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ABSTRACT 10

11
Hallmarks of neural dynamics during healthy human brain states span spatial scales from neuromodulators acting 12

on microscopic ion channels to macroscopic changes in communication between brain regions. Developing a scale- 13

integrated understanding of neural dynamics has therefore remained challenging. Here, we perform the integration 14

across scales using mean-field modeling of Adaptive Exponential (AdEx) neurons, explicitly incorporating intrinsic 15

properties of excitatory and inhibitory neurons. We report that when AdEx mean-field neural populations are con- 16

nected via structural tracts defined by the human connectome, macroscopic dynamics resembling human brain activity 17

emerge. Importantly, the model can qualitatively and quantitatively account for properties of empirical spontaneous 18

and stimulus-evoked dynamics in the space, time, phase, and frequency domains. Remarkably, the model also repro- 19

duces brain-wide enhanced responsiveness and capacity to encode information particularly during wake-like states, as 20

quantified using the perturbational complexity index. The model was run using The Virtual Brain (TVB) simulator, 21

and is open-access in EBRAINS. This approach not only provides a scale-integrated understanding of brain states and 22

their underlying mechanisms, but also open access tools to investigate brain responsiveness, toward producing a more 23

unified, formal understanding of experimental data from conscious and unconscious states, as well as their associated 24

pathologies. 25
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1 Introduction 29

Brain activity is marked by complex spontaneous dynamics, particularly during conscious states when the brain is most 30

responsive to stimuli. Though changes in spontaneous and evoked dynamics have been unambiguously empirically observed in 31

relation to changes in brain state, their multi-scale nature has notoriously occluded a formal understanding. 32

Spanning from macroscopic dynamics supporting communication between brain regions to microscopic, molecular 33

mechanisms modulating ion channels, hallmarks of consciousness have been observed across spatial scales. At the whole-brain 34

level, conscious states are marked by complex spontaneous collective neural dynamics [1, 2] and more sustained, reliable, and 35

complex responses to stimuli [3, 4, 5, 6]. At the microscopic level, neuromodulation is enhanced in conscious, active states, 36

leading to microscopic changes in cellular kinetics [7]. Yet, a challenging multi-scale problem still resides in comprehending 37

how changes in the complexity of global spontaneous dynamics and whole brain responsiveness may specifically relate 38

to microscopic neuromodulatory processes to enable neural coding during active states. Here, using mean-field models 39

of conductance-based, Adaptive Exponential (AdEx) integrate-and-fire neurons with spike-frequency adaptation developed 40

recently [8, 9, 10], constrained by human anatomy and empirically informed by local circuit parameters, we report the natural 41

emergence of global dynamics mimicking different human brain states. 42

To connect microscales (neurons) to macroscales (whole brain), this work relies on previous advances at mesoscales (neural 43

populations). The first step was modeling biologically-realistic activity states in networks of spiking neurons. Based on 44

experimental recordings, we used the Adaptive Exponential (AdEx) integrate and fire model to simulate two main cell types 45

identifiable in extracellular recordings of human brain [11]: regular-spiking (RS) excitatory and fast-spiking (FS) inhibitory 46

cells. AdEx networks were constrained by biophysical representations of synaptic conductances, which allowed the model to be 47
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compared to conductance measurements done in awake animals [8] (for experiments, see [12, 13]). In such configurations, AdEx 48

networks reproduce states observed in vivo [14, 8, 15, 16, 17], notably asynchronous irregular (AI) states found experimentally 49

in awake subjects, and synchronous slow waves as in deep sleep [13, 18, 19]. From AdEx networks, mean-field models were 50

derived to take into account second order statistics of AdEx networks interacting through conductance-based synapses. We 51

used a Master Equation formalism [20], modified to include adaptation [9]. 52

In this manuscript, we present evidence that mean-field descriptions of biophysically informed estimates of neuron networks 53

produce macroscopic dynamics capturing essential characteristics of human wake and sleep states - due to variation in spike- 54

frequency adaptation - when coupled by the human connectome with tract-specific delays. First, we show that simulated 55

microscopic changes in membrane currents directly lead to the emergence of globally asynchronous versus synchronous 56

dynamics exhibiting distinct signatures in the frequency domain, as well as changes in inter-regional correlation structure 57

and phase-locking, mimicking aspects of spontaneous human brain dynamics. Further, we report enhanced brain-scale 58

responsiveness to stimulation in simulations of asynchronous, fluctuation-driven compared to synchronous, phase-locked 59

regimes, consistent with empirical data from conscious versus unconscious brain states. Together, the data suggest that the 60

