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Abstract 11 
Background: 12 
Several human B-cell subpopulations are recognized in the peripheral blood, which play 13 
distinct roles in the humoral immune response. These cells undergo developmental and 14 
maturational changes involving VDJ recombination, somatic hypermutation and class switch 15 
recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire.  16 
Methods:  17 
Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells 18 
from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B 19 
cells. We used advanced bioinformatic analysis and machine learning to thoroughly examine 20 
and compare these repertoires. 21 
Results: 22 
We show that sorted B cell subpopulations are characterised by distinct repertoire 23 
characteristics on both the individual sequence and the repertoire level. Sorted subpopulations 24 
shared similar repertoire characteristics with their corresponding in silico separated subsets. 25 
Furthermore, certain IgH repertoire characteristics correlated with the position of the constant 26 
region on the IgH locus.  27 
Conclusion: 28 
Overall, this study provides unprecedented insight over mechanisms of B cell repertoire 29 
control in peripherally circulating B cell subpopulations.   30 
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Introduction 31 
B-cell development starts in the bone marrow where immature B cells must assemble and 32 
express on their surface a functional but non-self-reactive B cell antigen receptor (BCR).1 The 33 
generation of the heavy and light chain of the BCR is mediated by the random and imprecise 34 
process of V(D)J recombination.2 Further development of B cells occurs in the periphery in 35 
response to stimulation with the process of somatic hypermutation (SHM) through which point 36 
mutations are introduced in the genes coding for the V(D)J part of the immunoglobulin heavy 37 
(IgH) and light chain.3 Subsequently, B cells with a mutated BCR providing increased antigen 38 
affinity are selected and show increased survival and proliferation capacity.4  39 
 40 
Furthermore, class-switch recombination (CSR) modifies the IgH constant region resulting in 41 
the generation of B cells with nine different immunoglobulin isotypes or isotype subclasses, 42 
namely IgD, IgM, IgG1-4, IgA1/2 and IgE.5 This process involves the replacement of the 43 
proximal heavy chain constant gene by a more distal gene. Class switching is an essential 44 
mechanism during humoral immune responses as the constant region of an antibody determines 45 
its effector function.6 Both direct switching and sequential switching upon a second round of 46 
antigen exposure have been reported.7–9 47 
 48 
Through developmental mechanisms and further differentiation in the periphery, several 49 
phenotypically distinct circulating B cell subpopulations are generated.10 They include naïve, 50 
marginal zone (MZ), switched memory B cells and plasma cells (PC), which are mainly 51 
characterized by their differential expression of surface markers and by playing distinct roles 52 
in the adaptive immune response.11 High-throughput sequencing of the IgH repertoire (AIRR-53 
seq) has made it possible to improve our understanding of the different components of the 54 
adaptive immune system in health and disease, and following vaccine challenge.12–16 Previous 55 
studies using both high- and low-throughput sequencing techniques have already reported 56 
important differences between B-cell subpopulations affecting their IgH repertoire 57 
composition, VDJ gene usage, mutations and clonality.17–20  58 
 59 
Recent AIRR-seq workflows allow coverage of a sufficient part of the IgH constant region in 60 
addition to the VDJ region, making it possible to assign antibody classes and subclasses on an 61 
individual sequence level. It is common practice to use unsorted bulk B cells from peripheral 62 
blood as a starting material and use the constant region information combined with the degree 63 
of SHM to group transcripts in silico into different B cell populations.21,22 Using isotype-64 
resolved IgH sequencing of bulk B cells, isotype subclasses have been found to show 65 
differences in their repertoire characteristics.23,24 However, it remains unknown how the IgH 66 
