure 7A) and RAW264.7 (Figure 287 7B) cells. We examined the morphology of infected THP-1 and RAW247.1 cells at 48 288 hrs p.i. with or without the treatment of VX765. The amount of the cells with sick 289 morphology increased significantly in both THP-1 (Figure 7C) and RAW247.1 (Figure 290 7D) cells, which were pre-treated with VX756, indicating that pro-caspase-1 cleavage or 291 292 activation of inflammasomes was critical to triggering pyroptosis in ZIKV-infected 293 monocytes.

294	To ascertain the inflammasome activation to be inhibited, we detected the
295	secretion of IL-1 β in infected monocytes, pre-treated with or without VX765. The
296	increase of IL-1 β in infected cells was significantly suppressed at 36 and 48 hrs p.i. in
297	VX765 pre-treated cells, compared to the cells without the treatment (Figure 7E-F).
298	We further used a small hairpin RNA (shRNA) approach to confirm the role of
299	the inflammasome activation involved in the cell death. Three shRNA molecules,
300	targeting pro-caspase-1, were tested in THP-1 cells to knock down pro-caspase-1
301	transcription. The expression of pro-caspase-1 was suppressed in the cell lines, which
302	were selected and expanded, as shown in Figure 8A. The caspase-1 knockdown (KD) cell
303	lines were infected with ZIKV and cell lysates were prepared at various time points p.i.
304	for western blot analysis, which showed little expression of pro-caspase-1, barely
305	detectable cleaved caspase-1, and no detection of cleaved GSDMD, a pattern distinct
306	from those in the control cells infected with ZIKV (Figure 8B). Cell viability was
307	measured by an MTT assay and significant cell death occurred in ZIKV-infected cells at
308	36 and 48 hrs p.i. However in pro-caspase-1 KD cells, the cell death was reversed
309	significantly in the absence of pro-caspase-1 (Figure 8C), indicating that the pyroptosis,
310	that occurred in ZIKV-infected monocytes, was caspase-1 dependent via a canonical
311	pathway.
312	To ascertain the effect on the inflammasome activation by pro-caspase-1 KD in
313	the cells, we measured the increase of IL-1 β which was significantly suppressed at 36
314	and 48 hrs p.i., compared to the infected control cells without pro-caspase-1 KD,
315	confirming that the pro-caspase-1 KO was sufficient in suppressing the inflammasome

316 activation in ZIKV-infected monocytes (Figure 8D).

318	The NLRP3 Inflammasome Was Essential to ZIKV-induced Pyroptosis
319	As described earlier, NLRP3 was transcriptionally upregulated in human
320	monocytes infected with ZIKV. To confirm the role of the NLRP3 inflammasome
321	activation in pyroptosis, we carried out the shRNA knockdown of NLRP3 in THP-1 cells.
322	Three shRNA molecules, targeting NLRP3, were tested in THP-1 cells to knock down
323	NLRP3 transcription. The cell lines were selected and examined for their knockdown
324	efficacy. The result with efficient knockdown of NLRP3 was shown in Figure 9A. The
325	NLRP3 knockdown (KD) cells were infected with ZIKV and cell lysates were prepared
326	for western blot analysis. In infected control cells, pro-caspase-1 was processed and
327	cleaved GSDMD was produced, but in infected KD cells, pro-caspase-1 was barely
328	processed and cleaved GSDMD was not produced (Figure 8B), indicating that the
329	pyroptosis, triggered in infected monocytes, was dependent on the NLRP3 inflammasome
330	activation, a canonical approach, leading to processing of pro-caspase 1.
331	Cell viability was measured in NLRP3 KD cells after infection with MTT assay.
332	As shown in Figure 9C, significant cell death occurred at 36 and 48 hrs p.i. in infected
333	control cells but the cell death was effectively suppressed in the NLRP3 KD cells
334	infected with ZIKV.
335	To confirm that the NLRP3 inflammasome activation was impaired in the
336	NLRP3 KD cells, we further measured the secretion of IL-1 β in infected control and
337	NLRP3 KD cells by ELISA, which showed that the increase of IL-1 β secretion in the

