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Abstract 32 

Increasing evidence indicates that the gut microbiome (GM) plays an important role 33 

in the etiology of dyslipidemia. To date, however, no in-depth characterization of the 34 

associations between GM and its metabolic attributes with deep profiling of lipoproteins 35 

distributions (LPD) among healthy individuals has been conducted. To determine associations 36 

and contributions of GM composition and its cofactors with distribution profiles of 37 

lipoprotein subfractions, we studied blood plasma LPD, fecal short-chain fatty acids (SCFA) 38 

and GM of 262 healthy Danish subjects aged 19-89 years.  39 

Stratification of LPD segregated subjects into three clusters of profiles that  reflected 40 

differences in the lipoprotein subclasses, corresponded well with limits of recommended 41 

levels of main lipoprotein fractions and were largely explained by host characteristics such as 42 

age and body mass index. Higher levels of HDL, particularly driven by large subfractions 43 

(HDL2a and HDL2b), were associated with a higher relative abundance of Ruminococcaceae 44 

and Christensenellaceae. Increasing levels of total cholesterol and LDL, which were primarily 45 

associated with large 1 and 2 subclasses, were positively associated with Lachnospiraceae and 46 

Coriobacteriaceae, and negatively with Bacteroidaceae and Bifidobacteriaceae. Metagenome 47 

sequencing showed a higher abundance of genes involved in the biosynthesis of multiple B-48 

vitamins and SCFA metabolism among subjects with healthier LPD profiles. Metagenomic 49 

assembled genomes (MAGs) affiliated mainly to Eggerthellaceae and Clostridiales were 50 

identified as the contributors of these genes and whose relative abundance correlated 51 

positively with larger subfractions of HDL. 52 

The results of this study demonstrate that remarkable differences in composition and 53 

metabolic traits of the GM are associated with variations in LPD among healthy subjects. 54 

Findings from this study provide evidence for GM considerations in future research aiming to 55 

shade light on mechanisms of the GM – dyslipidemia axis. 56 

 57 

Keywords: gut microbiome, SCFAs, lipoproteins distribution, HDL, 1H NMR 58 
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INTRODUCTION 59 

Cholesterol is essential for keeping cellular integrity and is an important precursor for 60 

steroid hormones and bile acids 1. However, alterations of the cholesterol metabolism and 61 

consequent dyslipidemia have been associated with various diseases, including 62 

atherosclerosis and cardiovascular diseases (CVD) 2, as well as breast cancer 3.  63 

Recent advances in metabolomics research have allowed large-scale and high-64 

throughput profiling of lipoprotein distribution’s (LPD) in human blood plasma based upon 65 

their composition and concentration 4–6. It has been hypothesized that numerous medical 66 

conditions such as glucose intolerance, type-2 diabetes, myocardial infarction, ischemic 67 

stroke and intracerebral hemorrhage, might be associated with lower blood levels of larger 68 

HDL particles (e.g. HDL2a and HDL2b) and a higher content of triglycerides within the 69 

lipoproteins particles  7,8. 70 

During the last decade it has been shown that alterations in gut microbiome (GM) 71 

composition contribute to the development and progression of several metabolic and 72 

immunological complications 9. Furthermore, a handful of recent studies on different cohorts 73 

have also demonstrated that the changes in intestinal microbiota are highly correlated to 74 

variations in levels of lipoproteins in blood 10–12, as well as to promote atherosclerosis 13, and 75 

regulate cholesterol homeostasis 14.  76 

The relationship between GM and LPD has only been scarcely investigated. Recently 77 

Vojinovic et al. 5 reported the association of up to 32 GM members with very-low-density 78 

(VLDL) and high-density (HDL) subfractions. Positive correlations between a number of 79 

Clostridiales members with large particle size subfractions of HDL were elucidated. In other 80 

studies, focusing on total lipoproteins fractions, an increasing abundance of GM members 81 

affiliated to the Erysipelotrichaceae and Lachnospiraceae families have been linked to 82 

elevated levels of total cholesterol and low-density lipoproteins (LDL) 10–12. Interestingly, 83 

common gut microbes like Lactobacillaceae members have been reported to assimilate and 84 

lower cholesterol concentrations from growth media and incorporate it into their cellular 85 
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membrane 15, whereas butyrate-producing Roseburia intestinalis has been found to increase 86 

fatty acid utilization and reduce atherosclerosis development in a murine model 16.  87 

However, the relationship between GM and LPD distribution is still far from being 88 

understood. Thus, with the aim of gaining a deeper understanding of the relationship between 89 