repertoire of bioinformatically separated transcripts originating from bulk-sequenced B cells 67 
compares to the repertoire of their corresponding circulating B cell subpopulations. It is also 68 
unknown how IgH sequences with the same constant region originating from different cell types 69 
compare.  70 
 71 
Here, we used an established AIRR-seq workflow that captures the diversity of the variable IgH 72 
genes together with the isotype subclass usage to study in detail the repertoire of CD19+ bulk 73 
B cells as well as flow cytometry sorted naïve, MZ, switched and plasma cells from 10 healthy 74 
adults. We applied advanced statistical methods and machine learning algorithms to combine 75 
several repertoire metrics and characterize the different B cell subpopulations. We show that 76 
transcripts from physically sorted B cell subpopulations share similar characteristics with their 77 
corresponding subsets in the bulk that were grouped in silico using isotype subclass information 78 
and number of mutations. We further demonstrate that sequences with the same isotype 79 
subclass originating from different cell types are closely related, suggesting the presence of 80 
isotype-specific rather than cell-type specific signatures in the IgH repertoire. We finally 81 
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correlate these signatures to the isotype subclass positioning on the locus and find that 82 
downstream subclasses exhibit enhanced signs of maturity, overall providing new insights into 83 
the selection and the peripheral differentiation of distinct B cell subpopulations.  84 
 85 
Results  86 
 87 
Physically sorted B cell subpopulations and their corresponding subsets in the bulk share 88 
similar repertoire characteristics 89 
We compared IgH repertoire characteristics between the following B cell subpopulations: 90 
Bnaive, BMZ, BPC_MD, BPC_AG, and Bswitched and their corresponding subsets that we obtained in 91 
silico from Bbulk: Bbulk_naïve, Bbulk_MD, and Bbulk_switched. We identified three separate clusters: one 92 
made of predominantly BMZ, Bbulk_MD and BPC_MD; another with only Bnaive and Bbulk_naïve; and a 93 
third cluster with predominantly Bbulk_switched, BPC_AG and Bswitched (Figure 1A) by combining all 94 
repertoire characteristics in a PCA and applying k-means clustering. To test whether this 95 
clustering pattern was driven by VJ gene usage, CDR3 physiochemical properties or the general 96 
repertoire metrics, we analysed these variables separately. Using V family and J gene usage, 97 
there was a clear separation between naïve and memory cells mostly driven by differences in 98 
V1/3 and J4/6 usage (Supplementary figure 1). However, no separation between BMZ/BPC_MD/ 99 
Bbulk_MD and Bswitched/BPC_AG/Bbulk_switched was observed (Figure 1B). The CDR3 physiochemical 100 
properties alone created similar clusters as when combined together with the other metrics 101 
(Figure 1C). This separation was mostly driven by a lower basic and a higher aromatic content 102 
in addition to a higher gravy index and a lower polarity in Bnaive/Bbulk_naïve compared to memory 103 
subpopulations (Supplementary figure 2). Global repertoire metrics also created a clear 104 
separation between Bnaive/Bbulk_naïve, Bswitched/BPC_AG/Bbulk_switched and BMZ/BPC_MD/Bbulk_MD 105 
subpopulations mostly driven by higher mutation counts, NP length and selection pressure in 106 
the CDR and lower junction length and diversity in Bswitched compared to Bnaive (Supplementary 107 
figure 3). 108 
In summary, we found that V family and J gene usage, the physiochemical properties of the 109 
CDR3, and global repertoire metrics similarly distinguish between B cell subpopulations: Bnaive, 110 
BMZ/BPC_MD and Bswitched/BPC_AG were divergent but shared properties with their relative 111 
corresponding subsets in the bulk.  112 
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 113 
Figure 1: Different repertoire characteristics similarly separate between B cells 114 
subpopulations. PCA (left) and composition of the clusters formed using k-means clustering 115 
with k=3 (right) applied on A) all repertoire characteristics, B) V family and J gene usage, C) 116 
physiochemical properties of CDR3 junction, D) global repertoire metrics. The percentage of 117 
