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Quantifying biochemical reaction rates within complex cellular processes remains a key challenge
of systems biology even as high-throughput single-cell data have become available to characterize
snapshots of population variability. That is because complex systems with stochastic and non-
linear interactions are difficult to analyze when not all components can be observed simultaneously
and systems cannot be followed over time. Instead of using descriptive statistical models, we show
that incompletely specified mechanistic models can be used to translate qualitative knowledge of
interactions into reaction rate functions from covariability data between pairs of components. This
promises to turn a globally intractable problem into a sequence of solvable inference problems to
quantify complex interaction networks from incomplete snapshots of their stochastic fluctuations.

Quantifying interactions between components within

a complex network from snapshots of their activity is a

challenge common to many areas of science. For exam-

ple, understanding cellular processes requires quantifying

biochemical reaction rates between molecules while typi-

cal high-throughput methods such as single-cell sequenc-

ing [1, 2], flow cytometry [3–5], or a combination thereof

[6] generate static population snapshots of a subset of

cellular components.

Covariability of components within cellular processes

is typically analyzed using statistical associations [7–11]

because accurate mechanistic modelling of biochemical

reactions is impractical for complex systems due to the

large number of unknown parameters and interactions

[12]. However, fluctuations in biochemical reaction net-

works emerge from underlying physical interactions that

affect each component’s rate of production and degrada-

tion rather than its instantaneous concentration. How

molecular components affect each other is then difficult

to infer from statistical associations [13], especially in the

absence of perturbation experiments [14, 15]. For exam-

ple, even perfectly linear rate dependencies will lead to

non-linear statistical relations between observed values

of cellular components.

We introduce a novel data analysis approach to

deduce rate dependencies one interaction at a time using

incompletely specified mechanistic models, see Fig. 1.

Our approach exploits a local qualitative understanding

of network interactions through probability balance
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FIG. 1. Determining how one component affects

the production rate of another from observing their

joint probability distribution. The joint probability dis-

tribution P (xi, xj) varies enormously between systems even

for identical effects of Xi on Xj . Nevertheless, all systems

with a given interaction between the two components satisfy

invariant probability flux balance relations [16]. Here, we

demonstrate that such relations can translate empirically

observed joint probability distributions into interactions

between Xi and Xj even when the dynamics within the rest

of the network is unknown.

equations [16] that must be satisfied as long as we

know how one component is made and degraded. As

a proof-of-principle we analyzed four example systems

with markedly different global dynamics. We show

numerical evidence that in those systems we could suc-

cessfully infer how one component affects the production

rate of another from their observed joint probability

distribution without making any assumptions about the

dynamics of the non-observed components.

Background theory. Describing the dynamics of

some components within a complex interaction network

in which the interactions between many components are
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unknown may seem impossible. However, we can triv-

ially do so as long as we are content with describing one

component’s dynamics in terms of components directly

affecting it. The actual dynamics are fundamentally in-

determinable for incomplete models but if components of

interest are experimentally measurable their empirically

observed covariability can be used to close the problem

and constrain interaction rates as described below.

We follow the previously established approach [16]

to characterize “local” system dynamics within a com-

pletely general complex reaction network with probabilis-

tic events

x
rk(x)−−−−−→ x + dk k = 1, 2, 3, . . .

where the state vector x = (x1, x2, x3, . . .) of abundances

can be arbitrarily high-dimensional, the kth reaction

changes levels of component Xi by δki, and the reaction

rates rk(x) are arbitrarily non-linear functions of the

state vector. This notation is motivated by biochemical

reaction networks but many areas of science encounter

stochastic systems whose dynamics are determined by

the corresponding general chemical master equation

dP (x, t)

dt
=
∑
k

[rk(x−dk)P (x−dk, t)−rk(x)P (x, t)] (1)

where P (x, t) denotes the probability of the system to be

in state x at some time t. Eq. (1) is generally intractable

for two reasons: first, any non-linear rate rk renders it

analytically unsolvable, second, for any actual complex

reaction network we never know all the rate functions.

