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Abstract 
Motivation: Continuous emergence of new variants through appearance, accumulation and disappear-
ance of mutations in viruses is a hallmark of many viral diseases.  SARS-CoV-2 and its variants have 
particularly exerted tremendous pressure on global healthcare system owing to their life threatening 
and debilitating implications.  The sheer plurality of the variants and huge scale of genome sequence 
data available for Covid19 have added to the challenges of traceability of mutations of concern. The 
latter however provides an opportunity to utilize SARS-CoV-2 genomes and the mutations therein as 

ively classify the variants through the (machine) learning of mutation 
patterns. The unprecedented sequencing effort and tracing of disease outcomes provide an excellent 
ground for identifying important mutations by developing machine learnt models or severity classifiers 
using mutation profile of SARS-CoV-2. This is expected to provide a significant impetus to the efforts 
towards not only identifying the mutations of concern but also exploring the potential of mutation driven 
predictive prognosis of SARS-CoV-2. 
 
Results: We describe how a graduated approach of building various severity specific machine learning 
classifiers, using only the mutation corpus of SARS-CoV-2 genomes, can potentially lead to the identi-
fication of important mutations and guide potential prognosis of infection. We demonstrate the applica-
bility of model derived important mutations and use of Shapley values in order to identify the significant 
mutations of concern as well as for developing sparse models of outcome classification. A total of 
77,284 outcome traced SARS-CoV-2 genomes were employed in this study which represented a total 
corpus of 30346 unique nucleotide mutations and 18647 amino acid mutations. Machine learning mod-

e TRIPOD guidelines for predictive prog-
nosis. Shapley values for model linked important mutations were employed to select significant muta-
tions leading to identification of less than 20 outcome driving mutations from each classifier. We addi-
tionally descri
tive prognosis linked with continuously evolving pathogens. A chronologically distinct sampling is im-

sis linked with genomes of future (observed with new mutations). We conclude that while machine 
learning approach can play a vital role in identifying relevant mutations, caution should be exercised in 
using the mutation signatures for predictive prognosis in cases where new mutations have accumulated 
along with the previously observed mutations of concern.  
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1 Introduction  
Continuous evolution of SARS-CoV-2 and emergence of virulent vari-

ants have burdened the global healthcare system at unprecedented levels. 
With more than 200 million reported cases and over 4 million causalities 
(worldwide) within the last one year, Covid-19 continues to challenge the 
adequacy of global healthcare infrastructure (WHO Coronavirus 
(COVID-19) Dashboard: https://covid19.who.int/, accessed 30 Aug 
2021). This has been further complicated by the lack of knowledge per-
taining to the factors driving the severity of the SARS-CoV-2 infection. 
Previously, attempts have been made to predict the infection prognosis 
using classical machine learning methods based on the symptom profile 
and co-morbidities of infected individuals (Zoabi et al., 2021).  Such ef-
forts are important as they lay the ground for a much-needed thought to-
wards predictive prognosis which may aid in mitigating the potential bur-
den on healthcare system. Mutations in the SARS-CoV-2 genome have a 
link to the Covid-19 virulence. While the severity of an infection is rightly 
attributed to host immunity, it is well founded that certain variants of con-
cern (VoCs) are more infectious owing to their mutational peculiarity. 
Identification of the key mutations and variants of SARS-CoV-2 has there-
fore become one of the major goals of global genome sequencing efforts. 
The latter has been exceptional in the entire history of infectious diseases 
as close to 3 million genome sequences have already been deposited to 
public repositories like Global initiative on sharing all influenza data 
(GISAID) (https://www.gisaid.org/, accessed 30 Aug 2021). The tracea-
bility of health status of sequencing sample donor is also appreciable, 

which is reflected in the large cohort of more than 100,000 such samples 
(and corresponding sequence data) deposited globally with GISAID alone 
(https://www.epicov.org/epi3/, accessed 30 Aug 2021).  Given the large 

intelligence by employing biology agnostic methods is eminent (Zahn, 
2021; Nagpal et al., 2020).  Supervised machine learning approaches can 
potentially learn important mutation signatures from these labelled se-
quences of SARS-CoV-2 genomes and guide prediction of infection se-
verity based on observed mutation signatures (Nagy et al., 2021). Con-
certed efforts are therefore required to utilize not only the existing meth-
ods rooted in biology (e.g., symptom profile, family history, genetic pre-
disposition, sequence analysis, phylogenetics, structural biology, etc.), but 
also apply unconventional data driven approaches that have convention-
ally and consistently been proven to yield actionable intelligence in a do-
main agnostic fashion (Carvalho et al., 2019; Collins et al., 2015; Yadaw 
et al., 2020). As rightly quoted in a news piece published in Nature last 

pot mutations faster than they can make sense of 
 (Callaway, 2020). This situation has only aggravated further with 

more than 100,000 unique amino acid mutations already identified in 
3,134,790 SARS-CoV-2 genome sequences shared by researchers from 
across the globe through GISAID as on Aug 30, 2021 (Shu and McCauley, 
2017).  