all variation in the data that is explained by PC1 and PC2 is shown on the x and y axis 118 
respectively between brackets. In the PCA plots, areas are the convex hulls of the subsets and 119 
the largest point of one color represents the center of that hull. 120 
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Accurate prediction of cell type based on repertoire features on a single-cell level 121 
We constructed a sequence classifier that predicts the cell type of a sequence using sequence 122 
attributes and different repertoire metrics. Since we subsampled our data making our datasets 123 
perfectly balanced, we used only accuracy as a performance metric. Logistic regression, 124 
decision tree and random forest classifiers all performed satisfactorily (Figure 2A). However, 125 
logistic regression performed poorly on correctly classifying Bswitched and BPC_AG, for which 126 
accuracy was almost equal to chance. The performance of all three classifiers was highest in 127 
distinguishing between Bnaive and other cell types.  128 
The random forest classifier was the most successful compared to the other two and the most 129 
accurate in predicting the cell type of a sequence. We assessed the relevance of specific 130 
predictors in properly classifying cell types by calculating feature importance scores for each 131 
cell pair (Figure 2B). The number of mutations was the highest scoring feature for all cell pairs 132 
except for distinguishing between Bswitched and BPC_AG and between BMZ and BPC_MD for which 133 
CDR3 amino acid characteristics had higher scores. Within the CDR3 physiochemical 134 
properties, average bulkiness, average polarity and the gravy hydrophobicity index were the 135 
most differentiating between cell types whereas the basic and acidic content of the CDR3 chain 136 
seemed to be less important. R/S ratio in CDR and FWR and the junction length appeared to 137 
have similar scores and were more important in cases where Bnaive were not one of the two cell 138 
types. V family and J gene appeared to have low importance in distinguishing between all cell 139 
pairs.  140 
 141 
  142 
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 143 
Figure 2: Classification accuracies and feature scores on a single-sequence level. A) 144 
Heatmap showing pairwise classification accuracy results using logistic regression, decision 145 
tree and random forest classifier. B) Random forest feature scores by cell pair. 146 
 147 
Within class switched subsets, sequences with same constant region from different cell 148 
types show similar features.  149 
When comparing class-switched transcripts originating from Bbulk_switched, Bswitched, and BPC_AG, 150 
isotype subclasses were similarly distributed: IgA1 was the dominant subclass in IgA 151 
transcripts whereas IgA2 was less frequently used. All cells showed a dominant use of IgG1 152 
and IgG2 with little IgG3 and negligible IgG4 (Figure 3A). Usage of IgA1 in BPC_AG was similar 153 
to Bswitched and Bbulk_switched (p=0.28 and p=0.25, Kruskal-Wallis). IgG3 usage was significantly 154 
lower in BPC_AG compared to Bbulk_switched and Bswitched (p=0.01, p=0.01, Kruskal-Wallis) while 155 
IgG1 usage tended to be lower (p=0.13 and p=0.11, Kruskal-Wallis) and IgG2 usage higher in 156 
BPC_AG compared to the other two B cell subpopulations (p=0.11 and p=0.11, Kruskal-Wallis). 157 
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When combining repertoire characteristics by isotype subclass and cell type for class-switched 158 
transcripts resulting from Bbulk_switched, Bswitched and BPC_AG, we found that samples with the same 159 
constant region originating from different cell types overlapped. (Figure 3B) We identified two 160 
clusters: one mainly composed of IgG1 and IgG3 samples from all cell types and another with 161 
IgA1, IgA2 and IgG2 samples by applying k-means clustering with k=2 (Figure 3C). By further 162 
dividing the data and with increasing k, we observed that newly formed clusters were mainly 163 
composed of distinct isotype subclasses, while the cell type itself was not a defining factor for 164 
cluster formation. Interestingly, we couldn’t see a clear separation between IgG2 and IgA2 165 
samples with increasing number of clusters. 166 
  167 
 168 