However, even when many details of a system are un-

known, any given molecular component Xi that reaches

a time-independent stationary state with probability dis-

tribution Pss(xi) must satisfy

0 =
∑
k

[
〈rk(x)|xi = m− dki〉Pss(xi = m− dki)

−〈rk(x)|xi = m〉Pss(xi = m)
]
∀m ∈ N0,

(2)

which follows from simple summation of Eq. (1) over all

other variables and has been derived and discussed previ-

ously [16, 17]. In this paper, we demonstrate that Eq. (2)

can be exploited to infer rate functions even when we

know nothing about the dynamics of all other compo-

nents Xj for j 6= i such that conditional rates cannot be

predicted from incompletely specified models.

Note, Eq. (2) is not an approximate coarse-graining

but corresponds to an exact balance relation for any vari-

able in a larger complex system at stationarity. Whether

this relation applies only depends on whether the system

has reached stationarity which can be verified experimen-

tally from population snapshots taken at different time-

points. Thus the only dynamics excluded from our analy-

sis is transient behaviour such that stationary probability

distributions are not accessible from experimental data.

Note, explicitly time-varying systems, such as determin-

istic oscillations, satisfy Eq. (2) when considering their

time-averaged probability distributions and rates [16].

Results
When the rates of all reactions directly changing Xi-

levels are known, Eq. (2) represents a self-consistency

check that must be satisfied by the observed joint prob-

ability distribution between Xi and all variables directly

affecting those rates. Next, we show how this relation can

be “inverted” to determine rate functions from observed

probability distributions.

While Eq. (2) must provably hold for all stationary

states, any empirically observed distribution will exhibit

sampling errors which can have significant effects. For

example, any real experiment will have some maximum

value mmax for which Xi is observed and thus Eq. (2)

will clearly be violated for unbounded systems because

Eq. (2) cannot balance when m = mmax due to the lack

of sampling of the rarest states. Inverting the equation

system Eq. (2) to identify the functional dependencies

of rk(x) thus requires minimizing deviations from the

predicted relations. In general, minimizing the sum of

squared differences remains an underdetermined prob-

lem if we treat each value of the rate function as an

independent unknown. However, under the assumption

that biochemical rate functions are sufficiently smooth

the problem can be solved by limiting the variability of

the rate functions across neighbouring states (Materials

& Methods).

To demonstrate how rate functions can be successfully

inferred from partial observations of some components

within a larger network we consider four different ex-

ample networks that exhibited oscillations, bistability,

fluctuation control, and noise enhancing feedback. Such

markedly different global dynamics was already achiev-

able with non-linear three-component feedback networks

while conserving the reaction rates for one of the com-

ponents, see Fig. 2 (left panels). We thus present the

performance of our algorithm when applied to simula-

tion data from those simple systems. But the algorithm

can equally be applied to much larger systems with hun-

dreds of variables as long as the local interactions are

qualitatively known.

Numerical proof-of-principle examples. The con-

served part of our test systems that we want to recon-

struct from simulation data corresponds to a stereotyp-

ical biochemical reaction rate in cells. In particular, we

specified that the production of component X3 is af-

fected by X2 through a Hill-type function f(x2) and X3
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noise controlling

FIG. 2. Probability flux balances can determine bio-

chemical rates regardless of global network dynam-

ics. Fixing how the production rate f(x2) of X3 depends on

X2-levels, we considered four different global network topolo-

gies within the class defined by Eq. (3), that exhibit diverse

system dynamics and variability in X3 (left column). The

insets of the right column depict numerically observed joint

distributions P (x2, x3) corresponding to 100,000 independent

snapshots. Although probability distributions differed greatly

between the four systems, Eq. (4) could identify the functional

dependence of the production rate of X3 based on the numer-

ical convex optimization algorithm detailed in the Materials

& Methods. We find near perfect agreement between the in-

ferred rate (orange crosses) and the true rate function (dashed

blue line) regardless of a system’s global dynamics. This in-

ference of f(x2) does not utilize any temporal information,

its only input is the stationary joint probability distribution

between the two components of interest. It relies on observ-

ing fluctuations across a wide range of X2-states as illustrated

by the shaded probability distribution P (x2) with deviations

occurring where X2 was rarely or never observed. While the

degradation rate of X3 was assumed to be known, no infor-

mation about how its production rate depends on X2, or the

dynamics of X1, X2 was used.