GM and LPD in blood, we carried out a detailed compositional analysis of GM, its metabolic 90 

functions, and studied its associations with blood lipoproteins quantified using a recently 91 

developed method based on proton (1H) nuclear magnetic resonance (NMR) spectroscopy 6. 92 

We determined covariations between larger HDL subclasses and lower total cholesterol with 93 

a several Clostridiales (Ruminococcaceae and Lachnospiraceae) and Eggerthelalles members, 94 

whose metabolic potential is linked to biosynthesis of cofactors essential for carrying out lipid 95 

metabolism.   96 

METHODS 97 

Study participants 98 

Two hundred and sixty-two men and women participants older than 20 years, who 99 

had not received antibiotic treatment 3 months prior to the beginning of the study and who 100 

had not received pre- or probiotics 1 month prior to the beginning of the study, were included 101 

as part of the COUNTERSTRIKE (COUNTERacting Sarcopenia with proTeins and exeRcise 102 

– Screening the CALM cohort for lIpoprotein biomarKErs) project (counterstrike.ku.dk). 103 

Pregnant and lactating women, as well as individuals suffering from CVD, diabetes or 104 

chronic gastrointestinal disorders, were excluded from the study.  105 

 106 

Ethics approval and consent to participate 107 

The study was approved by the Research Ethics Committees of the Capital Region of 108 

Denmark in accordance with the Helsinki Declaration (H-15008313) and the Danish Data 109 
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Protection Agency (2013-54-0522). Written informed consent was obtained from all 110 

participants. 111 

 112 

Lipoprotein distribution profiles 113 

 The human blood plasma lipoproteins were quantified using SigMa LP software 17. 114 

The SigMa LP quantifies lipoproteins from blood plasma or serum using optimized partial 115 

least squares (PLS) regression models developed for each lipoprotein variable using one-116 

dimensional (1D) 1H NMR spectra of blood plasma or serum and ultracentrifugation based 117 

quantified lipoproteins as response variables as determined in Khakimov et al. 6. 118 

 119 

Short chain fatty acids (SCFAs) quantification 120 

Targeted analysis and quantification of SCFA on fecal slurries were carried out as recently 121 

described 18 122 

 123 

Samples processing, library preparation and DNA sequencing 124 

Fecal samples were collected and kept at 4°C for maximum 48 h after voidance and 125 

stored at -60°C until further use. Extraction of genomic DNA and library preparation for 126 

high-throughput sequencing of the V3-region of the 16S rRNA gene was performed as 127 

previously described 18. Shotgun metagenome libraries for sequencing of genome DNA were 128 

built using the Nextera XT DNA Library Preparation Kit (Cat. No. FC-131-1096) and 129 

sequenced with Illumina HiSeq 4000 by NXT-DX. 130 

 131 

Analysis of sequencing data 132 

The raw dataset containing pair-end amplicon reads we analyzed following recently 133 

described procedures 18. The metabolic potential of the amplicon sequencing dataset was 134 

determined through PICRUSt 19, briefly, zero-radious operational taxonomical units (zOTUs) 135 
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abundances were first normalized by copy number and then KEGG orthologues was obtained 136 

by predicted metagenome function.  137 

For shotgun sequencing, the reads were trimmed from adaptors and barcodes and the 138 

high-quality sequences (>99% quality score) using Trimmomatic v0.35 20 with a minimum 139 

size of 50nt were retained. Subsequently, sequences were dereplicated and check for the 140 

presence of Phix179 using USEARCH v10 21, as well as human and plant genomes associated 141 

DNA using Kraken2 22. High-quality reads were then subjected to within-sample de-novo 142 

assembly-only using Spades v3.13.1 23 and the contigs with a minimum length of 2,000 nt 143 

were retained. Within-sample binning was performed with metaWRAP 24 using Metabat1 25, 144 

Metabat2 26 and MaxBin2 27, and bin-refinement 28 was allowed to a ≤10% contamination and 145 

≥70% completeness. Average nucleotide identity (ANI) of metagenome bins, or metagenome 146 

assembled genomes (MAGs), was calculated with fastANI 29 and distances between MAGs 147 

were summarized with bactaxR 30. To determined abundance across samples, reads were 148 

mapped against MAGs with Subread aligner 31 and a contingency-table of reads per Kbp of 149 

contig sequence per million reads sample (RPKM) was generated. Taxonomic annotation of 150 

MAGs was determined as follows: ORF calling and gene predictions were performed with 151 