Like humans, machines or computers can learn from experience. For 
machines, this experience is derived from the data, which could be labelled 
or unlabeled. While labelled data refers to the data which is well annotated 
(e.g., blood biochemistry of diseased and healthy individuals), unlabeled 
data refers to a data without any ancillary information (e.g., blood bio-
chemistry of unknown samples). These two forms of data availabilities 
drive the two important types of machine learning approaches, namely, 
unsupervised and supervised machine learning methods. Unsupervised al-
gorithms, like principal component analysis (PCA) and t-distributed sto-
chastic neighbor embedding (t-SNE), aim to decipher unobserved patterns 
in the unlabeled data and potentially group the input data points based on 

patterns of similarity. On the other hand, supervised algorithms, like deci-
sion trees and logistic regression, are built on an assumption that there 
exists a relationship between the input data and their labels, and are there-
fore aimed at inferring the said relationship. The latter class of machine 
learning algorithms are therefore cornerstone of predictive analytics and 
through this article we intend to highlight the possibilities and bottlenecks 
of predictive prognosis of Covid-19 infection by exploiting the large scale 

of the underlying idea of (machine) learning the labelled genome sequence 
(and mutation) data of SARS-CoV-2 and developing a severity predictor.   

 
Figure 1. Machine learning the mutation signatures of SARS-CoV-2 

for predicting severity outcomes. Mutation profile in a given SARS-CoV-
2 genome is an important feature that may drive the course of infection. A 
one-hot-encoded (presence-absence) matrix of observed mutations across 

all sequenced genomes can serve as an input data for machine learning 
(ML) methods. The traced status of patient health associated with each 
sequence or mutation profile is an important label to train ML algorithms. 
Supervised machine learning can therefore potentially enable prediction 
of infection severity by analyzing the patterns of important mutations in 
the large number of sequenced genomes and in the process enable identi-
fication of key mutations that drive the prediction.   

 
However, caution must be exercised in reporting the accuracies and 

clinical applicability of predictive models, especially where model fea-
tures (mutations or symptoms) are not expected to exhibit a temporally 
stable profile (Nagy et al., 2021; Collins et al., 2015; Yadaw et al., 2020).  
Current approaches, in addition to over speculating the goals of predictive 
model development, under-utilize the large label space for infection out-
comes (Nagy et al., 2021). While the former leads to over-ambitious spec-
ulation on clinical applicability of machine learnt models (trained using 
reported mutations or symptoms in the past) in predicting infection sever-
ity; the latter (under-utilized label space) under-estimates the span of sig-
nificant mutations of concern. It is therefore prudent to acknowledge the 
limitations of a predictive prognosis exercise while trusting its ability to 
guide the prediction goals by identifying the mutations of concern from 
reported variants of SARS-CoV-2.  

  
We adopted a graduated approach of building multiple machine learn-

ing classifiers to gauge the predictive power of mutation signatures of 
SARS-CoV-2 towards prognosis of a Covid-19 infection in terms of all 
pairs of multiple target labels, namely, (i) Asymptomatic (ii) Mild (iii) 
Symptomatic (iv) Severe and (v) Fatal.  Notably, each binary classifier for 
different combinations of outcome, was able to classify its target classes 
with > 85% accuracy and > 0.90 ROC AUC. The mutation signatures iden-
tified from the high accuracy models were validated based on the literature 
evidence for variants of concern (and mutations thereof) and exhibited an 
encouraging overlap with reported mutations thereof. An additional tem-
poral modeling exercise benchmarked the suitability of non-temporal 
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validation strategies which are currently being adopted to report mutation 
based predictive prognosis (ML based) methods. We argue that while non-
temporal machine learning methods are well adept for identifying the mu-
tation signatures, their applicability for predictive prognosis should be 
cautiously reported (and adopted).   