338	culture medium was significantly reduced in the NLRP3 KD cells (Figure 9D). In sum,
339	these data demonstrate that the activation of the NLRP3 inflammasome led to pyroptosis,
340	which was dependent on activated caspase-1 in ZIKV-infected monocytes

341

342 **DISCUSSION**

343

ZIKV causes asymptomatic or mild infections, which are self-limited in most 344 adults, indicating that host immunity can contain the infection effectively in most adults. 345 346 However, ZIKV can dissimilate through bloodstream to the placenta in some pregnant women and penetrate the blood-placenta barrier (BPB) into fetus, in which the virus 347 invades the neural tissues due to its neurotropism. What role monocytes play in 348 349 facilitating the virus to penetrate the BPB barrier and eventually infect the fetal brain remains to be investigated. In this study, we confirmed that both human and murine 350 monocytes were susceptible to ZIKV, and a productive replication led to cell death. The 351 cell death could be observed at 12 hrs p.i., and continued to eventually deteriorate the 352 whole cell culture, suggesting that ZIKV caused a lytic infection in monocytes in addition 353 to released proinflammastory cytokines and chemokines as shown in this and previous 354 studies. We were able to identify that apoptotic process was triggered upon ZIKV 355 infection, which also occurs in monocytes infected with many types of viruses (25-29). 356 357 Previous studies have shown that ZIKV infection activates the NLRP3 358 inflammasome, which leads to processing of pro-caspase-1 and secretion of IL-1 β in 359

360	infected monocytic cell lines, PBMC, or monocyte-derived macrophages (13-15, 17).
361	Interestingly, none of these studies have pursued to observe or detect pyroptosis induced
362	in infected monocytes or macrophages. In this report we showed the occurrence of
363	pyroptosis, in addition to apoptosis, in ZIKV-infected monocytes. As reported previously,
364	we showed that pro-caspase-1 was cleaved and the secretion of cytokines IL-1 β and IL-
365	18 increased, indicating that inflammasomes were activated in monocytes. Cleaved
366	GSDMD, an executor of pyroptosis, was further detected, suggesting that a considerate
367	amount of cell death in ZIKV-infected monocytes was attributed to pyroptosis, which
368	could be suppressed in the cells, pre-treated with an inhibitor for caspase-1 or shRNA to
369	knockdown caspase-1. We finally showed that the NLRP3 inflammasome activation was
370	required for pyroptosis via a canonical approach in ZIKV-infected monocytes, which was
371	dependent on caspase-1 in infected human and murine monocytes.

372

Monocytes and macrophages are important in viral infections. As haemopoietic 373 cells originated in bone marrow, monocytes comprise about 10% of blood leukocytes. 374 They are released into peripheral circulation and live for a few days in blood vessels of 375 the body. Monocytes penetrate through the wall of vessels and reside in the tissues and 376 organs, through chemotaxis when microbial infection occurs, and differentiate into 377 macrophages. Monocytes are susceptible to many viruses in various families. Human 378 monocyte-derived macrophages can be infected by Coxsackieviruses CV-B4(30), which, 379 however, can poorly infect human monocytes, unless a non-neutralizing anti-CV-B4 IgG 380 is present (31). Replication of neurovirulent poliovirus strains in monocytes was 381

associated to their pathogenesis in the central nervous system (32). Monocytes and
macrophages play critical roles in HIV transmission, viral spread early in the host, and
being a reservoir of virus throughout infection (8).