Prodigal 32, the predicted proteins were blasted (blastp) against NCBI NR bacterial and 152 

archaeal protein database. Using Basic Sequence Taxonomy Annotation tool (BASTA) 33, the 153 

Lowest Common Ancestor (LCA) for every MAG was estimated based on percentage of hits 154 

of LCA of 60, minimum identity of 0.7, minimum alignment of 0.7 and a minimum number 155 

of hits for LCA of 10.   156 

To determine the metabolic potential of metagenomes, ORF calling and gene 157 

predictions (similar as above) were performed on both, binned and unbinned contigs, and the 158 

predicted proteins were subsequently clustered at 90% similarity using USEARCH v10. To 159 

assign functions, protein sequences were blasted (90% id and 90% cover query) against the 160 

integrated reference catalog of the human gut microbiome (IRCHGM) 34, while using only 161 

target sequences containing KEGG ortholog entries. Similar as above, to determine 162 
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abundance of protein-encoding genes across metagenomes, reads were mapped against 163 

protein clusters (PC) with DIAMOND 35 and a contingency-table of reads mapped to PCs was 164 

also generated. To avoid bias due to sequencing depth across protein-encoding genes, samples 165 

were subsampled to 15,000,000 reads per sample. 166 

 167 

Statistical analysis 168 

Stratification and clustering of LPD was carried out using Euclidean distances and 169 

general agglomerative hierarchical clustering procedure based on “Ward2”, as implemented 170 

in the gplots R-package 36. For univariate data analyses, pairwise comparisons were carried 171 

out with unpaired two-tailed Student’s t-test, Spearman’s rank coefficient was used for 172 

determining correlations and Chi-Square test for evaluating group distributions. For 173 

multivariate data analyses, the association of covariates (e.g. age, BMI, sex) with LPD were 174 

assessed by redundancy analysis (RDA) (999 permutations), whereas the association of LPD 175 

clusters with GM were analyzed by distance-based RDA (999 permutations) on Canberra 176 

distances (implemented in the vegan R-package 37 ). 177 

Feature selection for zOTUs was performed with Random Forest. Briefly, for a given 178 

training set (training: 70%, test: 30%), the party R-package 38 was run for feature selection 179 

using unbiased-trees (cforest_unbiased with 6,000 trees and variable importance with 999 180 

permutations) and subsequently the selected variables were used to predict (6,000 trees with 181 

999 permutations) their corresponding test set using randomForest R-package 39. The selected 182 

features were subjected to sequential rounds of feature selection until prediction could no 183 

longer be improved. All statistical analyses were performed in R versions ≤3.6.0. 184 

 185 

Data availability 186 

Sequence data are available at the Sequence Read Archive (SRA), BioProject 187 

SUB9304449 submissions SUB9305011 and SUB9304442. Supplementary Table 1 provides 188 
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samples information. Non-sequence data that support the findings of this study are available 189 

from the corresponding authors upon reasonable request. 190 

RESULTS 191 

Participants and data collection 192 

Two hundred and sixty two individuals (men:women 90:172) with an age between 20 193 

and 85 years (Figure 1A) and BMI ranging between 19 and 37 kg/m2 (Figure 1B) were 194 

included in this study. Subjects are representatives of community dwelling and apparently 195 

healthy adults living in the Danish Capital Region. In this study, we included 1H NMR 196 

spectroscopy based quantified lipoproteins from human blood plasma6 , short-chain fatty 197 

acids profiling and GM composition on fecal samples based on 16S rRNA-gene amplicon 198 

sequencing and shotgun metagenome sequencing for a subset of samples (Figure 1C). 199 

 200 

LPD profiles, stratification and host covariates 201 

 LPD profiles of the study subjects were predicted from 1H NMR measurements of 202 

blood plasma. A total of 55 lipoproteins-subfractions were quantified including cholesterol, 203 

triglycerides (TG), cholesterol ester (CE), free cholesterol, phospholipids, apolipoprotein A 204 

(ApoA1) and apolipoprotein B (ApoB) content in all or in some of lipoprotein in plasma 205 

(VLDL, IDL, HDL, LDL) and/or in lipoprotein subfractions (HDL2a, HDL2b, HDL3, LDL1, 206 

LDL2, LDL3, LDL4, LDL5, LDL6)6. Linking host covariates and LPD profiles, redundancy 207 

analysis (RDA) of LPD profiles showed a significant (p ≤ 0.01) effect of age, BMI and sex on 208 