TVB-AdEx model represents a scale-integrated neuroinformatics framework capable of recapitulating known features associated 61

with human brain states as well as elucidating relationships between space-time scales in brain activity. Due to its reliance on 62

anatomical data non-invasively available from humans, this model may further facilitate subject-specific modeling of human 63

brain states in health and disease, including restful and active waking states, as well as sleep, anaesthesia, and coma to aid 64

future advances in personalized medicine. 65

2 Results 66

We begin by showing essential properties of the components forming the TVB-AdEx model. Next, we describe the integration 67

of AdEx mean-fields into The Virutal Brain (TVB) simulator of EBRAINS, making the models and analyses openly available 68

to facilitate replication and extension of the results. The results presented here indicate that the TVB-AdEx whole human brain 69

model captures fundamental aspects of synchronous and asynchronous brain states, both spontaneously and in response to 70

perturbation. 71

2.1 Components of TVB-AdEx models 72

The first component of the TVB-AdEx model is at the cellular level, and consists of networks of integrate-and-fire adaptive 73

exponential (AdEx) neurons. As shown in previous studies [14, 8, 9], networks of AdEx neurons with adaptation can display 74

asynchronous, irregular (AI) states, as well as synchronous, regular slow-wave dynamics that alternate between periods of high 75

activity (Up) and periods of near silence (Down). The necessary mechanistic ingredients needed to obtain both dynamical 76

regimes include leak conductance and conductance-based synaptic inputs. Each neuron’s input is comprised by the firing rates 77

of synaptically connected neurons, weighted by synaptic strengths, as well as stochastic noise (hereafter called “drive”; see 78

Materials and Methods), related biologically to miniature postsynaptic currents. AdEx neurons have the ability to integrate 79

synaptic inputs and fire action potentials, followed by a refractory period [21]. AdEx networks with conductance-based synapses 80

can capture features offered by more detailed and computationally expensive models, including AI states and slow-wave 81

dynamics. Figure 1 shows an example of such AI states (Fig. 1A) and Up-Down dynamics (Fig. 1B) simulated by the same 82

AdEx network, changing only the level of spike-frequency adaptation current (parameter b in the equations, see Material and 83

Methods). In AI states, the firing of individual units remains irregular, but sustained (Fig. 1A), whereas in slow-wave states the 84

dynamics alternate between depolarized Up states with asynchronous dynamics and hyperpolarized Down states of near silence 85

(Fig. 1B). As such, changes in spike-frequency adaptation lead to differences in cellular kinetics between sleep and wake states. 86

Biologically, inhibition of spike-frequency adaptation can be induced by enhanced concentrations of neuromodulators such as 87

acetylcholine during active, conscious brain states that tends to close K+ leak channels, resulting in sustained depolarization 88

of neurons [7] which promotes the emergence of asynchronous, irregular (AI) action potential firing and fluctuation-driven 89

regimes associated with waking states. In contrast, low levels of neuromodulation during unconscious brain states leave leak 90

K+ channels open, leading to waves of synchronous depolarisation and hyperpolarization due to the buildup and decay of 91

spike-frequency adaptation, accounting for the emergence of slow-wave dynamics as observed in previous modeling work 92

[16, 17]. 93

The second component of the TVB-AdEx model is a mean-field equation derived from spiking-neuron network simulations, 94

capturing the typical dynamics of a neuron in response to inputs and hence able to describe the mean behaviour of a neuronal 95

population, [8, 9] using a Master-Equation formalism [20]. This formalism allows one to derive mean fields from conductance- 96

based integrate-and-fire models. It has been shown that - using numerical fits of the transfer function [22], an analytical 97

expression for the relationship between a neuron’s input and output rates - one can describe complex neuronal models, such as 98

AdEx neurons, and even Hodgkin-Huxley type biophysical models [23]. In Fig. 1C-D, excitatory and inhibitory firing rates are 99

compared between mean-field simulations using the Master Equation formalism and spiking neural network simulations (time 100
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binned population spike counts divided by time bin length T = 0.5 ms). The average adaptation value is also shown for this 101

network (Fig. 1C and D, orange curves). These population variables are suitably captured by the mean-field model including 102

adaptation [9, 10]. This mean-field model can exhibit both AI (Fig. 1E) and Up-Down dynamics (Fig. 1F). Like in the AdEx 103

spiking network model, the transition between two states can be obtained by changing the adaptation parameter called b in both 104

cases [9]. With no adaptation, the dynamics are fluctuation-driven around a fixed point exhibiting nonzero firing rates. With 105

adaptation, as the neurons self-inhibit due to adaptation, the nonzero rate fixed point is progressively destabilized by adaptation 106

buildup, driving the dynamics back to the near zero firing rate fixed point until the adaptation wears off and noise drives the 107

system back around the higher-rate fixed point. Thus, with adaptation, the system displays noise-driven alternation between the 108

two fixed-points to generate slow waves (Fig. 1G). These regimes are achieved using the mean-field model, which describes 109

excitatory (RS) and inhibitory (FS) population firing rates as well as the mean adaptation level of excitatory populations 110