385

Circulating monocytes are the primary cellular target of ZIKV infection in 386 humans. Not only can monocytes be infected dominantly in PBMC by ZIKV in vitro, but 387 the virus can also be found in monocytes collected during acute illness from Zika patients 388 389 (11, 33). ZIKV viral RNA can be detected in the monocytes longer than in the serum of 390 infected patients, indicating that monocytes could serve as a virus reservoir during the infection (33). Interestingly, infection of monocytes by ZIKV leads to cell expansion to 391 392 become more intermediate or non-classical type by expressing CD16 (11, 33). Moreover, 393 monocytes infected with ZIKV tend to secrete IL-10, an immunosuppressive cytokine, which could skew the host immune response during the early stage of pregnancy (11). 394 These reports collectively support that monocytes may play a complicated role in viral 395 396 pathogenesis on ZIKV spread and neuropathogenesis. In this sense, programed cell death in ZIKV-infected monocytes, not reported previously to our knowledge, may be 397 398 beneficiary to the host as a protective defence by eliminating the virus reservoir in the host. 399 400

401 Programed cell death can be triggered in monocytes infected with other
402 flaviviruses. It has been observed that dengue virus (DENV) can induce apoptosis in
403 infected monocytes, which is related to increased TNF-α induction (29). In fact all four

404	serotypes of DENV can induce apoptosis in human monocytes, dependent on activation
405	of caspase 7, 8, and 9 (34). On the other hand, DENY can also trigger pyroptosis, which
406	is associated with an activation of caspase-1 and release of IL-1 β (35). In this report our
407	data demonstrate that a concomitant apoptosis and pyroptosis were induced in ZIKV-
408	infected human and murine monocytes. It was reported that the NLRP3 inflammasome
409	activation, triggered by ZIKV infection in monocytes, promotes the cleavage of cGAS,
410	resulting in the inhibition of initiating type I IFN signaling, and enhances viral replication
411	(13). We believe that subsequent pyroptotic cell death, caused by the NLRP3
412	inflammasome activation, or caspase-3 dependent apoptosis as shown in our data may
413	help shorten or clear viral replicative locales and rid the viral carrier in the host. The
414	programed cell death may be also significant in preventing the virus from spreading to
415	the placenta for infecting fetal chorionic villi during pregnancy.
416	
417	Little is known about why an infected cell chooses one way or another to die. In
418	contrast to apoptosis, pyroptosis and necroptosis are inflammatory, leading to massive
419	damage of involved tissues. Cross-talk occurs between signaling pathways of the
420	programmed cell deaths, which may provide a mechanism for regulating cell fate. We
421	have identified that monocytes are programmed to pyroptosis and apoptosis in response
422	to ZIKV infection. Since ZIKV nonstructural protein NS5 is required for NLRP3
423	activation (15), the pyroptosis is therefore very likely to be triggered by viral protein NS5
424	in monocytes. We cannot determine the exact mechanism about how apoptosis is induced
425	but very likely the induction of TNF- α (36) in infected monocytes plays an important

426	factor in activating the cascade of caspases leading to the processing of pro-caspase-3.
427	We have no clue at this stage whether these programed cell death pathways may regulate
428	each other in ZIKV-infected monocytes. Even though caspase-3 can cleave GSDMD,
429	leading to pyroptosis (37), we showed in this study that ZIKV-triggered pyroptosis in
430	monocytes was caspase-1 dependent via a canonical approach. Our data in this report
431	may help us further understand the complicated functions how monocytes are involved in
432	viral pathogenesis in ZIKV-infected humans.
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
	20

448 ACKNOWLEDGEMENTS

449	We are grateful to Dr. Shibo Jiang, Fudan University, for the Zika virus

450 strain used in the study.

451

452 CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.

455

456 AUTHOR CONTRIBUTIONS

457 CXW and ZX conceived and coordinated the study. CXW, YFY, and CFG

designed, performed and analyzed the experiments shown in Figures 1 through 9.

459 XQ provided reagents, technical assistance and contributed to completion of the

460 studies. CXW, CJC and ZX wrote the paper. All authors reviewed the results and

461 approved the final version of the manuscript.

462

463

464 DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available

466 from the corresponding author on reasonable request.