LPD profiles (Figure 2B) with a combined size effect of up to 24.6% (Figure 2B-C).  209 

Clustering of LPD profiles segregated study participants into three groups (Figure 210 

2A, Figure I in the Data Supplement). Cluster 1A and 1B were characterized by higher 211 

concentrations of LDL sub-fractions and their constituents (particularly evident in subclasses 212 

1 and 2). Clusters 1A and 2, on the other hand, were characterized by lower concentrations of 213 
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HDL sub-fractions (associated with HDL2a and HDL2b), whereas higher concentrations of 214 

HDL-3 particles in subjects of cluster 1A were observed (Figure I in the Data Supplement). 215 

Furthermore, plasma concentrations of CE, phospholipids and CE were higher among cluster 216 

1A and 1B. When comparing the plasma fractions of the study participants to the 217 

recommendations of cholesterol classes provided by the National Institute of Health (NIH) 40, 218 

for clusters 1A and 1B total cholesterol and LDL levels were above the recommendations, 219 

while for clusters 1B and 2 the levels pf HDL were below the recommended values.  220 

LPD profiles were also found to covariate with host attributes, cluster 2 subjects was 221 

significantly younger than clusters 1A and 1B (Figure 2D), and cluster 1B showed the lowest 222 

BMI (Figure 2E). These results were also consistent even after correcting for sex effects, 223 

given that cluster 1B had a significantly higher proportion of women (Fisher test p < 0.01, 224 

Figure 2A) compared to clusters 1A and 2 (Figure I in the Data Supplement).   225 

 226 

LPD clusters are linked with GM profiles  227 

The GM of study participants (n = 262) was profiled using high-throughput amplicon 228 

sequencing the V3-region of the 16S rRNA gene (11,544 zOTUs), as well as shotgun 229 

metagenome sequencing of total genomic DNA for a subset of samples (n = 58). Gene 230 

content and functionality (based on KEGG orthologues - KOs) were predicted based on 231 

PICRUSt 19 (for 16S rRNA gene amplicons), as well as through ORF calling and gene 232 

prediction of assembled contigs reconstructed from shotgun metagenome data. Validation of 233 

PICRUSt against metagenome calling KO yielded a high correlation coefficient (Pearson r = 234 

0.77, Figure 3A) between the gene richness of both datasets. Alpha diversity analyses 235 

between LPD clusters revealed no significant (t-test p > 0.05) differences in phylotypes 236 

(Figure 3B) nor KOs richness as predicted by the PICRUSt (Figure 3C). A significant (Dip-237 

test p < 0.001) bimodal distribution of KO richness among the study participants was 238 

observed, but a higher-/lower- gene count was not associated to LPD clusters (Figure 3C) or 239 

BMI categories (Figure 3D). Significant differences in composition (beta-diversity) between 240 
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LPD clusters were observed among phylotypes (Canberra distance, Adonis test p < 0.05, R2 = 241 

0.62-1%), but not among PICRUSTs predicted KOs. 242 

 243 

LPD clusters correspond with GM and KOs features 244 

After feature selection based on random forest, LPD clusters were partially 245 

discriminated (Figure 4A) by 206 selected sequence variants (zOTUs) distributed to over 10 246 

families (Figure 4B). Among these, zOTUs affiliated to Ruminococcaceae (75) and 247 

Lachnospiraceae (58) represented 64%, followed by Bacteroidaceae (8), Bifidobacteriaceae 248 

(7), Christensenellaceae (6), Coriobacteriaceae (5) and four other sparse bacterial families 249 

(47).  The cumulative abundance (cumulative sum scaling, CSS) of those families showed 250 

differences between LPD clusters, with cluster 1A being associated with a higher abundance 251 

of Lachnospiraceae and a lower abundance of Christensenellaceae members, while cluster 1B 252 

was characterized by a larger proportion of Ruminococcaceae phylotypes, and cluster 2 253 

showed increased proportion of Bifidobacteriaceae, Bacteroidaceae and reduced abundance of 254 

Coriobacteriaceae (Figure 4B-C).  255 

KEGG orthologues predicted through PICRUSt demonstrated very weak 256 

discrimination power towards LPD clusters (Figure 4D, Figure II-A in the Data Supplement 257 

shows detailed 3rd level KEGG functions), this included 54 KOs affiliated to >9 primary and 258 

secondary metabolism processes, as well as signaling and cellular processes (Figure 4E). 259 