(Fig. 1H). 111
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Figure 1. Asynchronous and synchronous dynamics produced by networks of microscopic AdEx neurons and their
mesoscopic approximations. Raster plots (A-B) and mean firing rates (C-F) from networks comprised of excitatory RS (blue)
and inhibitory FS (red) AdEx neurons displaying asynchronous (A) versus synchronous states (B) as in [9, 10]. The two
simulated states, mimicking wake and sleep neural dynamics, differ only in the spike-frequency adaptation current be provided
to the model (be = 0pA in the asynchronous state and 60pA in the synchronous state), known to be regulated by
neuromodulation in vivo [7]. C-D. Time variation of mean firing rates (νe,i) and adaptation current (We) corresponding to
networks shown in A-B. Asynchronous (E) and synchronous (F) firing rate dynamics produced using a mean-field model of
AdEx networks implemented in The Virtual Brain (TVB). (G) Input-output firing rate relations are given by the mean-field
model transfer function (TF). Mean output firing rates of excitatory (blue) neurons as a function of mean excitatory input. The
dashed black trace is the identity line. Fixed points of the system (grey circles) occur where the input-output relation intersects
with the identity at the positions marked by circles (see Methods for equations). Note that two fixed points are apparent, one at
high firing rates and one at low firing rates. The inset is an enlargement of the low-input, low-output region, highlighting the
presence of the low-firing fixed point. During asynchronous, wake-like states, firing rates fluctuate around the higher fixed
point. During sleep-like states, spike-frequency adaptation builds up as excitatory neurons fire at the high-rate fixed point,
eventually destabilizing the high-rate fixed point and causing the system to transition to the near-zero rate fixed point. While
the neurons are near-silent, adaptation decays through time, allowing noise fluctuations to entrain a transition back to the
high-rate fixed point. (H) Schematic of the simulated network.

2.2 Integration of AdEx mean-field models in TVB 112

We have used the simulation engines of the Human Brain Project’s (HBP’s) EBRAINS neuroscience research infrastructure 113

(https://ebrains.eu and The Virtual Brain https://ebrains.eu/service/the-virtual-brain) to make access as wide as possible. Replica- 114

tion of the TVB-AdEx findings can be done here, with a free EBRAINS account, and users can clone the repositories to further 115

test or extend the present capacities. The models can also be downloaded from Github at https://gitlab.ebrains.eu/kancourt/tvb- 116

adex-showcase3-git to run locally. 117
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Figure 2. Connection of AdEx mean-field models in The Virtual Brain. (A) Each mean-field model consists of two
populations, excitatory RS (blue) and inhibitory FS (red) neurons (as in Fig.1H), taking into account spike-frequency
adaptation for excitatory neurons (W , orange). Mean-field models represent the mesoscopic scale, here comprising each of 68
defined regions of cerebral cortex. Brain regions are connected by excitatory tracts (thick blue lines) following structural
connectomes [24]. (B) Number of fibers connecting brain regions in tractography data, divided by the sum of the gray matter
volume of regions in anatomical MRI, is used to define connectivity weights between nodes. (C) The distribution of tract
lengths in tractography data informs delays between TVB-AdEx model nodes.

Here, the connection of mean-field models was defined by human tractography data (https://zenodo.org/record/4263723, 118

Berlin subjects/QL_20120814) from the Berlin empirical data processing pipeline [24] (Fig. 2A). A parcellation of 68 regions 119

was used to place localized mean-field models, with long-range excitatory connections (Fig. 2B) and delays (Fig. 2C) defined by 120

tract length and weight estimates in human diffusion magnetic resonance imaging (dMRI) data [25]. Now it becomes possible 121

to simulate brain-scale networks using AdEx-based mean-field models in TVB, hence the name “TVB-AdEx” model. 122

2.3 Spontaneous dynamics of large-scale networks 123

Having coupled AdEx mean-field models that capture average microscopic characteristics of neural activity, we sought to 124

ascertain if hallmarks of brain-scale (macroscopic) spontaneous activity resembling human brain states were reproduced, as 125

well as whether increases in adaptation strength could account for transitions between wake-like and sleep-like macroscopic 126

dynamics. Characterizing temporal hallmarks of simulated neural activity (fig. 3), we find that asynchronous, wake-like 127

dynamics across nodes are recovered in the absence (b = 0pA, 3A), but not in the presence (b = 60pA, fig. 3B) of adaptation. 128

Power spectral analysis reveals a peak around 1Hz in the high-adaptation condition (fig. 3D) consistent with empirical reports 129

from deeply sleeping individuals, whereas the power spectrum in the low-adaptation condition is more scale-invariant, without 130

characteristic peaks, consistent with irregular dynamics empirically seen during wakefulness (fig. 3C). Therefore, changes in a 131

simulated microscopic process (spike-frequency adaption) can qualitatively reproduce temporal features of macroscopic brain 132

states, with irregular low-adaptation regimes resembling waking states and high-adaptation regimes reminiscent of slow-wave 133

sleep. 134
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Figure 3. Brain-scale simulations of connected AdEx mean-field models produce activity mimicking wake- and
sleep-like states. Time variation of firing rates (νe,i, top) and adaptation currents (We, bottom) in simulated wake- (A) and
sleep-like (B) states for each of the model nodes representing 68 brain regions. When adaptation (be) equals 0 pA, the activity
of model nodes is asynchronous (A), whereas the inclusion of adaptation (be = 60pA) leads to the emergence of synchrony
between brain regions (B). Fourier power spectra of signals produced by the TVB-AdEx in synchronous (sleep-like, C) and
asynchronous (wake-like, D) states. Note that maximal power in the sleep-like condition falls in the delta range (1-4 Hz) while
more power is observed at high frequencies in the wake-like state.