467

468

469

REFERENCES 471

472	
473	1. Hayes EB. Zika virus outside Africa. Emerg Infect Dis. 2009 Sep;15(9):1347-50.
474	2. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al.
475	Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med.
476	2009 Jun 11;360(24):2536-43.
477	3. Brasil P, Pereira JP, Jr., Moreira ME, Ribeiro Nogueira RM, Damasceno L,
478	Wakimoto M, et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N
479	Engl J Med. 2016 Dec 15;375(24):2321-34.
480	4. Zhang L, Wang C-C. Inflammatory response of macrophages in infection.
481	Hepatobiliary & Pancreatic Diseases International. 2014;13(2):138-52.
482	5. Autissier P, Soulas C, Burdo TH, Williams KC. Evaluation of a 12-color flow
483	cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans.
484	Cytometry A. 2010 May;77(5):410-9.
485	6. Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and
486	Macrophages as Viral Targets and Reservoirs. International Journal of Molecular
487	Sciences. 2018;19(9).
488	7. Arango Duque G, Descoteaux A. Macrophage Cytokines: Involvement in
489	Immunity and Infectious Diseases. Frontiers in Immunology. 2014;5.
490	8. Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM. The importance
491	of monocytes and macrophages in HIV pathogenesis, treatment, and cure. Aids.
492	2014;28(15):2175-87.
493	9. de Carvalho GC, Borget MY, Bernier S, Garneau D, da Silva Duarte AJ, Dumais
494	N. RAGE and CCR7 mediate the transmigration of Zika-infected monocytes through
495	the blood-brain barrier. Immunobiology. 2019 Nov;224(6):792-803.
496	10. Messias CV, Lemos JP, Cunha DP, Vasconcelos Z, Raphael LMS, Bonaldo MC,
497	et al. Zika virus infects human blood mononuclear cells. BMC Infect Dis. 2019 Nov
498	21;19(1):986.
499	11. Foo SS, Chen W, Chan Y, Bowman JW, Chang LC, Choi Y, et al. Asian Zika
500	virus strains target CD14(+) blood monocytes and induce M2-skewed
501	immunosuppression during pregnancy. Nat Microbiol. 2017 Nov;2(11):1558-70.
502	12. Ayala-Nunez NV, Follain G, Delalande F, Hirschler A, Partiot E, Hale GL, et al.
503	Zika virus enhances monocyte adhesion and transmigration favoring viral
504	dissemination to neural cells. Nat Commun. 2019 Sep 27;10(1):4430.
505	13. Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z, Liu T, et al. Zika virus elicits
506	inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis.
507	Embo J. 2018 Sep 14;37(18).
508	14. Khaiboullina SF, Uppal T, Sarkar R, Gorzalski A, St Jeor S, Verma SC. ZIKV
509	infection regulates inflammasomes pathway for replication in monocytes. Sci Rep.
510	2017 Nov 22;7(1):16050.
511	15. Wang W, Li G, De W, Luo Z, Pan P, Tian M, et al. Zika virus infection induces
512	host inflammatory responses by facilitating NLRP3 inflammasome assembly and
513	interleukin-1beta secretion. Nat Commun. 2018 Jan 9;9(1):106.