molecules are degraded independently leading to the fol-

lowing class of reaction systems

x3
f(x2)−−−−−−→ x3 + 1

x3
x3/τ3−−−−−−→ x3 − 1︸ ︷︷ ︸

conserved part

+

[
X1,X2

production & degradation

]
︸ ︷︷ ︸

various feedback dynamics

,

(3)
where τ3 denotes the average life-time of component X3

and f(x2) = λxn2/(K
n+xn2 ). For test examples presented

in Fig. 2 (dashed blue lines in right panels) we chose

τ3 = 1 and λ = 80, n = 2,K = 40.

The reaction dynamics of the other variables, i.e., how

X1, X2 affect each other and how they are affected by

X3 were chosen to achieve diverse system dynamics and

are specified in the Materials & Methods. Regardless

of the X1,X2-dynamics, the probability balance equation

Eq. (2) applied to the specified reaction in Eq. (3) imply

that the above systems must satisfy the following proba-

bility balance relations at stationarity

P (x3 = m+ 1)

P (x3 = m)
=
〈f(x2)|x3 = m〉

(m+ 1)/τ3
∀m ∈ N0. (4)

Although Eq. (4) is reminiscent of detailed balance, in-

dividual backwards and forward reaction fluxes do not

need to balance in general for systems that do not oper-

ate at thermodynamic equilibrium such as cellular pro-

cesses. The condition we exploit here is that the marginal

probability distribution does not change at stationarity,

and thus that each state must on average balance in-

coming and outgoing probability fluxes. The contrast

with detailed balance is directly apparent in systems with

dimeric degradation of X3 as discussed in a later section.

As detailed in the Materials & Methods, we employed

a numerical algorithm to approximately solve Eq. (4) for

f(x2) and thus infer how the X3 production rate depends

on X2 from the observed P (x2, x3). To do so we gener-

ated exact realizations of the above stochastic processes

using the standard Doob-Gillespie algorithm [18, 19]. We

then sampled X2, X3 from the numerically observed sta-

tionary distribution to generate an observed joint prob-

ability from N = 100, 000 independent samples. Any

information about the dynamics of X1 was discarded be-

cause our method does not utilize any information be-

yond the pairs of components under consideration.

Applying a convex optimization algorithm to Eq. (4)

using the numerically observed P (x2, x3) led to near per-

fect inference for the production rate of X3 in all systems

as illustrated by the orange crosses in Fig. 2. These nu-

merical proof-of-concept examples thus illustrate how the

balance equations Eq. (4) can be used to reconstruct the

functional form of f(x2) from pairwise observation of X2,

X3 in the absence of any temporal information and in-

dependent of any information about the vastly different

global system dynamics.

3
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Sampling requirements. Information cannot be

created from nothing and the above inference cannot de-

termine rates for states that were never observed. In

practice, making additional assumptions to fill in gaps,

such as monotonicity or the functional form of f(x2),

could prove useful (and are easily incorporated into the

algorithm), but here we want to illustrate the core of the

inference quality based solely on the convex optimiza-

tion of Eq. (4). We thus define an error heuristic E to

quantify the quality of our inference by weighting errors

in the rate function by the probability of the system to

have been observed in that state, relative to the overall

average of the rate function 〈ftrue〉:

E =
∑
x2

∣∣finferred(x2)− ftrue(x2)
∣∣

〈ftrue〉
P (x2) . (5)