 169 
Figure 3: Analysis of isotype subclasses in IgG and IgA transcripts. A) Isotype subclass 170 
distribution by cell type. Error bars represent the standard error of the mean. B) PCA on all 171 
repertoire properties combined by cell type and isotype subclass. Areas are the convex hulls of 172 
a group and the largest point of one color represents the center of that hull. C) Composition of 173 
the clusters formed by applying the k-means clustering algorithm on all data with increasing k 174 
from k=2 to k=5 175 
 176 
B cell repertoire metrics correlate with constant region positioning on the IgH locus. 177 
The IgH locus contains 9 constant genes: the genes encoding for IgM and IgD are the closest 178 
to the V-D-J recombination sites while those for IgG3, IgG1 and IgA1 are further downstream 179 
but still close to IgM/IgD whereas more distant on the locus are the genes that encode for IgG2, 180 
IgG4, IgE and IgA2 (Figure 4A). We determined and compared B cell repertoire metrics 181 
between different subclasses in BPC and Bswitched and compared those to Bnaive and BMZ. Bnaive 182 
showed the lowest number of mutations and R/S ratio and longest CDR3 junction. Memory 183 
subsets had a high number of mutations, with BMZ and BPC_MD having fewer mutations than 184 
class switched transcripts (Figure 4B). IgM-distal subclasses IgG2 and IgA2 in both Bswitched 185 
and BPC_AG showed the highest R/S ratio indicating high selection pressure (Figure 4C). All 186 
antigen-experienced subsets had a lower junction length compared to Bnaive except for IgM-187 
proximal transcripts IgG3 and IgG1 (Figure 4E). The proportion of IGHV4-34, the gene 188 
associated with self-reactivity33, was lower in memory subsets compared to Bnaive except for 189 
IgG3 from Bswitched for which the proportion of IGHV4-34 was similar to naïve subsets (Figure 190 
4F). Within IgG and IgA sequences, genomic distance from IgM correlated with a higher R/S 191 
ratio, shorter junction and lower usage of IGHV4-34. BPC had a significantly lower diversity 192 
compared to all other cell types (Figure 4G). Interestingly, transcripts from Bswitched showed a 193 
similar diversity to Bnaive whereas BMZ were less diverse. Within BPC_AG, IgM-distal subclasses 194 
showed a lower diversity.  195 
IGHV family and IGHJ gene usage also showed a discrepancy between different subsets: IGHV 196 
family usage in IgM-proximal subclasses IgG3 and IgG1 was similar to BNaive. BMZ and IgM-197 
distal subclasses were enriched in IGHJ4 at the expense of IGHJ6 compared to naïve cells and 198 
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IgG1-3 B-cell subsets (Supplementary figure 4). To reduce the dimensionality of all data points 199 
into a single one-dimensional axis, we performed LDA fitted on the relative gene frequencies 200 
(Figure 4H). This showed a clear distinction between Bnaive, IgG1-3 and BMZ, IgG2 and IgA1-201 
2. An LDA fitted on the physiochemical properties of the CDR3 junction also showed a clear 202 
distinction between naïve and memory subsets, with IgG3 and IgG1 being closest to Bnaive and 203 
IgG2 and IgA2 overlapping and furthest away (Figure 4I). 204 
 205 
In summary, we found that different B cell repertoire metrics correlate with the positioning of 206 
their respective subclass genes on the IgH locus, namely with the increasing genomic distance 207 
from IgM, with the proximal IgH subclasses being more similar to naïve.  208 
 209 
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 10 