Despite its documented limitations 41 PICRUSt was still able to reveal a decreasing 260 

abundance of functional modules among subjects of cluster 1A and 2 as compared to those of 261 

cluster 1B (Figure 4E-F). Analysis on aggregated functions per KOs (2nd level KEGG) 262 

showed that cluster 1B was characterized by a higher abundance (t-test p < 0.05) of functions 263 

related to metabolism of amino acids (e.g., Phe, Tyr and Trp biosynthesis), carbohydrates 264 

(e.g., pyruvate, propanoate and butanoate metabolism), lipids (glycerolipids and 265 

glycerophospholipids metabolism) and genetic information processing (e.g., transcriptional 266 

factors) (Figure 4F). 267 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458531doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458531
http://creativecommons.org/licenses/by-nc-nd/4.0/


Castro-Mejía et al., 

 11 

Correlation analyses of selected zOTUs vs LPD profiles displayed several significant 268 

(Spearman FDR p ≤ 0.05) associations (Figure 4G, Figure II-B in the Data Supplement). 269 

Most Ruminococcaceae (74/75 phylotypes, mostly unclassified), a division of 270 

Lachnospiraceae (13/58 phylotypes, mostly unclassified), Bacteroidaceae (e.g., B. 271 

massiliensis, B. caccae) Christensenellaceae (unclassified genus) and Coriobacteriaceae 272 

(unclassified genus) showed positive correlations with HDL subfractions and negative 273 

correlations with VLDL and LDL (e.g. LDL3, 4, 5 ,6). Contrary to this, most 274 

Lachnospiraceae (45/58), Veillonellaceae (e.g., V. invisus) and Bifidobacteriaceae (e.g., Bf. 275 

adolescentis, Bf. bifidum) phylotypes correlated negatively with HDL subfractions, and 276 

positively with subfractions composed of IDL, LDL and VLDL. For KOs vs LPD (Figure 4H, 277 

Figure II-C in the Data Supplement), increasing abundance of functions linked to 278 

glycerophospholipids metabolism and amino acids (His, Phe, Tyr and Trp) biosynthesis 279 

correlated positively with HDL fractions and negatively with LDL and VLDL. Furthermore, 280 

the production of glycosphingolipids, biotin (VitB7) and lipopolysaccharides correlated 281 

negatively with small LDL subfractions (e.g. LDL3, 4, 5 ,6).  282 

 283 

   Metagenome bins and functions associated with LPD clusters 284 

 Fifty-eight samples were subjected to shotgun metagenome sequencing (Figure 1C) 285 

generating on average 5.2 GB per sample. ORF calling on the entire assembled dataset of 286 

generated ~1.4 million gene-clusters (90% similarity clusters, here termed “genes”), with 287 

84,560 core genes being present in at least 90% of the metagenome sequenced samples. RDA 288 

analysis of the core-gene dataset showed significant (p = 0.001) differences between LPD 289 

clusters and explaining up to 23.7% of the total variance in gene composition (Figure 5A). 290 

Ranking of variables (i.e. top 150) within the 1st and 2nd canonical components of the CAP 291 

analyses provided an overview of 35 “known” metabolic genes (>90% identity match to the 292 

integrated non-redundant gene catalog with KEGG ortholog entries 34,  Figure 5B, Figure III-293 

A in the Data Supplement) linked to >10 2nd level KEGG functions, which resembled the 294 
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large majority of those predicted by PICRUSt (see Figure 4E-F). A higher abundance of these 295 

genes was observed among subjects grouped within Cluster 1B relative to cluster 1A and 296 

Cluster 2. To determine the species associated with these genes, gene-sequences were mapped 297 

back to 1,419 metagenome-assembled genomes (MAGs) (Figure 5C). Sixty MAGs affiliated 298 

to Lachnospiraceae, Clostridiales, Coriobacteriaceae and Firmicutes and clustered within 19 299 

species were found to contribute with 27 out of the 35 genes that discriminated LPD clusters 300 

(Figure 5D, Figure III-B in the Data Supplement). MAGs-G1 to G5 contributed with 301 

peptidoglycan and glycan biosynthesis. MAGs-G6 to G12 contributed with thiamine (VitB1) 302 

and pantothenate (VitB5) metabolism, starch degradation and butyric acid metabolism (butanol 303 

dehydrogenase that may lead to increased concentrations of 1-butanol at the expense of 304 

butyrate production, Figure 5E) and glycerolipid metabolism. Finally, MAGs-G13 to G19 305 

promoted biosynthesis of glucosinates, metabolism of propionic acid, biosynthesis of fatty 306 

acids, VitB6 metabolism, as well as folate (VitB9) biosynthesis (Figure 5D, 5F, Figure III-B in 307 

the Data Supplement). Subjects belonging to LPD-cluster 1B had a significantly higher 308 

relative abundance of MAGs-G7, MAGs-G9 to G19 (those comprising Clostridiales, 309 