To illustrate how the relative time-scale of X2 and X3

affect this inference error E we consider the above “noise

enhancing” system (Materials & Methods) for which

changing lifetimes did not introduce different system dy-

namics. For such systems, inferring f(x2) is straight-

forward when the variability of X2 is slow such that X3

has enough time to adjust to X2-levels and the condi-

tional average 〈x3|x2〉 directly identifies the production

rate of X3 (SI). For faster upstream fluctuations the ef-

fect of X2-variability on X3 decreases and the inference of

the production rate becomes more challenging. However,

compared to the naive statistical approach of interpret-

ing conditional averages as rates, our inference algorithm

based on Eq. (4) reliably identifies the correct rate func-

tion even when the time-scale of X2-fluctuations is fast

relative to X3, see Fig. 3B. When the upstream variably

becomes more than an order of magnitude faster than X3

our inferred rate function deviates significantly from the

true one when inferred from a joint probability distribu-

tion constructed from N = 100, 000 samples. However,

even in this unfavourable regime with a 40-fold separa-

tion of time-scale between the upstream and downstream

variable such that the conditional average 〈x3|x2〉 levels-

off, N = 5 × 106 were enough sample observations to

correctly infer f(x2), see Fig. 3D.

Upregulated vs. downregulated production rates.

While the above examples exhibit vastly different global

system dynamics the functional form of the production

rate of X3 was conserved across all systems. Next, we

demonstrate that our inference method works for arbi-

trary Hill-type functions for the production rate. We sim-

ulated the noise enhancing three-component system (Ma-

terials & Methods) from Fig. 3 with differently shaped

Hill-functions f(x2) = λxn2/(x
n
2 +Kn) by systematically

varying the parameters K,n. The tested range of pa-

rameters reflects biologically relevant different shapes,
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FIG. 3. Experimentally achievable sampling leads to

accurate inference even when fast upstream variabil-

ity masks rate dependencies. A) The number of data

points required to successfully infer f(x2) from an empirical

P (x2, x3) depends on the relative time-scales between the two

components of interest. Simulations of the noise enhancing

three-component system (Materials & Methods) show that

several thousand measurement samples can be enough to

reliably infer the rate dependence f(x2) when upstream fluc-

tuations are relatively slow, i.e., τ2 > τ3. B) When upstream

fluctuations are fast, the downstream variable does not have

time to adjust and the conditional average 〈x3|x2〉 no longer

follows f(x2) as indicated by the grey line. In contrast,

our inference method based on Eq. (4) accurately estimates

the actual rate function from N = 100, 000 samples. The

orange crosses depict an example of one inference while the

shaded area displays the standard deviation of individual

inferences from different samples of the same process. C) As

the upstream fluctuations in X2 become faster, the inference

gets worse when using the same number of sampling points.

However, even for systems in which X2, and X3 time-scales

are separated 40-fold, the production rate f(x2) can be ac-

curately inferred from N = 5 × 106 samples (panel D). Such

sampling is experimentally achievable using flow-cytometry

approaches to characterize single cell heterogeneity [20].

including negative n corresponding to X2 suppressing

X3, small values of n such that X3 is barely affected by

X2, as well as strongly cooperative effects with n→ ±4.

As illustrated in Fig. 4A, the inference works satisfacto-

rily for N = 100, 000 across a broad range Hill-functions

with specific examples of successful inference depicted in

Fig. 4C,D,E. Note, that those rate functions cannot be

quantified for states that were never (or extremely rarely)

observed.

To determine the cause of unsatisfactory inferences as

illustrated by an example in Fig. 4F, we utilize the gen-

eral noise propagation relation [16] to describe all systems

4
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within the class of Eq. (3)

Var(x3)

〈x3〉2︸ ︷︷ ︸
ηx3,x3

=
1

〈x3〉
+

Cov(x3, f(x2))

〈x3〉〈f(x2)〉︸ ︷︷ ︸
ηx3,f

, I :=
|ηx3,f |
ηx3,x3

. (6)

Here, I quantifies how much of an effect X2-fluctuations

have on X3-variability. We find, that regions of unsatis-

factory inference correspond to systems in which the up-

stream variability has only a small effect on X3 (compare

panels A and B of Fig. 4) Inference in the regime where

n ≈ 0 can be significantly improved through a simple

cross-validation step as discussed in a later section and

illustrated in Fig. 7B.