 210 
Figure 4: Analysis of repertoire metrics by isotype subclass and cell type. A) Overview of 211 
the IgH constant region locus. Comparison of A) mutation counts, B) R/S ratio, C) selection 212 
pressure, D) junction length, F) proportion of IGHV4-34 and G) diversity between different B 213 
cell subpopulations. LDA fitted on H) V family and J gene usage and I) CDR3 amino acid 214 
physiochemical properties.  215 
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Discussion 216 
 217 
Here, we used AIRR-seq to characterize similarities and differences in the IgH repertoire of 218 
bulk B cells and different sorted naïve and memory B cell populations. This allowed for an in-219 
depth understanding of the mechanisms underlying B-cell responses. We report differences in 220 
V family and J gene usage, CDR3 physiochemical properties and global repertoire 221 
characteristics that similarly distinguish between naïve, IgM/IgD memory and class switched 222 
subsets both at the repertoire and at the sequence level. Furthermore, we show differences in 223 
the repertoire characteristics at the isotype subclass level unrelated to cell type that correlate 224 
with the position of the constant gene on the IgH locus. This study provides powerful insight 225 
on biological mechanisms underlying the B cell response as well as novel understanding of 226 
AIRR-seq methodologies to be taken into account in future studies.  227 
 228 
Previous work involving human naïve and antigen-experienced B cell repertoires have shown 229 
naïve B cells to have shorter junctions and higher usage of IGHJ6 and IGHV3, and lower usage 230 
of IGHJ4 and IGHV1 compared with IgM memory and switched B cells.34–37 Differences in 231 
gene usage and CDR3 properties between IgM memory and switched B cells have also been 232 
reported.20 IgM memory and switched B cells have been found to use more negatively charged 233 
residues and to have less hydrophobic junctions compared with naïve B cells.18,20 Here, we 234 
focused on a more detailed examination of the repertoires by combining multiple characteristics 235 
using dimensionality reduction methods. Results of a previous study revealed that combining 236 
only a few repertoire characteristics is sufficient to discriminate between B cell 237 
subpopulations.19 In addition, an LDA combining V gene family proportions has been found to 238 
successfully distinguish between IgM and IgG repertoires.38 We extend these findings by 239 
showing that using V family and J gene usage, CDR3 physiochemical properties or global 240 
repertoire characteristics similarly allow to separate between naïve and memory 241 
subpopulations. This suggests that distinct B cell subpopulations derive from different 242 
developmental mechanisms and are subject to selective processes that lead to similar variable 243 
gene identity. This can also reflect that different types of B cells are stimulated by different 244 
types of antigens and therefore have distinctive junction compositions and properties.   245 
 246 
Previous research has demonstrated that same B cell subpopulations from different donors are 247 
more similar in their repertoire characteristics than different B cell subpopulations within an 248 
individual.39,40 This has led to the understanding that differences between naïve and memory 249 
cells are conserved across unrelated individuals. Our findings are in agreement with these 250 
observations, and we extend on those by showing that the main defining factor in repertoire 251 
similarity is the constant region type, namely the isotype subclass, and that differences between 252 
subclasses are conserved across both cell type and individual. This finding suggests the 253 
existence of an isotype-based mechanism for repertoire control that is constant across cell types 254 
and individuals. 255 
 256 
In addition to the comparative analysis of the different peripheral B cell subsets, our study 257 
represents, to our knowledge, the first comparison of bulk B cell sequencing with sorted B cell 258 
subpopulations. We showed that sequencing unsorted B cells from peripheral blood and 259 
combining the constant region information with the degree of SHM to bioinformatically group 260 
transcripts yields accurate results comparable to physical sorting, especially when analysing 261 
global repertoire characteristics. We acknowledge that this might be limiting in tasks sensitive 262 
to potential biases from different RNA levels per cell such as identifying antigen-specific 263 
sequences from plasma cells. 264 
 265 
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Recent IgH repertoire studies have moved towards using machine learning and artificial 266 
intelligence in contrast to traditional statistical approaches for goals including vaccine design, 267 
immunodiagnostics and antibody discovery.41–44 Previous work has focused on representing 268 
repertoires as sequence or subsequence-based features, i.e. overlapping amino acid k-mers and 269 
their Atchley biophysiochemical properties.41,42 Here, we report a simple pairwise classifier 270 
that successfully predicts the cell type of a sequence based on only the commonly used sequence 271 
attributes such as number of mutations and junction length. Random forest and decision tree 272 
classifiers outperformed the logistic regression algorithm suggesting a non-linear separation 273 
between cell types. A common concern when applying machine learning is the possibility of 274 
over-fitting. To prevent this, we trained the algorithm on 80% of the data and tested its 275 
performance on the remaining unseen 20%. We also subsampled every pair of classes to equal 276 
number of sequences in order to balance the dataset. The model presented here is applied only 277 
within an individual and is thereby confined by repertoire signals that might be individual-278 
specific. More work improving the generalisability of the model across individuals would be 279 
revolutionizing in terms of its potential practical applications. Unsurprisingly, the number of 280 
mutations was the most important feature in distinguishing between cell types. These results 281 
along with previous work are promising and suggest that increasing the predictive potential of 282 
machine learning methods could help in finding sequence characteristics that distinguish 283 
between groups, such as disease state and healthy.  284 
 285 
Studies indicate that both direct and sequential CSR to IgM distal isotype subclasses can 286 
occur.45,46 Several studies have provided evidence for sequential CSR. IgM was found to 287 
commonly switch to proximal subclasses (IgG1, IgA1, and IgG2), but direct switches from IgM 288 
to more downstream subclasses (IgG4, IgE, or IgA2) were rare.7 It has also been reported that 289 
a deficiency in IgG3, the most IgM-proximal subclass, frequently results in a decrease in other 290 
IgG subclasses.47 Although it is challenging to determine whether sequential CSR occurs during 291 
a primary response, by re-entry into the germinal center, or during a secondary response to the 292 
same antigen, we and others have shown that IgM-distal subclasses accumulate with age, likely 293 
due to secondary encounter with antigen.22,48 Studies comparing the mean mutation number 294 
between isotype subclasses have shown contradicting results: in one study, mutations varied in 295 
relation to the constant region position on the IgH locus, with the closest to IgM (IgG3) having 296 
the lowest mutations,23 while in another study, no such difference was observed.24 We didn’t 297 
find a difference in number of mutations among IgG subclasses. Our findings rather suggest 298 
that mutation is more efficient in more downstream subclasses as we found that these exhibit 299 
higher R/S ratios and selection pressure in the CDR, consistent with previous studies.49 300 
Generally, IgM distal subclasses showed signs of maturity (shorter junctions, lower IGHV4-34 301 
usage) while transcripts from IgM proximal subclasses were more similar to those of naïve B 302 
cells. These results suggest that sequential CSR subjects B cells to selective forces leading to 303 
more mature variable gene properties without necessarily accumulating more mutations. 304 
 305 
In summary, in this study we took an extensive look at the IgH repertoire of different flow 306 
cytometry sorted as well as bioinformatically grouped cell types and isotype subclasses of 307 
healthy individuals. Using advanced bioinformatic tools, statistical analysis and machine 308 
learning, this analysis provides deep insight into the different mechanisms of B cell 309 
development and boosts our understanding of the B cell system components in health.  310 
 311 
  312 
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Material and methods 313 
 314 