Increasing adaptation can also tune the spatial correlation structure of neural activity across brain states. Indeed, as 135

shown in fig. 4, Pearson correlations across nodes are enhanced in the presence of adaptation, consistent with asynchronous 136

dynamics seen during wakefulness versus synchronous slow waves seen during deep sleep (fig. 4A,C). In addition, increased 137

adaptation strength also causes the emergence of significantly larger correlations between inhibitory than excitatory firing rates 138

across nodes during sleep-like dynamics (fig. 4B,D). This reveals that microscopic variation in adaptation strength alone can 139

successfully account for empirical reports of increased correlations between inhibitory neurons across long distances and even 140

different cortical regions for inhibitory but not excitatory neurons [11, 26, 27]. This is due to different effects of adaptation on 141

excitatory regular-spiking neurons and inhibitory fast-spiking neurons, key to reproducing empirical dynamics in unconscious 142

states [16, 17]. Moreover, the Phase Lag Index (PLI) is increased during sleep-like dynamics (4E,G), suggesting systematic 143

phase relations between nodes consistent with travelling slow waves empirically observed during spontaneous unconscious 144

dynamics [18, 19]. Such phase relations, evidenced by a significantly larger PLI, are more pronounced for inhibitory than 145

excitatory neurons in sleep-like dynamics, reminiscent of the key role of inhibitory neurons in organizing the emergence of 146

synchronous dynamics during sleep [28]. 147
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Figure 4. Emergence of enhanced spontaneous synchrony between brain regions in sleep-like simulations. Pearson
correlation (A-D) and Phase-Lag Index (PLI) (E-H) in wake-like (A-B, E-F) and deep sleep-like (C-D, G-H) states, heatmaps
for correlationsbetween brain regions in terms of excitatory firing rates (A-C, E-G) and scatter plots of inhibitory vs excitatory
firing rate correlations (B-D, F-H) where the dotted trace is the identity line. Correlations are overall increased across regions in
sleep-like states (C) as compared to wake-like states (A), consistent with increased synchrony across brain regions in empirical
brain imaging studies (M/EEG). Correlations across nodes are significantly larger between inhibitory firing rates than between
excitatory firing rates in sleep-like dynamics (D; Independent Student’s T-test, t =−10, p = 1.7e−23), but not during
wake-like regimes (B; t =−0.6, p = 0.58). The PLI is consistently large in sleep-like dynamics (G-H), unlike in wake-like
dynamics where the PLI is near zero (E-F), suggesting systematic phase relations between brain regions in synchronous states
consistent with travelling slow waves experimentally observed during sleep. Likewise, the PLI of excitatory and inhibitory
populations is significantly different in sleep-like (H; Independent Student’s T-test, t =−9.5, p = 4.2e−21), but not wake-like
(F; t =−0.5, p = 0.60) states, altogether possibly suggesting a previously unidentified role of inhibition in the emergence of
long-range synchrony in sleep-like activity.

2.4 Responsiveness to external stimulation 148

After reproducing features of spontaneous dynamics between brain states, we test the hypothesis that changing adaptation 149

in the TVB-AdEx model can also explain differences in empirically observed stimulus-evoked brain responses, with stimuli 150

encoded in more sustained, widespread, reliable, and complex patterns during conscious states [3]. To this end, a square wave 151

of 0.1Hz, matching the magnitude of stochastic drive, with 50ms duration was input to the firing rates of the transfer function 152

for excitatory populations in the right premotor cortex of the TVB-AdEx simulation during awake-like and slow wave sleep-like 153

conditions, as in previously published empirical studies [4]. 154

Figure 5 illustrates the effect of perturbing the large-scale network defined by TVB-AdEx models. 155

The effect of an external stimulus is apparent for both deep sleep-like and wake-like states (Fig. 5A). The average traces of 156

the stimulated region are shown in black, and take into account the 40 realisations shown in grey. To examine the spread of 157

activity following perturbations, the time at which the excitatory firing rate of each region becomes significantly different from 158

the unstimulated baseline (prior to perturbation) is plotted using a color map showing earlier significant changes in brighter 159

colors. Here, we find that responses are more widespread across time and space across brain regions in wake-like (Fig. 5B) than 160

sleep-like dynamics (Fig. 5C), corresponding to experimental observations in response to Transcranial Magnetic Stimulation 161

(TMS) [3]. 162

To better characterize the spatiotemporal effects of stimuli, the perturbational complexity index (PCI), used in previous 163

experimental works involving TMS, was computed (see Methods). A low PCI value indicates a “simple” response to stimulus, 164

while a high PCI value indicates more “complex” response, typically propagating more effectively to different brain areas [4]. 165