Non-linear degradation rates. In all of the above

systems, X3-molecules were degraded in a first-order re-

action as is commonly the case for cellular components

[21, 22] and would be approximately true for all cellular

components that are not actively degraded but effectively

diluted by cellular growth [23]. Next, we demonstrate

that our inference method works equally well for systems

in which X3 undergoes non-linear degradation reactions.

Analogous to Fig. 4, we varied the shape of the produc-

tion rate f(x2) in a class of noise enhancing (Materials

& Methods) systems with the following conserved part

x3
f(x2)−−−−−−→ x3 + 1

x3
γx3(x3−1)−−−−−−→ x3 − 2

+

[
X1,X2

production & degradation

]
︸ ︷︷ ︸

noise enhancing feedback

(7)

where a non-linear degradation rate corresponding to a

dimerization event was added. We again find that our

inference method works reliable for most parameters, see

Fig. 5A, with unsatisfactory results corresponding again

to parameter regimes in which the upstream variable has

only a marginal effect on the downstream fluctuations.

Additionally, we analyzed how the inference quality

of f(x2) behaves for individual states. As intuitively ex-

pected, we find that the inference error initially decreases

∝ 1/
√
N as the number of samples N increases. How-

ever, for large N a plateau becomes apparent that is most

severe for the most rarely observed states, Fig. 5B. This

behaviour was generally observed across different classes

of systems (SI). Explicitly accounting for the effects of

sampling error may lead to lower plateaus for the esti-

mation errors with more advanced statistical methods to

invert Eq. (4) but are beyond the scope of the current

work.

Note, in these systems the component of interest X3 de-

grades as a dimer, such that its specified degradation rate

in Eq. (7) is non-linear, and the reaction eliminates two

molecules at a time. The probability balancing Eq. (2)

therefore no longer involves just neighbouring states and
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FIG. 4. Different shapes of rate functions can be

inferred. A) Changing the shape of the production rate

f(x2) = λxn2 /(x
n
2 + Kn) by varying K and n while keeping

time-scales fixed and equal, we find that the inferred reaction

rates using Eq. (4) and P (x2, x3) agree well with the true rate

for N = 100, 000 samples across a broad range of the param-

eter regime. Data shown are for the same noise enhancing

three-component system (Materials & Methods) as in Fig. 3.

B) Unsatisfactory inference of f(x2) corresponds to regimes

in which the upstream variable has only little influence on the

downstream fluctuations as quantified by the relative impor-

tance term I defined in Eq. (6). C,D,E) Successful inference

examples for different Hill-functions including repressing ef-

fects of X2 on X3. Any deviations from the true rate func-

tion are in the region in which the system is rarely or never

observed. F) Example of unsatisfactory inference when the

reaction rate varies only little over the majority of observed

states resulting in a small effect of X2-fluctuations on X3-

levels. The poor inference is also highlighted by the extremely

broad shaded region indicating the standard deviation of in-

ferred f(x2) for identical systems subject to different random

sampling.

detailed balance is broken. Instead the above systems

must satisfy the following balance equations

γ(m+1)mP
(
x3 = m+1

)
+γ(m+2)(m+1)P

(
x3 = m+2

)
= P

(
x3 = m

)
〈f(x2)|x3 = m〉 ∀m ∈ N0 ,

that were used in the inference algorithm.

Experimental Measurement Noise. Due to finite

sampling and unavoidable measurement noise, empiri-

cally observed probability distributions will not perfectly

5
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Error E rel. Error

Number of samples N

n

K

FIG. 5. Non-linear degradation does not affect the

inference. A) For simulated systems with non-linear degra-

dation of X3-molecules as defined in Eq. (7), the inference

quality is satisfactory when using empirically determined joint

probability distributions P (x2, x3) from N = 100, 000 sam-

ples. Plotted are the inference error E for different production

rates f(x2) = λxn2 /(x
n
2 +Kn). Poor inference corresponds to

parameter regimes in which the upstream variable X2 has only

a negligible effect on the downstream variable X3, i.e., when

K or n are small. Data are for the same noise enhancing

three-component system as in Fig. 3 with the only difference

that the degradation of X3 is now non-linear. B) For a given

state, the relative error of the inferred reaction rate f(x2)

initially decreases ∝ 1/
√
N (dashed lines) as the number of

sampling points N increases. However, for large N , the rela-

tive error levels off, with higher probability states reaching a

lower plateau than those only visited rarely. The inset depicts

the true function and the specific states considered here, as

well as the resulting probability distribution of x2.

reproduce the stationary distributions of the underlying

chemical reaction network. Next, we analyze how mea-

surement noise affects our inference method by explicitly

accounting for small absolute and relative error terms as

well as systemic undercounting of molecules.