- 16. Jurado KA, Iwasaki A. Zika virus targets blood monocytes. Nat Microbiol. 2017
- 515 Nov;2(11):1460-1.
- 516 17. Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O'Neal JT, et al. Zika
- 517 Virus Infects Human Placental Macrophages. Cell Host Microbe. 2016 Jul
- 518 13;20(1):83-90.
- 519 18. Orzalli MH, Kagan JC. Apoptosis and Necroptosis as Host Defense Strategies to
- 520 Prevent Viral Infection. Trends Cell Biol. 2017 Nov;27(11):800-9.
- 521 19. Brubaker SW, Gauthier AE, Mills EW, Ingolia NT, Kagan JC. A bicistronic
- 522 MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell.
- 523 2014 Feb 13;156(4):800-11.
- 524 20. Qian XY, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al.
- 525 Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV
- 526 Exposure. Cell. 2016 May 19;165(5):1238-54.
- 527 21. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al.
- Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015 Sep;89(17):8880-96.
- 530 22. Kopitar-Jerala N. The Role of Interferons in Inflammation and Inflammasome531 Activation. Front Immunol. 2017;8:873.
- 532 23. Green DR. The Coming Decade of Cell Death Research: Five Riddles. Cell. 2019
 533 May 16;177(5):1094-107.
- 534 24. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika
- Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal
 Demise. Cell. 2016 May 19;165(5):1081-91.
- 537 25. Fesq H, Bacher M, Nain M, Gemsa D. Programmed cell death (apoptosis) in
- human monocytes infected by influenza A virus. Immunobiology. 1994 Feb;190(1-2):175-82.
- 540 26. Ito M, Yamamoto T, Watanabe M, Ihara T, Kamiya H, Sakurai M. Detection of
- 541 measles virus-induced apoptosis of human monocytic cell line (THP-1) by DNA
- fragmentation ELISA. FEMS Immunol Med Microbiol. 1996 Sep;15(2-3):115-22.
- 543 27. Hanon E, Lambot M, Hoornaert S, Lyaku J, Pastoret PP. Bovine herpesvirus 1-
- induced apoptosis: phenotypic characterization of susceptible peripheral bloodmononuclear cells. Arch Virol. 1998;143(3):441-52.
- 546 28. Lambot M, Hanon E, Lecomte C, Hamers C, Letesson JJ, Pastoret PP. Bovine
- 547 viral diarrhoea virus induces apoptosis in blood mononuclear cells by a mechanism
- largely dependent on monocytes. J Gen Virol. 1998 Jul;79 (Pt 7):1745-9.
- 549 29. Espina LM, Valero NJ, Hernandez JM, Mosquera JA. Increased apoptosis and
- expression of tumor necrosis factor-alpha caused by infection of cultured human
- monocytes with dengue virus. Am J Trop Med Hyg. 2003 Jan;68(1):48-53.
- 30. Alidjinou EK, Sane F, Trauet J, Copin MC, Hober D. Coxsackievirus B4 Can
- 553 Infect Human Peripheral Blood-Derived Macrophages. Viruses. 2015 Nov
- 554 24;7(11):6067-79.
- 555 31. Hober D, Chehadeh W, Bouzidi A, Wattre P. Antibody-dependent enhancement
- of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results
- in increased interferon-alpha synthesis. J Infect Dis. 2001 Nov 1;184(9):1098-108.

558	32. Freistadt MS, Eberle KE. Correlation between poliovirus type 1 Mahoney
559	replication in blood cells and neurovirulence. J Virol. 1996 Sep;70(9):6486-92.
560	33. Michlmayr D, Kim E-Y, Rahman AH, Raghunathan R, Kim-Schulze S, Che Y, et
561	al. Comprehensive Immunoprofiling of Pediatric Zika Reveals Key Role for
562	Monocytes in the Acute Phase and No Effect of Prior Dengue Virus Infection. Cell
563	Reports. 2020;31(4).
564	34. Klomporn P, Panyasrivanit M, Wikan N, Smith DR. Dengue infection of
565	monocytic cells activates ER stress pathways, but apoptosis is induced through both
566	extrinsic and intrinsic pathways. Virology. 2011 Jan 20;409(2):189-97.
567	35. Tan TY, Chu JJH. Dengue virus-infected human monocytes trigger late activation
568	of caspase-1, which mediates pro-inflammatory IL-1beta secretion and pyroptosis. J
569	Gen Virol. 2013 Oct;94(Pt 10):2215-20.
570	36. Luo H, Winkelmann ER, Fernandez-Salas I, Li L, Mayer SV, Danis-Lozano R, et
571	al. Zika, dengue and yellow fever viruses induce differential anti-viral immune
572	responses in human monocytic and first trimester trophoblast cells. Antiviral Res.
573	2018 Mar;151:55-62.
574	37. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce
575	pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017 Jul
576	6;547(7661):99-103.
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592 502	
593	
594	
595 506	
590 507	
598	
500	
600	
601	
001	