The models were perturbed with stimuli smaller (0.01Hz) than the stochastic drive, disguised within the noise (0.1Hz), and 166
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Figure 5. Increased responsiveness to perturbations in simulated wake-like compared to sleep-like states. Excitatory
firing rate of a simulated brain region in time during wake-like (A) and sleep-like dynamics, in response to a stimulus. Black
lines show the mean across 40 realizations, reminiscent of event-related potentials (ERPs), and grey shaded areas show the
standard deviation from the mean across realizations. (B-C) Spatio-temporal propagation of responses to stimuli in wake-like
(B) and sleep-like (C) states. Color plotted on the brain surface indicates earliest time at which each region becomes
significantly different from its pre-stimulus baseline (see Methods), with earlier times in lighter colours. Regions in white do
not present significant differences in firing rate in response to the stimulus. In wake-like states, stimulus responses recruit more
brain regions and produce more complex spatio-temporal patterns, reminiscent of empirical observations. (D-F) Box plots of
perturbational complexity index (PCI) measurements from 40 realizations of wake-like and sleep-like simulations with
increasing stimulus amplitudes (panels left to right). Significant changes in the PCI are observed when the spike frequency
adaptation (be) is varied (one-way Kruskal-Wallis test; p<0.05 for each group of adaptation values, be = 0,20,40,60, for each
stimulus value (0.01, 0.1, and 1 Hz). Results of post-hoc Conover test for multiple comparisons between values of be are shown
in the figure, where * denotes p<0.05, ** is p<0.01, and *** is p<0.001). In high-adaptation, sleep-like regimes, a sharp drop in
PCI is observed, denoting more spatio-temporally complex responses in wake-like compared to sleep-like states, consistent
with experiments [3, 4].

larger than the drive (1.0Hz) for simulations in which the value of spike frequency adaptation (be) was varied between 0 pA 167

and 60 pA. As shown in Fig. 5D-F, computing the PCI from from the TVB-AdEx model shows that PCI values are typically 168

higher for lower-adaptation, wake-like regimes than for higher-adaptation, slow-wave sleep like regimes. In particular, a sharp 169

drop in PCI values is observed between b = 40pA and b = 60 pA, suggesting an abrupt transition between highly responsive 170

asynchronous and less responsive slow-wave dynamics as adaptation increases. For each value of noise, a one-way ANOVA 171

revealed significant differences between PCI distributions across b values (p < 0.0001), with multiple comparisons highlighting 172

that the PCI was significantly larger for wake-like than sleep-like conditions, in particular for lower-amplitude stimuli. The 173

same behavior was observed when comparing awake subjects with subjects in slow-wave sleep [3, 4]. Also note the wider 174

distribution of PCI values in sleep-like simulations, suggesting more variable responses for each realisation of the same stimulus 175

and therefore less reliable stimulus encoding. 176
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3 Discussion 177

In this paper, we demonstrated that biologically-informed scale-integrated mean-field models [9] can be used to simulate 178

large-scale brain networks using the TVB platform in EBRAINS. The coupled mean-field models comprising the TVB-AdEx 179

are derived from networks of AdEx neurons and display whole-brain asynchronous and slow-wave dynamics when wired 180

following white matter tracts from a human connectome. These results demonstrate the natural emergence of empirically 181

observed patterns of macroscopic brain dynamics from simulated changes at microscopic scales. The TVB-AdEx integration in 182

EBRAINS is also of interest as EBRAINS human brain atlas services will be able to provide a large degree of cytoarchitectural 183

detail such as region-specific neurotransmitter densities and cell types and densities and thus add to the biological realism of 184

these virtual brain models. The vertical integration across scales is provided by TVB-AdEx-type models, taking advantage of 185

the Big Data in EBRAINS. 186

TVB-AdEx mean-field models constituting each node of the connectome are designed by construction to approximate 187

the mean and covariance of the firing rate in spiking neural networks exhibiting stable dynamics in asynchronous irregular 188

regimes [20]. This model was extended to two neuronal populations, excitatory neurons with adaptation and inhibitory neurons 189

[9], but this extension has limitations. Importantly, the model is imprecise when adaptation varies within a range larger than 190

described here (for adaptation values higher than 100pA [9]) and when fast synchronous dynamics like oscillations in the 191

gamma range (between 40 Hz and 80 Hz) [20], spindles, or ripples occur. This model is therefore likely not directly suitable for 192

understanding the nuances associated with particular microscopic motifs comprised by transiently communicating assemblies 193

that likely encode relevant neural information. The model is appropriate to the type of general dynamics presented here, 194

wake-like AI and deep sleep-like slow-waves, describing large scale phenomena with relatively slow time scales. By smoothing 195

microscopic details, we have built a computationally tractable bridge from microscopic to macroscopic scales, to elucidate how 196

general dynamical phenomena relate to differences in neuronal interactions. 197

After integration in TVB, the resulting TVB-AdEx model displays a number of interesting features and several exciting 198

perspectives for future work. A first result is the emergence of synchrony across brain regions in the presence of adaptation. In 199

this case, the TVB-AdEx model displays synchronized slow waves with structured phase relations at a macroscopic, brain-wide 200

level (Fig. 3). This is consistent with the synchronized slow-wave dynamics observed during deep sleep in the brain [1, 18, 19]. 201

When the same model is set into the asychronous-irregular regime due to the loss of spike-frequency adaptation, as is the case 202

in the presence of acetylcholine and other neuromodulators present in higher concentrations during waking states [29], the 203

large-scale network displays a much lower level of synchrony (Fig. 3), consistent with asynchronous dynamics typically seen in 204

awake and aroused states [1, 18, 19]. These different levels of synchrony are therefore emergent properties of the large-scale 205

network. 206

A second main result is that evoked dynamics are also adaptation-dependent; When the network displays synchronized 207