1. Sample collection and cell sorting 315 
Buffy coat samples were obtained from 10 anonymous healthy adults, hence no approval from 316 
the local ethics committee was necessary. B cells were first isolated by magnetic cell sorting 317 
using the human CD19 MicroBeads (Miltenyi Biotec, San Diego, CA) and the AutoMACS 318 
magnetic cell separator. From 9 out of the 10 samples, 3x106 bulk CD19+ B cells (Bbulk) were 319 
lysed and stored at -80C. The remaining cells were sorted by flow cytometry into 4 320 
subpopulations using cell surface markers characteristic for naïve (Bnaive), marginal zone (BMZ), 321 
plasma cells (BPC), and switched memory B cells (Bswitched). Cells were then lysed and stored at 322 
-80C. Surface markers, demographics, number of cells and purity of each sample are outlined 323 
in supplementary table 1.  324 
 325 

2. RNA extraction and library preparation 326 
RNA extraction was performed on the lysate using the RNeasy Mini Kit (Qiagen, Hilden, 327 
Germany). Libraries were prepared as previously described.22 Briefly, two reverse transcription 328 
(RT) reactions were carried out for each RNA sample resulting from Bbulk or BPC: one with 329 
equal concentrations of IgM and IgD specific primers and another with IgA, IgG, and IgE 330 
specific primers. Only one RT reaction with IgM and IgD specific primers was performed on 331 
Bnaive and BMZ samples; similarly, we applied one RT reaction with IgA, IgG and IgE primers 332 
on samples obtained from Bswitched. IgH cDNA rearrangements were then amplified in a two-333 
round multiplex PCR using a mix of IGHV region forward primers and Illumina adapter 334 
primers, followed by gel extraction for purification and size selection. The final concentration 335 
of PCR products was measured using Qubit prior to library preparation and combined with a 336 
total of 12 equally concentrated samples. Final libraries barcoded with individual i7 and i5 337 
adapters were sequenced in each run on the Illumina MiSeq platform (2x300bp protocol). 338 
 339 