Eggerthellaceae and Firmicutes bins, Figure 5G-H), MAGs-G1 and MAGs-G5 (those 310 

affiliated to Lachnospiraceae, Figure 5I) than subjects in clusters 1A and 2. Likewise, their 311 

cumulative abundance reached significant positive (spearman p < 0.001) correlations with 312 

constituents (e.g., Cholesteryl ester) of larger HDL sub-classes (HDL2a and HDL2b) (Figure 313 

5J). 314 

The concentrations of the SCFAs acetate and propionate in fecal samples showed no 315 

differences between LPD clusters. However, higher concentrations of butyrate, isobutyrate, 2-316 

methylbutyrate, valerate and isovalerate (ANOVA Tukey’s HSD p < 0.05) were observed in 317 

cluster 2 (Figure 6A-D). To determine whether microbial activity was linked to the 318 

production of such branched-chain fatty-acids, we then focused on analyzing the abundance 319 

of isobutyrate kinase (Figure IV-C in the Data Supplement) and 2-methylbutanoyl-CoA 320 

(Figure 6F) dehydrogenase in the metagenomic samples (Figure 6E-F). For 2-321 
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methylbutanoyl-CoA dehydrogenase 86% of the gene-variants were also mapped to those 60 322 

MAGs displayed in Figure 6F (ANOVA Tukey’s HSD p < 0.05 for cluster 2 LPD subjects), 323 

but none of these had significant matches to isobutyrate kinase. Isobutyrate kinase was found 324 

in 86 MAGs (Figure IV-A in the Data Supplement) belonging to Bacteroides, 325 

Ruminococcaceae, Alistipes, Desulfovibrionaceae and Lachnospiraceae, and whose 326 

cumulative relative abundance varied (Figure IV-B in the Data Supplement) substantially 327 

between LPD clusters.  328 

Discussion 329 

It is well established that certain LPD profiles are associated with elevated CVD risk, 330 

but relatively little is known on the links between GM and LPD. Building on recently 331 

published LPD profiles of 262 adult individuals 6 the present study investigates the 332 

correlations between LPD-profiles and GM, and its genetic functional assignments. 333 

Stratification of study participants based on their LPD profiles yielded three LPD 334 

clusters (1A, 1B and 2) that corresponded well with within- and outside- suggested levels of 335 

total cholesterol, triglycerides, LDL, HDL and VLDL as those recommended by the NIH40 336 

and as shown in Figure 2A. Our study demonstrates that lower levels of total HDL are 337 

associated with a decrease in the concentration of large subfractions (e.g. HDL2a and 338 

HDL2b), while higher levels of LDL correspond with an increase in the concentration of 339 

large LDL subfractions (e.g. LDL1). Similarly, high levels of cholesterol corresponded with 340 

high levels of circulating levels of VLDL. As confirmed by our results and others, the LPD 341 

profiles are influenced by host factors like age, sex and BMI 5,10. These components are able 342 

to explain up to 25% of the total variance in the LPD.  To the best of our knowledge, this 343 

study represents the first to show the contribution of LPD subfractions to the collective levels 344 

of cholesterol, cholesterol-types and triglycerides, as well as recommendations among an age-345 

/BMI- diverse group of apparently healthy adults.  346 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458531doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458531
http://creativecommons.org/licenses/by-nc-nd/4.0/


Castro-Mejía et al., 

 14 

Increasing evidence supports the role of GM to modulate lipids homeostasis and 347 

development of dyslipidemia 16,42–44. GM profiling did not show major differences in the 348 

number of sequence-variants and gene-richness counts among subjects with remarkably 349 

distinct LPD profiles (e.g., C1A, C1B and C2 clusters). Despite the fact that a bimodal 350 

distribution of gene-richness counts was reproduced as in previous studies 45,46 no significant 351 

differences in the gene-frequencies between normal and overweight participants were 352 

observed.  353 

Beta diversity analyses showed significant differences that discriminated LPD 354 

clusters (e.g., Figure 4A). Lachnospiraceae members correlated positively with small LDL 355 

particles (e.g., LDL3, LDL4 and LDL5), ILDL and VLDL, while Ruminococcaceae, a 356 

subgroup of Lachnospiraceae phylotypes and other less abundant families showed positive 357 

correlations with large particles of HDL (HDL2a and HDL2b (see e.g., Figure 4G). 358 