Up- and Down-states, a stimulus typically evokes a high amplitude, simple response that remains local in space and time. 208

When the model is in the asynchronous regime, the same stimulus evokes responses that are weaker in amplitude, but that 209

propagate in a more elaborate way through space and time. The PCI measure applied to these two states match the experimental 210

observations [3, 4, 5, 6]. Again, this is an emergent property of the large-scale network. 211

What are possible mechanisms for such differences? A previous study [15] showed that in balanced networks, not all states 212

are equal and that asynchronous states, despite their apparently noisy character, can display higher responsiveness and support 213

propagation of stimuli. This enhanced responsiveness of AI states can be explained by the combined effects of depolarization, 214

membrane potential fluctuations, and conductance state. It was proposed as a fundamental property to explain why the activity 215

of the brain is systematically asynchronous in aroused states [15]. The present results are in full agreement with this mechanism, 216

which manifests here in the asynchronous state as a propagation further in time and space, across many brain areas, associated 217

with higher values of the PCI. 218

We believe that this work opens several perspectives. First, the enhanced propagation of perturbations during wake-like 219

states could be used as a basis to explain why stimuli are perceived in asynchronous regimes, and what kind of modulation 220

of the network activity could support phenomena such as attention and perception. Second, mean-field models can be set to 221

also display pathological states, such as hyperactive or hypersynchronized states, and the TVB-AdEx model could be used to 222

investigate seizure activity [30]. Other features, such as neuronal heterogeneity, are also beginning to be included in mean-field 223

models, [31], paving the way for enhancing biological realism in future versions of TVB-AdEX models. 224

In TVB, connectivity depends on the intermediate spatial resolution of coarse-graining. Here, the brain was parcellated in 225

68 regions, with each mean-field representing a substantially large brain area. TVB allows such simple simulations using a few 226

tens of nodes, taking into account the rough long-range connectivity according to the connectome resolved in tractography 227

of human dMRI. TVB can also simulate much finer-grained connectivity, by defining a larger number of nodes (usually on 228

the order of hundreds to hundreds of thousands, approaching the resolution of cortical columns) [32]. In such vertex-based 229

simulations that shall follow the present work, local connectivity is determined by intracortical connections, whereas the 230

white-matter connectome from dMRI used here captures effects of longer-range cortico-cortical fibers. 231
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Early stimulation studies in humans and in particular in rodents are pioneering the use of high-resolution simulations, 232

demonstrating subtler influences of the connectome in scaffolding signal propagation through brain networks [33, 34]. In those 233

studies, network nodes were equipped with generic neural mass dynamics, Andronov-Hopf-oscillators, which are theoretically 234

appealing for their mathematical simplicity, but are limited with regard to biophysical interpretability of the results. The 235

inclusion of high-resolution data from tracer studies in the Allen Institute was recently demonstrated in virtual mouse brain 236

models to significantly increase the predictive power [35]. As well, the inclusion of subject-specific, personalized connectomes 237

in virtual brain models significantly outperforms generic simulations in predictive inter-individual variability [35, 36]. These 238

studies point together to the importance of personalized brain network models in future clinical applications and affords novel 239

methods supporting such goals [37, 38]. The virtual brains in Spiegler et al [33, 34] captured the emergence of well-known 240

resting state networks known during spontaneous activity, but also functionally specific brain responses to stimulation of regions 241

along the processing chains of sensory systems from periphery up to primary sensory cortical areas. The latter responses 242

heavily relied on the Default Mode Network (DMN) and were suggestive of the DMN playing a mechanistic role between 243

functional networks. But neither brain state dependence, nor biological interpretation of the neural mass model parameters 244

was possible, as it requires the incorporation of biological complexity and integration across scales provided here by the 245

here by the TVB-AdEx approach. Ongoing efforts in EBRAINS aim to enrich high-resolution brain models with detailed 246

information on regionally-variant physiological features (neurotransmitters, receptor densities, cell types, and densities) to next 247

build the Virtual Big Brain, a high-resolution multi-scale brain network, which will be continuously updated and available 248

to the community. The drawback of such fine grained simulations is that they typically require large computing resources as 249

provided by EBRAINS, while coarse grained TVB simulations, as presented here, can easily be run on a standard workstation. 250

To summarize, for the sake of the initial release of the TVB-AdEx models, we offer a relatively coarse parcellation, which will 251

become more refined and personalized in future work. 252

Finally, it is interesting to note that the global properties used here to characterize neural dynamics across brain states - 253

synchrony, frequency spectra, responsiveness, and PCI - all reflect neural correlates of consciousness [39, 40, 41, 42]. It has 254

even been argued that asynchronous dynamics (so-called ’activated EEG’) is so far one of the most "sensitive and reliable" 255

neural correlate of consciousness [39]. This further emphasizes the promise of the present modeling approach to understanding 256

dynamics associated with conscious and non-conscious states, with broad potential applications in medicine and computation. 257
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4 Materials and Methods 382