3. Data preprocessing 340 
Preprocessing of raw sequences was carried out using the Immcantation toolkit and as per 341 
Ghraichy et al 2020.22,25,26 Briefly, samples were demultiplexed based on their Illumina tags. A 342 
quality filter was applied, paired reads were joined and then collapsed according to their unique 343 
molecular identifier (UMI). Identical reads with different UMI were further collapsed resulting 344 
in a dataset of unique sequences. VDJ gene assignment was carried out using IgBlast.27 Isotype 345 
subclass annotation was carried out by mapping constant regions to germline sequences using 346 
stampy.28 The number and type of V gene mutations was determined as the number of 347 
mismatches with the germline sequence using the R package shazam.26 The R package 348 
alakazam was also used to calculate the physicochemical properties of the CDR3 amino acid 349 
sequences.26 Selection pressure was calculated using BASELINe and the statistical framework 350 
used to test for selection was CDR_R/(CDR_R + CDR_S)29.  351 
 352 

4. In silico grouping of sequences 353 
For Bbulk samples, we used the constant region information combined with the mutation counts 354 
to classify individual sequences into different subsets: IgD and IgM sequences with up to 2 nt 355 
mutations across the entire V gene were considered “unmutated” (Bbulk_naïve) to account for 356 
remaining PCR and sequencing bias. The remaining mutated IgD and IgM sequences were 357 
labelled as IgD/IgM memory (Bbulk_MD). All class-switched sequences were defined as antigen-358 
experienced regardless of their V gene mutation count (Bbulk_switched). We split the sequences 359 
originating from BPC into two categories: IgM/IgD BPC (BPC_MD) and switched IgG/IgA PCs 360 
(BPC_AG) according to the constant region of the sequences.  361 
 362 
 363 
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5. Summarising repertoire characteristics 364 
V family and J gene usage was calculated in proportions for each individual and cell type. We 365 
summarised the mean of the following CDR3 physiochemical characteristics: hydrophobicity, 366 
bulkiness, polarity, normalized aliphatic index, normalized net charge, acidic side chain residue 367 
content, basic side chain residue content, aromatic side chain content by individual and cell 368 
type.  369 
Mean junction length, number of mutations, and numbers of non-template (N) and palindromic 370 
(P) nucleotide added at the junction were calculated by individual and cell type. Selection 371 
pressure was summarised separately in complementarity-determining region (CDR) and 372 
framework region (FWR). Diversity was calculated as the proportion of unique junctions out 373 
of total transcripts. The preceding characteristics are referred to as global repertoire metrics.  374 
 375 

6. Dimensionality reduction and clustering 376 
Principal component analysis (PCA) and k-means clustering were applied to the different 377 
repertoire characteristics to explore and find associations in the data. They were applied using 378 
the internal R functions prcomp() and kmeans().30 Linear discriminant analysis (LDA) was 379 
performed using the R function lda() from the package MASS31. 380 
 381 

7. Sequence classifier 382 
We constructed the sequence classifier using the sklearn package in python32. Because we have 383 
the constant region information and to avoid error accumulation, we performed a pairwise 384 
classification thereby transforming the multiclass problem into a binary classification. Within 385 
every participant and for every pair of cells, we subsampled to the lower sequence number to 386 
avoid bias and dataset imbalance. We used the number of mutations, the physiochemical 387 
properties, and the junction length as numerical input features. The V gene family and J gene 388 
were one-hot encoded. In the case where the naïve cells were not one of the two classes, the 389 
replacement/silent (R/S) mutation ratios in CDR and FWR were included as features. We split 390 
the data into training and testing set using the default test size of 0.2. We used logistic 391 
regression, decision tree, and random forest classifiers for prediction. The accuracy was 392 
recorded to judge the overall performance of the models. For every pair of classes, the mean 393 
accuracy of the 10 samples was calculated. 394 
 395 

8. Data Availability 396 
Raw data used in this study are available at the NCBI Sequencing Read Archive 397 
(www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA748239 including metadata 398 
meeting MiAIRR standards (32). The processed dataset is available in Zenodo 399 
(https://doi.org/10.5281/zenodo.3585046) along with the protocol describing the exact 400 
processing steps with the software tools and version numbers. 401 
 402 
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Supplementary material 531 
 532 
Supplementary table 1:  533 