To simulate “empirically observed” probability distri-

butions of the above noise enhancing system (Materials

& Methods) we resampled from the exact stationary dis-

tribution P (x2, x3) while adding a two-dimensional nor-

mally distributed error with zero mean and a standard

deviation of σabs = 1, 3, 8 molecules respectively (SI). For

small absolute errors, we find that the inference method

still succeeds to satisfactorily determine the original rate

function, see Fig. 6B.

Furthermore, we analyzed the effect of relative mea-

surement noise by multiplying each sampled data point

with a two-dimensional normally distributed error term

to simulate a relative error of 1%, 5%, 20% in the ob-

served variables respectively (SI). In its current form, our

inference is significantly affected by large multiplicative

noise because it causes the “measured” probability distri-

bution to differ significantly from the underlying station-

ary distribution of the stochastic process, see Fig. 6C. Fu-

ture variants of our inference algorithm may potentially

improve on this by performing explicit de-convolution

steps to estimate stationary state distributions from ex-

perimentally recorded ones before exploiting Eq. (2). In

fact, measuring error due to probabilistic undercounting

can be exactly accounted for by determining the proba-

bility p to detect a specific molecule, and applying our

inference method to the re-scaled probability distribu-

tion, see Fig. 6A.

Weakly connected components. Our presented

method relies on knowing that one component directly

affects the production rate of another. We thus ob-

tained unsatisfactory inferences when the upstream vari-

able barely affects the downstream variable, as illustrated

in the regime when n→ 0 or K � 〈x2〉, see Fig. 4A.

Breakdown of satisfactory inference in that regime

can be prevented by explicitly considering the possibility

that f(x2) is approximately constant across the observed

stochastic fluctuations of X2. Following a standard cross-

validation approach, we can use one half of the observed

data as a “training set” [25]. Using this subset of data

we infer f(x2) using our usual unconstrained method but

additionally perform a constrained optimization for con-

stant production rates, i.e., we find the best f(x2) = λ

for some λ > 0. This by itself will not pick a constant

production rate over the freely optimized f(x2) because

the latter has many more degrees of freedom. However,

because the free optimization overfits sampling errors

when minimizing deviations of Eq. (4) in the regime in

which f(x2) is approximately constant, it will do rela-

tively worse than a constant production rate when ap-

plied to the “validation set” of the data. Incorporating

this cross-validation approach into our inference meth-

ods as detailed in the Materials & Methods, removes the

most unsatisfactory regime while leaving the successful

inferences unaffected as illustrated in Fig. 7A (compare

to Fig. 4A) with an example detection of constant f(x2)

illustrated in Fig. 7B.

Identifying constant production rates is a special case

of the general problem of identifying which component

affects which in complex biochemical reaction networks

[26]. Future variants of such a cross-validation approach

might thus prove useful in identifying the topology of

network interactions based on Eq. (4).

Discussion
Early aeronautical engineering faced a challenge

analogous to that of current synthetic biology. While

the qualitative requirements for motored flight were well

known, designing a reliable flyer required a breakthrough

in quantitatively understanding each subproblem through

painstaking experimental measurements [27].