Three types of models are used in this work: a network of spiking neurons, a mean-field model of this network, and a network 383

of mean-field models implemented in The Virtual Brain (TVB). Here we describe these models successively. 384

4.1 Spiking network model 385

We considered networks of integrate-and-fire neuron models displaying spike-frequency adaptation, based on two previous 386

papers [14, 8]. We used the Adaptive Exponential (AdEx) integrate-and-fire model [21]. We considered a population of N = 104
387

neurons randomly connected with a connection probability of p = 5%. We considered excitatory and inhibitory neurons, with 388

20% inhibitory neurons. The AdEx model permits to define two cell types, “regular-spiking” (RS) excitatory cells, displaying 389

spike-frequency adaptation, and “fast spiking” (FS) inhibitory cells, with no adaptation. The dynamics of these neurons is given 390

by the following equations: 391

cm
dvk

dt
= gL(EL− vk)+gL∆e

vk−vthr
∆ −wk + Isyn (1)

dwk

dt
= −wk

τw
+b ∑

tsp(k)
δ (t− tsp(k))+a(vk−EL), (2)

where cm = 200 pF is the membrane capacitance, vk is the voltage of neuron k and, whenever vk > vpeak = −47.5 mV for 392

inhibitory neurons and vk > vpeak =−40.0 mV for excitatory at time tsp(k) , vk is reset to the resting voltage vreset =−65 mV 393

and fixed to that value for a refractory time Tre f r = 5 ms. The voltage threshold vthr is -50 mV. The leak term gL had a fixed 394

conductance of gL = 10 nS and the leakage reversal EL was of −65 mV for inhibitory and −63 for excitatory. The exponential 395

term had a different strength for RS and FS cells, i.e. ∆ = 2mV (∆ = 0.5mV) for excitatory (inhibitory) cells. Inhibitory neurons 396

were modeled as fast spiking FS neurons with no adaptation (a = b = 0 for all inhibitory neurons) while excitatory regular 397

spiking RS neurons had a lower level of excitability due to the presence of adaptation (while b varied in our simulations we 398

fixed subthreshold adaptation a = 0 nS and τw = 500 ms). 399

The synaptic current Isyn received by neuron i is the result of the spiking activity of all neurons j ∈ pre(i) pre-synaptic to
neuron i. This current can be decomposed in the synaptic conductances evoked by excitatory E and inhibitory I pre-synaptic
spikes

Isyn = Ge
syn(Ee− vk)+Gi

syn(Ei− vk) ,

where Ee = 0mV (Ei = −80mV) is the excitatory (inhibitory) reversal potential. Excitatory synaptic conductances were
modeled by a decaying exponential function that sharply increases by a fixed amount QE at each pre-synaptic spike, i.e.:

Ge
syn(t) = Qe ∑

exc.pre
Θ(t− te

sp(k)) e−(t−te
sp(k))/ue ,

where Θ is the Heaviside function, ue = ui = 5ms is the characteristic decay time of excitatory and inhibitory synaptic 400

conductances, and Qe = 1.5 nS (Qi = 5 nS) the excitatory (inhibitory) quantal conductance. Inhibitory synaptic conductances 401

are modeled using the same equation with e→ i. This network displays two different states according to the level of adaptation, 402

b = 0 pA for asynchronous irregular states, and b = 60 pA for Up-Down states (see [8] for details). 403

4.2 Mean-field models 404

We considered a population model of a network of AdEx neurons, using a Master Equation formalism originally developed for 405

balanced networks of integrate-and-fire neurons [20]. This model was adapted to AdEx networks of RS and FS neurons [8], 406

and later modified to include adaptation [9]. The latter version is used here, which corresponds to the following equations using 407

Einstein’s index summation convention where sum signs are omitted and repeated indices are summed over: 408

T
∂νµ

∂ t
= (Fµ −νµ)+

1
2

cλη

∂ 2Fµ

∂νλ ∂νη

(3)

T
∂cλη

∂ t
= δλη

Fλ (1/T −Fη)

Nλ

+(Fλ −νλ )(Fη −νη)

+
∂Fλ

∂νµ

cηµ +
∂Fη

∂νµ

cλ µ −2cλη (4)

∂W
∂ t

= −W/τw +bνe +a(µV (νe,νi,W )−EL) , (5)

where µ = {e, i} is the population index (excitatory or inhibitory), νµ the population firing rate and cλη the covariance between 409

populations λ and η . W is a population adaptation variable [9]. The function Fµ={e,i} = Fµ={e,i}(νe,νi,W ) is the transfer 410
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function which describes the firing rate of population µ as a function of excitatory and inhibitory inputs (with rates νe and νi) 411

and adaptation level W . These functions were estimated previously for RS and FS cells and in the presence of adaptation [9]. 412

At the first order, i.e. neglecting the dynamics of the covariance terms cλη , this model can be written simply as: 413

T
dνµ

dt
= (Fµ −νµ) , (6)

together with Eq. 5. This system is equivalent to the well-known Wilson-Cowan model [43], with the specificity that the 414

functions F need to be obtained according to the specific single neuron model under consideration. These functions were 415

obtained previously for AdEx models of RS and FS cells [8, 9] and the same are used here. 416