Moreover, in agreement with our findings, a recent large-scale study published by Vojinovic 359 

et al. 5 also reported that Lachnospiraceae and Ruminococcaceae members were related to the 360 

HDL/LDL ratios. High HDL levels have been consistently correlated to a low risk of 361 

developing CVD 7,8 and recent evidence support that the heterogeneity of HDL display 362 

different associations with the incidence of CVD and metabolic syndrome 7,47,48. Recent 363 

findings suggest that Akkermansia muciniphila induces expression of low-density lipoprotein 364 

receptors and ApoE in the hepatocytes, facilitating the clearance of triglyceride-rich 365 

lipoprotein remnants, chylomicron remnants, and intermediate-density lipoproteins, from 366 

circulation 42. In line with this, our study elucidates a possible link between dyslipidemia and 367 

the metabolic potential of MAGs for biosynthesizing important bioactive compounds such as 368 

vitamin B complex and peptidoglycans, as well as SCFA metabolism. Among these 369 

compounds, pantothenate (VitB5), VitB6 and folate (VitB9) have been inversely associated with 370 

low-grade inflammation 49 and mortality risk of CVD in a mechanism that may involve 371 

regulation of blood homocysteine concentrations 50 and one-carbon metabolism 51. SCFA like 372 

butyrate and valerate have been shown to decrease total cholesterol and the expression of 373 
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mRNA associated with fatty acid synthase and sterol regulatory element binding protein 1c, 374 

to enhance mRNA expression of carnitine palmitoyltransferase-1α (CPT-1α) in liver 52,53, as 375 

well as to ameliorate arteriosclerosis via ABCA1-mediates cholesterol efflux in macrophages 376 

54. Biosynthesis of peptidoglycans by some GM members has been associated with incidence 377 

of stenotic atherosclerotic plaques and insulin resistance 55,56. However, emerging evidence 378 

suggests that these potent signaling molecules play positive roles for enhancing systemic 379 

innate immunity 57 and neurodevelopmental processes 58, relaying on a species-dependent 380 

fashion 59. In conclusion, our study provides evidence that GM members (e.g., MAGs) and 381 

their genes related to the biosynthesis of bioactive molecules needed to carry out lipid 382 

metabolism, e.g., vitamin B complex and S/B-CFA, are more abundant among subjects with 383 

healthier LPD profiles (e.g., higher HDL2a, HDL2b, and lower LDL). Furthermore,  384 

variations in LPD subfractions correlates with differences in the GM composition 5, but these 385 

are not necessarily associated to a higher or lower microbial diversity as reported in previous 386 

studies 45,46. Given the cross-sectional nature of our study and its inherent limitations, it is not 387 

possible to depict the mechanism by which GM may influence variability in LPD 388 

subfractions. However, our results provide evidence for GM considerations  in future research 389 

aiming at unravelling the processes of LPD particles assembly through longitudinal 390 

mechanistic approaches that include the activity of enzymes and transfer proteins, membrane 391 

modulators 60 and integrative multi-omics. 392 
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 611 

FIGURE LEGENDS 612 

 613 

 614 

 615 
Figure 1. COUNTERSTRIKE participants and sample overview 616 
A) Age and B) body mass index (BMI) distribution of the study participants. C) samples and 617 
datasets included and analyzed in this study.  618 
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 619 