Similarly, designing reliable synthetic circuits in biol-

ogy requires a quantitative description of biochemical re-

action dynamics rather than qualitative network interac-

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458258doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458258


0 20 40 60 80
x2

0

20

40

60
f(x2)

A)
true function
scaled estimate
p=0.5

0 20 40 60 80
x2

B) true function
abs = 1
abs = 3
abs = 8

0 20 40 60 80
x2

C) true function
rel = 1%
rel = 5%
rel = 20%

0.00 0.05 0.10 0.15
rel

1
2
3
4
5
6

ab
s

P(x2) P(x2) P(x2)

0.00

0.04

0.08

0.12

Error E

FIG. 6. Small measurement noise does not prohibit accurate inference A) Simulated “empirical” data (histogram)

with binomial undercounting in which each molecule is detected with a fixed probability p. Our inference algorithm identifies

the correct reaction rate if we simply multiply the measured molecule numbers by 1/p again to obtain the input function

(dashed blue line). If we do not know p then the algorithm identifies the correct shape f(x2) but cannot identify the correct

scale of X2 over which it varies. B) Simulated “empirical” data (grey histogram) with added absolute measurement errors

modelled as a two-dimensional Gaussian with zero mean and standard deviation of σabs = 8. This distribution is not identical

to the theoretical one (dashed black line) and leads to significant deviations in the inference (brown crosses). For smaller

absolute errors we observe satisfactory inference, as illustrated by the data for σabs = 1, 3. C) Simulating relative measurement

errors by multiplying “observed” samples from the exact stationary distribution with a random number from a two-dimensional

Gaussian with mean one and standard deviation of σrel = 0.01, 0.1, 0.2. For relative errors less than 10% we found satisfactory

inference but larger errors led to unacceptable estimates for the production rate f(x2) because of the significant deviation of the

“empirical” distribution (grey histogram) from the exact stationary distribution (dashed black line) illustrated for σrel = 0.2.

Explicit de-convolution steps [24] for known types of measurement noise may significantly improve the inference performance of

future algorithms based on Eq. (2). D) Quantifying the inference error for absolute and relative measurement errors. Relative

measurement errors larger than 10% led to unsatisfactory inference.

tion models. Here, we present a method that promises

to iteratively turn a qualitative model of biochemical in-

teractions into a network of quantitative reaction rates.

Given one arrow within a network of interacting compo-

nents our method identifies the functional dependence of

the actual reaction rate, one interaction at a time, from

fluctuations of a subset of components without having to

n

K

FIG. 7. Cross-validation improves inference in re-

gions with constant to near constant rates. A) Anal-

ogous to Fig. 4 we change the shape of the production rate

f(x2) = λxn2 /(x
n
2 + Kn) by varying K and n. Shown here is

the error of the inferred f(x2) when applying our method with

an additional cross-validation step as detailed in the Materi-

als & Methods. The quality of the inference is significantly

improved in the regime in which the production rate is es-

sentially independent of the upstream variable around n ≈ 0.

B) Directly comparing the cross-validated and freely inferred

f(x2) when applied to a system in which the true production

rate was constant. The cross-validated answer picks out the

constant production rate, whereas the naive approach gives a

varying estimate due to overfitting of Eq. (4).

perturb the system.

Existing mechanistic modelling approaches often rely

on temporal data [28–35] and generally have to be iden-

tified from data in one fell swoop [36–41] with all the

reliability issues that come with optimizing over many

degrees of freedom at once. While approaches that com-

bine mechanistic models with Bayesian inference [42–45]

can effectively account for significant noise in experi-

mental data, they too rely on inferring parameters for

fully defined mechanistic models all at once. Statisti-

cal approaches that rely on perturbations [7–11] can be

straightforwardly applied to static snapshots of incom-

pletely observed complex systems but fail to account for

the dynamic ways in which one component affects an-

other, and thus do generally not quantitatively describe

physical interactions between components.