For a cortical volume modeled as a two populations of excitatory and inhibitory neurons, the equations can be written as: 417

T
dνe

dt
= Fe(νe +νa f f +νdrive,νi)−νe (7)

T
dνi

dt
= Fi(νe +νa f f ,νi)−νi (8)

dW
dt

= −W/τw +bνe +a(µV (νe,νi,W )−EL) , (9)

where νa f f is the afferent thalamic input to the population of excitatory and inhibitory neurons and νdrive is an external noisy
drive simulated by an Ornstein-Uhlenbeck process. The function µV is the average membrane potential of the population and is
given by

µV =
µGeEe +µGiE + i+gLEL−W

µGe +µGi +gL
,

where the mean excitatory conductance is µGe = νeKeueQe and similarly for inhibition. 418

This system describes the population dynamics of a single region, and was shown to closely match the dynamics of the 419

spiking network [9]. 420

4.3 Networks of mean-field models 421

Extending our previous work at the mesoscale [9, 44] to model large brain regions, we define networks of mean-field models, 422

representing interconnected brain regions (each described by a mean-field model). We considered interactions between cortical 423

regions as excitatory, while inhibitory connections remain local to each region. The equations of such a network, expanding the 424

two-population mean-field (Eq. 7), are given by: 425

T
dνe(k)

dt
= Fe

[
ν

input
e (k)+νa f f (k),νi(k)

]
−νe(k)

T
dνi(k)

dt
= Fi

[
ν

input
e (k)+νa f f (k),νi(k)

]
−νi(k) (10)

dW (k)
dt

= −W (k)/τw +bνe(k)+a(µV (νe(k),νi(k),W (k))−EL) , (11)

where νe(k) and νi(k) are the excitatory and inhibitory population firing rates at site k, respectively, W (k) the level of adapation
of the population, and ν

input
e (k) is the excitatory synaptic input. The latter is given by:

ν
input
e (k) = νdrive(k)+∑

j
C jk νe( j, t−‖ j− k‖/vc) (12)

where the sum runs over all nodes j sending excitatory connections to node k, and C jk is the strength of the connection from j 426

to k (and is equal to 1 for j = k). Note that νe( j, t−‖ j− k‖/vc) is the activity of the excitatory population at node k at time 427

t−‖ j− k‖/vc to account for the delay of axonal propagation. Here, ‖ j− k‖ is the distance between nodes j and k and vc is the 428

axonal propagation speed. 429

4.4 Spontaneous activity 430

The Phase-Lag Index (PLI) was computed for each pair of nodes, averaged over simulation time. The Hilbert transform is
employed to extract the phase ψ(t) of the time series. From there, the PLI, given by

PLI≡ |< sign(ψi(t)−ψ j(t))>|, (13)

is computed for nodes i and j, where < ·> denotes averaging over time [45]. One may note that the PLI takes values between 431

0 (random phase relations or perfect synchrony) and 1 (perfect phase locking). In this work we report the mean PLI over all 432

time epochs for excitatory and inhibitory firing rates of each region pair for each adaptation value. 433
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4.4.1 Evoked activity 434

Here, we compute the Perturbational Complexity Index (PCI) in response to a localized square wave stimulus, over the firing 435

rates of all nodes of a TVB-AdEx simulation, following the method proposed by Casali et al [4]. This is done for multiple 436

trials with the same stimulus delivered to the same node at a random point in time and with different realizations of noise. 437

The PCI is the ratio of two quantities: the Lempel-Ziv algorithmic complexity and the source entropy [4]. To compute both 438

quantities, firing rates ν(t) must be binarized to produce significance vectors s(t). First, the trials are aligned to stimulation time, 439

considering only the 300ms before and after stimulus onset. Then, each node’s firing rate is re-scaled and mean and standard 440

deviation given by pre-stimulus activity averaged over nodes. Afterwards, all pre-stimulus firing rates are randomized across 441

time bins, this procedure being repeated 500 times. The threshold for significance T is then given by the one-tail percentile of 442

the maximum absolute value over all repetitions within a series of 20 trials. For each trial of those 20 trials, we can then write 443

s(t) = 1 whenever post-stimulus ν(t)> T and S(t) = 0 otherwise. For what follows, we concatenate all s(t) vectors from all 444

simulation nodes into one single significance vector S(t) per trial. 445

The Lempel-Ziv complexity LZ(S) is the length of the ’zipped’ vector S(t), i.e. the number of possible binary ’words’ 446

that make up the binary vector S(t). Briefly, S(t) is sectioned successively into consecutive words of between one and Nt 447

characters where Nt is the total length of S(t). Scanning sequentially through all words, each new encountered word is added to 448

a ’dictionary’, and LZ(S) is the total number of words in the dictionary at the end of the procedure. 449

The spatial source entropy H(S) is given by:

H(S) =−p(S = 0) log2(p(S = 0))− p(S = 1) log2(p(S = 1)), (14)

where log2 denotes the base-two logarithm. 450

The PCI can then be expressed as PCI(S) = LZ(S)
H(S) . 451
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