Figure 2. Plasma lipoprotein distribution (LPD) profiles and covariates 620 
A) Profiles of main and sub-fractions of plasma lipoprotein distribution (LPD) determined by 621 
1H-NMR6. LPD are clustered using Euclidean distances and general agglomerative 622 
hierarchical clustering procedure. Upper color bars represent within-/out- of the 623 
recommended levels of main lipoprotein fractions suggested by the NIH 40 (total cholesterol 624 
<200mg/dL, LDL <100mg/dL, HDL >60mg/dL, Triglycerides <150 mg/dL). Lower color 625 
bars depict 3 clusters (C1A, C1B and C2) of study participants given their LPD profile and 626 
the sex distribution of subjects. B) Cumulative effect size of non-redundant covariates of LPD 627 
determined by stepwise RDA analysis (right bars) as compared to individual effect sizes 628 
assuming independence (left bars). C) Fraction of LPD variation explained with the stepwise 629 
approach. Distribution of D) age and E) body mass index (BMI) between subjects belonging 630 
to C1A, C1B and C2. Stars show statistical level of significance (*p≤ 0.05, **p≤ 0.01, ***P≤ 631 
0.001) 632 
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 635 
Figure 3. Diversity metrics on gut microbiota and metabolic content 636 
A) Spearman’s rank correlation between fecal microbial KEGG Orthologues (KOs) from 637 
shotgun metagenome (SG) sequencing and KO predicted by PICRUSt. B) Richness of 638 
microbial phylotypes (zOTUs) richness and C) KO predicted by PICRUSt among subjects 639 
catalogued as being C1A, C1B and C2 based on their LPD. D) KO counts (richness) among 640 
all subjects and those with BMI ≤ 25 (normal) and BMI >25 (overweighed); the observed 641 
bimodal distribution was statistically significant by the dip-test. E) Adonis test based on 642 
Canberra dissimilarities quantifying variance explained (R2) and significance of phylotypes 643 
and KO abundance with LPD clustering. Stars show statistical level of significance (*p≤ 0.05, 644 
**p≤ 0.01, ***P≤ 0.001) 645 
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Figure 4. Phylotypes and KO functions associated with LPD clustering 657 
Distance-based RDA (Canberra dissimilarity) displaying discrimination of LPD clusters 658 
based on selected A) zOTUs (p = 0.001, explained variance = 3.8%) and D) KOs-PICRUSt (p 659 
= 0.001, explained variance = 2.7%) selected through Random Forests. Overview of selected 660 
B) zOTUs and E) KOs-PICRUSt clustered using Canberra distances and general 661 
agglomerative hierarchical clustering procedure based on ward2. Distribution of C) zOTUs 662 
summarized to family level and F) KOs-PICRUSt summarized to 2nd level KEGG function 663 
across subjects belonging C1A, C1B and C2 LPD groups. Heatmaps displaying significant 664 
(False Discovery Rate corrected, FDR ≤ 0.05) Spearman’s rank correlations between G) 665 
zOTUs and LPD sub-fractions, as well as H) KOs-PICRUSt and LPD sub-fractions. Stars 666 
show statistical level of significance (*p≤ 0.05, **p≤ 0.01, ***P≤ 0.001) 667 
 668 
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674 
Figure 5. Metagenome metabolic functions and associated MAGs 675 
A) RDA displaying discrimination of LPD clusters based on selected KOs obtained from 676 
shotgun metagenome and assembly (p = 0.001, explained variance = 23.7%). B) Overview of 677 
most discriminatory (based on CAP1 and CAP2 within db-RDA) KOs with known metabolic 678 
functions clustered using Canberra distances and general agglomerative hierarchical 679 
clustering procedure based on ward2. C) GC-content – Coverage plot of metagenome 680 
assembled genomes (MAGs) with ≤10% contamination and ≥70% completeness. MAGs are 681 
colored according to phylum-level taxonomic affiliation and bubble size indicates their 682 
genome size in mega-bases (Mb). D) Phylogeny of MAGs containing KOs that discriminate 683 
LPD clusters (1A, 1B and 2), a cut-off of 95-ANI (species-level) and 99-ANI (strain-level) 684 
are denoted. MAGs are colored at family level affiliations and their KOs contribution at the 685 
2nd level KEGG function pathways are provided. E) Relative abundance of protein-encoding 686 
genes associated with butanol dehydrogenase (K00100), and F) protein-encoding genes 687 
associated metabolism and biosynthesis of vitamin B1, B2, B5 and B9. G-H) Distribution of 688 
cumulative abundance (RPKM) of MAGs (containing discriminatory KOs) associated with 689 
Clostridiales, Coriobacteriaceae and Firmicutes (Cl + Co + F) among LPD clusters. I) 690 
Distribution of cumulative abundance (RPKM) of MAGs (G1 + G5 – see Figure III-B in the 691 
Data Supplement, containing discriminatory KOs) associated with Lachnospiraceae among 692 
LPD clusters. I) Heatmaps displaying significant (False Discovery Rate corrected, FDR ≤ 693 
0.05) Spearman’s rank correlations between MAGs and HDL subfractions. 694 
 695 
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Figure 6. Short chain fatty acid concentrations 698 
Range of fecal A) butyrate, B) 2-methylbutyrate, C) isobutyrate, D) isovalerate, E) valerate 699 
concentrations within the different LPD clusters. Cumulative abundance 2-methylbutanoyl-700 
CoA genes screened on metagenomes within LPD clusters. Stars show statistical level of 701 
significance (*p≤ 0.05) 702 
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