Our results show that we can reliably identify reaction

rates independent of the larger network structures, in

contrast to previous approaches in which small models of

gene expression were inverted under the assumption they

were correct as a whole and only a handful of parame-

ter values needed to be determined [46–48]. The pre-

sented numerical proof-of-principle results establish that

our presented algorithm works across a broad range of

tested systems and that the number of required obser-

vations for algorithmic success is comparable to those

accessible by modern experimental single-cell techniques

in biology such as flow-cytometry that routinely measure

millions of isogenic cells at a time.
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Materials & Methods

Basic algorithm. To utilize probability distributions

that contain sampling errors we write the balance equa-

tions (4) for our example systems as Gf = h, where

Gij = P (x2 = j, x3 = i), fi = f(x2 = i) and hi =

(i + 1)P (x3 = i + 1)/τ3. To avoid overfitting the solu-

tion f to sampling noise we add a regularization term

that effectively penalizes the discrete “second deriva-

tives” fi+2 − 2fi+1 + fi. The effect of this regularization

is to smoothen the resulting reaction rate function. Mo-

tivated by complex cellular processes where f(x2) repre-

sent biochemical reaction rates, we furthermore constrain

the solution vector f to be non-negative. We thus solve

the following optimization problem

min
f

{||Gf − h||2 + ε||Γf ||2} s.t. f ≥ 0 (8)

where Γij = δi,j−2δi,j+1+δi,j+2 is the regularization ma-

trix and ε corresponds to the strength of the smoothen-

ing. The strength of this regularization parameter affects

the quality of the inference. We found ε = 1/
√
N to lead

to satisfactory results because it appropriately decreases

in strength as the number of sampling points N increases.

This regularization was used throughout the paper. In

other applications, alternative heuristics to choose ε may

prove useful to achieve satisfactory results (SI). Note,

that if the lifetime τ3 is unknown, the inference method

will still correctly identify τ3 · f(x2) meaning that we get

the correct shape of the reaction rate function up to an

unknown scale-factor.

We solved Eq. (8) using a standard convex optimiza-

tion approach which is guaranteed to converge to the

optimal solution as a linear program [49]. Note, that

it is straightforward to add further constraints, such

as monotonicity, about the solution function f(x2).

However, the results presented here do not make use of

any additional assumptions beyond Eq. (8).

Cross-validation algorithm. In order to avoid over-

fitting systems when production rates are approximately

constant we compared our inferred production rate

against a constant one as follows: We divided the sam-

pling data into two equally sized sets, and applied our

inference method first to the “training” set and then

checked against a constant production rate using the

second “validation” set [25]. To compare the two rates

we calculated the violation of Eq. (4) as the sum of all

squared errors. If the constant production rate’s error

was smaller or within a 5% margin of the freely fitted

production rate from the training set, we determined a

constant production rate to be the best inference and op-

timized it over the whole data. Otherwise we applied our

regular inference method to the full data set instead.

Definition of example systems. We considered

simple three-component systems in which the produc-

tion and degradation rates of X1,X2,X2 took the follow-

ing form

xi
fi(x)−−−−−−→ xi + 1

xi
xi/τi−−−−−−→ xi − 1

. (9)

In particular, we simulated the following example

systems depicted in Fig. 2 where the production and

degradation rate for X3 was kept the same as specified in

the main text while the other components were subject

to the following dynamics.

Bistable system: f1(x2) = λxn2/(K
n+xn2 )+c, f2(x1) = x1

with λ = 50, n = 6,K = 37, c = 15 and life-times

τ1 = τ2 = 1.

Oscillating system: f1(x3) = λ1K
n1
1 /(Kn1

1 + xn1
3 ),

f2(x1) = λ2x
n2
1 /(Kn2

2 + xn2
1 ) with λ1 = 50000, n1 =

10, K1 = 0.1, λ2 = 80, n2 = 1, K2 = 100 and life-times

τ1 = τ2 = 1.

Noise controlling system: f1(x3) = λ1x3,

f2(x1) = λ2K
n2
2 /(Kn2

2 + xn2
1 ) with λ1 = 50, λ2 =

3000, n2 = 10,K2 = 10 and life-times τ1 = 50, τ2 = 1.

Noise enhancing system: f1 = 5, f2(x1, x3) =

λxn3/(K
n+xn3 )+cx1 with λ = 25, n = 4, K = 50, c = 8

and life-times τ1 = τ2 = 1.

Data in Figs. 3-7 correspond to the above noise en-

hancing system with modifications as specified in the

main text. The systems with non-linear degradation rate

γx3(x3 − 1) were simulated with γ = 2.
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