602 FIGURE LEGENDS

603

604	Figure 1. Viral replication and cell death caused in ZIKV-infected monocytic cells.
605	Human and mouse monocytic THP-1 (A) and RAW264.7 (B) cells were infected with
606	ZIKV at 1 MOI and shown cytopathic effect (CPE) at 24 and 48 hrs p.i. (Magnification x
607	40). Cell viability was assessed at various time points p.i. in THP-1 (C) and RAW264.7
608	(D) cells infected with ZIKV at various MOIs by an MTT assay. Total RNA was
609	prepared for realtime RT-PCR to quantify copy numbers of ZIKV E RNA in infected
610	THP-1 (E) and RAW264.7 (F) ZIKV E protein expression was detected in cell lysates
611	prepared from infected THP-1 (G) and RAW264.7 (H) cells by western blot analyses.
612	The data were presented as mean \pm SD and analysed by Student's t-test. *, P<0.05; **,
613	P<0.01; ***, P< 0.001.
614	
615	Figure 2. Morphological changes of cell death induced in ZIKV-infected monocytes pre-
616	treated by programmed death inhibitors. THP-1 (A) and RAW264.7 (B) cells were pre-
617	treated with pan-caspases inhibitor, ZVAD-FMK, or RIPK inhibitors, Nec-1s and
618	GSK'872, followed by infection with ZIKV at 1 MOI. The cells were observed at 24 and
619	48 hrs p.i. under a light microscope (Magnification x 40).
620	
621	Figure 3. Blockage of cell death induced in ZIKV-infected cells by the inhibitors of
622	programmed cell death. THP-1 (A) and RAW264.7 (B) cells were pre-treated with pan-
623	caspases inhibitor, ZVAD-FMK, or RIPK inhibitors, Nec-1s and GSK'872, followed by

624	infection with ZIKV at 1 MOI. The cell viability was assessed at 24 and 48 hrs p.i. with
625	an MTT assay. The data were shown as mean \pm SD and analysed by unpaired Students t-
626	test. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significance.
627	
628	Figure 4. Inflammasome activation led to pyroptosis in ZIKV-infected monocytes. Cell
629	lysates, prepared at various time points p.i. from THP-1 (A) and RAW264.7 (B) cells
630	infected with 1 MOI ZIKV, were analysed by western blot analyses with antibodies for
631	pro- or cleaved caspase-1 and GSDMD. Quantitative analyses of the grayscale values in
632	the blots of the pro- and cleaved caspase-1 and GSDMD in infected and control THP-1
633	(C, D, & F) and RAW264.7 (E, G, & H) cells were shown. The experiments were
634	performed in triplicates and the data were shown as mean+SD, analysed by unpaired
635	Students t-test. *, P<0.05; **, P<0.01; ***, P<0.001.
636	
637	Figure 5. Upregulation of the inflammasome components in ZIKV-infected monocytes.
638	Total RNA was prepared at various time points p.i. from THP-1 (A-C) and RAW264.7
639	(D-F) cells infected with 1 MOI of ZIKV for realtime RT-PCR to measure mRNA
640	transcript numbers of pro-caspase-1 (A & D), NLRP3 (B & E), ASC (C & F). The
641	experiments were performed in triplicates and the data were shown as mean+SD,
642	analysed by unpaired Students t-test. *, P<0.05; **, P<0.01; ***, P<0.001. ns, no
643	significance.
644	

Figure 6. Transcriptional upregulation and secretion of IL-1β and IL-18 in ZIKV-

646	infected human and murine monocytes. Total RNA was prepared at various time points
647	p.i. from THP-1 (A-B) and RAW264.7 (C-D) cells infected with 1 MOI of ZIKV for
648	realtime RT-PCR to measure mRNA transcript numbers of pro-IL-1 β (A & C) and IL-18
649	(B-D) genes. Culture medium was sampled at various time points p.i. from ZIKV-
650	infected THP-1 (E-F) and RAW264.7 (G-H) cells for measurement of secreted IL-1 β (E
651	& G) and IL-18 (F & H) by ELISA. The experiments were performed in triplicates and
652	the data were shown as mean+SD and analysed by unpaired Students t-test. *, P<0.05;
653	**, P<0.01; ***, P<0.001. ns, no significance.
654	
655	Figure 7. Pyroptosis was dependent on caspase-1 in ZIKV-infected human and murine
656	monocytes. Cell lysates were prepared at various time points p.i. from ZIKV-infected
657	THP-1 (A) and RAW264.7 (B) cells which were untreated or pre-treated with VX765, a
658	caspase-1 inhibitor, at 20 μ M. The lysates were analysed by western blot analyses with an
659	anti-cleaved caspase-1 antibody. Morphological changes were observed on ZIKV-
660	infected THP-1 (C) and RAW264.7 (D) cells, which were untreated or pre-treated with
661	VX765, under a light microscope (Magnification x40). Culture medium was sampled at
662	various time points p.i. from ZIKV-infected THP-1 (E) and RAW264.7 (F) cells, which
663	were untreated or pre-treated with VX765, for measurement of secreted IL-1 β by ELISA.
664	The experiments were performed in triplicates and the data were shown as mean+SD and
665	analysed by unpaired Students t-test. *, P<0.05; **, P<0.01; ***, P<0.001.
666	