Participant ID Cells Age Sex B cell number Purity 
Co_C.081.1_BC MZB 50 M 250000 93.6 
Co_C.081.1_BC Naive 50 M 250000 96.7 
Co_C.080.1_BC MZB NA M 250000 NA 
Co_C.080.1_BC Naive NA M 250000 NA 
Co_C.082.1_BC Naive 40 M 250000 97.6 
Co_C.083.1_BC MZB 18 M 250000 82.9 
Co_C.083.1_BC Naive 18 M 250000 98.2 
Co_C.084.1_BC MZB 36 F 250000 86.4 
Co_C.084.1_BC Naive 36 F 250000 96.7 
Co_C.081.1_BC Swt 50 M 250000 98.8 
Co_C.080.1_BC Swt NA 

 
250000 NA 

Co_C.080.1_BC PC NA 
 

55000 NA 
Co_C.081.1_BC PC 50 M 1.00E+05 45.8 
Co_C.082.1_BC MZB 40 M 250000 81.5 
Co_C.082.1_BC Swt 40 M 250000 98.7 
Co_C.082.1_BC PC 40 M 19000 67.8 
Co_C.083.1_BC Swt 18 M 250000 99.2 
Co_C.083.1_BC PC 18 M 21000 32.8 
Co_C.081.1_BC CD19 50 M 5.00E+05 NA 
Co_C.084.1_BC Swt 36 F 250000 98.2 
Co_C.084.1_BC PC 36 F 15000 30.3 
Co_C.084.1_BC CD19 36 F 5.00E+05 NA 
Co_C.085.1_BC CD19 41 M 5.00E+05 NA 
Co_C.085.1_BC PC 41 M 21000 32.2 
Co_C.085.1_BC Swt 41 M 250000 97.5 
Co_C.085.1_BC Naive 41 M 250000 98.9 
Co_C.085.1_BC MZB 41 M 250000 92.1 
Co_BC7_BC Naive 49 F 250000 93.6 
Co_BC8_BC MZB 59 F 250000 90.5 
Co_BC8_BC Naive 59 F 250000 95.2 
Co_BC9_BC MZB 44 F 250000 91.8 
Co_BC9_BC Naive 44 F 250000 99.2 
Co_BC10_BC MZB 51 F 250000 94.2 
Co_BC10_BC Naive 51 F 250000 96.2 
Co_BC7_BC CD19 49 F 5.00E+05 NA 
Co_BC7_BC Swt 49 F 250000 95.6 
Co_BC7_BC PC 49 F 14000 37 
Co_BC8_BC CD19 59 F 5.00E+05 NA 
Co_BC8_BC Swt 59 F 250000 97.3 
Co_BC8_BC PC 59 F 24000 68.2 
Co_BC9_BC CD19 44 F 5.00E+05 NA 
Co_BC9_BC Swt 44 F 250000 94.5 
Co_BC9_BC PC 44 F 22000 82.8 
Co_BC10_BC CD19 51 F 5.00E+05 NA 
Co_BC10_BC Swt 51 F 250000 99.1 
Co_BC10_BC PC 51 F 19000 60 
Co_C.082.1_BC CD19 40 M 5.00E+05 NA 
Co_BC7_BC MZB 49 F 250000 86.7 
Co_C.083.1_BC CD19 18 M 5.00E+05 NA 

 534 
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 535 
Supplementary figure 1 A) V family and B) J gene usage by B cell subpopulation. Bar plots 536 
indicate the proportion of sequences with a certain gene. Error bars represent the standard 537 
error of the mean. 538 
 539 

 540 
Supplementary figure 2 : Comparison of CDR3 amino acid physiochemical properties in 541 
different B cell subpopulations.  542 
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 543 
Supplementary figure 3 : Comparison of global repertoire metrics in different B cell 544 
subpopulations. 545 
 546 

 547 
Supplementary figure 4: A) V family and B) J gene usage in different B cell subpopulations 548 
and isotype subclasses. Bar plots indicate the proportion of sequences with a certain gene. Error 549 
bars represent the standard error of the mean. 550 
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