667 Figure 8. Pyroptosis was suppressed in ZIKV-infected monocytes with pro-caspase-1

668	knockdown. (A) Knockdown of pro-caspase-1 in THP-1 cells. Cell lysates were prepared
669	from lentiviral vector-transduced THP-1 cell lines, expressing shRNA1, 2, or 3 targeting
670	mRNA of pro-caspase-1, for western blot analyses with pro-caspase-1 antibody to
671	examine the knockout (KD) efficacy. (B) Inhibition of pro-caspase-1 and GSDMD
672	processing in pro-caspase-1 KD cells. Both pro-caspase-1 or scramble shRNA KD cells
673	were infected with ZIKV and cell lysates, prepared at various time points p.i., were
674	subjected to western blot analyses with antibodies for pro-caspase-1, cleaved caspase-1
675	and GSDMD. (C) Cell viability was assessed in pro-caspase-1 or scramble shRNA KD
676	THP-1 cells infected with or without ZIKV at various MOIs by an MTT assay. (D)
677	Culture medium was sampled at various time points p.i. from pro-caspase-1 or scramble
678	shRNA KD cells infected with or without ZIKV for measurement of secreted IL-1 β by
679	ELISA. The experiments were performed in triplicates and the data were shown as
680	mean+SD and analysed by unpaired Students t-test. *P, <0.05; **, P<0.01. ns, no
681	significance.
682	

Figure 9. Pyroptosis triggered in ZIKV-infected monocytes were dependent on the NLRP3 inflammasome activation. (A) Knockdown of NLRP3 in THP-1 cells. Cell lysates were prepared from lentiviral vector-transduced THP-1 cell lines, expressing shRNA1, 2, or 3 targeting mRNA of NLRP3, for western blot analyses with an NLRP3 antibody to examine the knockdown (KD) efficacy. (B) Inhibition of pro-caspase-1 and GSDMD processing in NLRP3 KD cells. Both NLRP3 or scramble shRNA KD cells were infected with ZIKV and cell lysates, prepared at various time points p.i., were

690	subjected to western blot analyses with antibodies for pro-caspase-1, cleaved caspase-1
691	and GSDMD. (C) Cell viability was assessed in NLRP3 or scramble shRNA KD THP-1
692	infected with or without ZIKV at various MOIs by an MTT assay. (D) Culture medium
693	was sampled at various time points p.i. from NLRP3 or scramble shRNA KD cells,
694	infected with or without ZIKV, for measurement of secreted IL-1 β by ELISA. The
695	experiments were performed in triplicates and the data were shown as mean+SD and
696	analysed by unpaired Students t-test. **, P<0.01; ***, P<0.001. ns, no significance.
697	
698	
699	SUPPLEMENTAL INFORAMTION
700	
701	Figure S1. Activation of Caspases and Phosphorylation of RIPKs in ZIKV-infected
702	Monocytes. THP-1 cells were infected with ZIKV and cell lysates were prepared at
703	various time points p.i. for western blot analyses with antibodies for pro- and cleaved
704	caspase-3, PARP (A) and RIPK1, RIPK3, and MLKL (B).
705	
706	
707	

RAW264.7

Ε

в

RAW264.7

THP-1

RAW264.7

F

Е

RAW264.7

F

Figure 6