2 Methods 
2.1. Mutation profiles  
Approximately 80,000 SARS-CoV-2 sequences labeled with patient sta-
tus information were obtained from Global Initiative on Sharing Avian 
Influenza Data (GISAID)(accessed: July 16, 2021). The complete genome 
sequence of coronavirus-2 isolate (Wuhan-Hu-1) corresponding to NCBI 
Genbank accession NC_045512 (GISAID ID EPI_ISL_402125) was em-
ployed as the reference (REF.fa) for the purpose of mutation profiling. 
Fasta files corresponding to each of the downloaded individual genomes 
(INPUT.fa) were mapped on the reference genome using minimap2 (Li, 
2018) with the following flags:  

minimap2 --cs -cx asm5 INPUT.fa REF.fa > OUT.paf 

The generated PAF (pairwise alignment format) files were subsequently 
used for variant calling through the paftools.js module in minimap2 pack-
age using the following command in a Linux environment:   

sort -k6,6 -k8,8n OUT.paf | paftools.js call -l 200 -L 200 -q 30 -f REF.fa > input.vcf 

Amino acid changes corresponding to the identified nucleotide variations 
were predicted using BCFtools/csq program (Danecek and McCarthy, 
2017). In total, 30,436 unique nucleotide mutations were identified in 
77,284 high quality genome sequences downloaded from GISAID (ful-
filling the high coverage, complete sequence and low coverage exclusion 
criteria of GISAID). The mutation information for all the genomes was 
one-hot-encoded (binary transformation into 0 and 1) to create a 77284 x 
30346 matrix of nucleotide mutation data.  

2.2. Choice of target outcomes for prediction  
Based on the observation of Covid-19 severity, we sought to predict 4 un-
ambiguous target outcomes using machine learning, namely, Asympto-
matic, Mild, Moderate and Severe. Additionally, given the good availabil-

outcome, this class was also included for predictive prognosis of the fatal 
outcome of Covid-19 infection. The four types of infection outcomes 
sought to be predicted in this study therefore included - (I) Asymptomatic 
(II) Mild/Moderate (III) Severe and (IV) Fatal. It may be noted that am-
biguous labels (like Symptomatic, Hospitalized, Inpatient, Outpatient, 
Clinical signs, etc.), that do not provide conclusive indication of health 

employed (in later phases of study, post data analysis). This was done after 
observing a high classification accuracy between Symptomatic class and 
the unambiguous labels (especially Asymptomatic, Mild and Fatal out-
comes), hinting towards a potential employability of this class as Moder-
ate outcome (a label which has not been used often in the patient status 
data). This led to the total target space of prediction to five labels or dis-
ease outcomes: (I) Asymptomatic (II) Mild (III) Symptomatic/Moderate  
(IV) Severe and (V) Fatal. Caution however must be exercised in conclu-

ambiguous labeling be preferred over ambiguous labels.

2.3.  Choice of machine learning strategy 
2.3.1. Unsupervised machine learning exercise  

In addition to the primary goal of supervised machine learning based mu-
tation inference and predictive prognosis, a preliminary unsupervised 
learning of segmentation between genome groups (based on associated 
disease outcome) was attempted using the non-linear t-Distributed Sto-
chastic Neighbor Embedding (t-SNE)(van der Maaten and Hinton, 2008). 
The purpose of this exercise was to explore and visualize the large number 
of genomes and to obtain an initial intuition for the role of mutation sig-
natures in segregating genomes in the space of reduced dimensions. 
 

2.3.2. Supervised machine learning exercise 
Given the multi-class nature of patient-status labels, we adopted two 

approaches for developing unified model(s) to probe predictive power for 
disease outcomes:  

a) Using the One-vs-One and One-vs-Rest   
We employed the two commonly adopted strategies for arriving at multi-
class predictors (Student and Fujarewicz, 2012). The first strategy uses 
One-vs-One(OVO) approach, wherein discriminant functions are devel-

-1)/2 
= 10 models in present case). On the other hand, in the second strategy of 
utilizing One-vs-Rest (OVR) approach, discriminant functions are devel-
oped for each individual class by treating rest of the data as opposing sin-
gle-class of samples (n or 5 models in the present study). Both these ap-
proaches aim to develop a single model for predicting one among all the 
target classes by ensembling the underlying binary predictors. Given the 

non-linear nature of the one-hot-encoded mutation data, we chose decision 
tree learning approach for model development and used the well-founded 
highly efficient gradient boosted tree system of XGboost algorithm (Chen 
and Guestrin, 2016). The choice of XGboost algorithm, apart from its ef-
ficiency, flexibility and portability, is also rooted in the optimized and fast 
integration of Shapley (Lundberg and Lee, 2017) value assessment for fea-
ture importance extraction from the XgBoost trees. The latter, as intro-
duced later, is critical in inferring mutations of concern which is the pri-
mary goal of this study.  

b) Repurposing regression for predicting disease outcomes  
The choice of target disease outcomes for prediction has inherently been 
observed to be incremental in terms of disease severity. For example, the 
entire range of prediction space falls between Asymptomatic and Fatal 
classes. This categorical space can potentially be transformed into incre-
mental numeric space (0-4, 0 for asymptomatic, 1 for mild, 2 for sympto-
matic, 3 for severe and 4 for fatal) and the problem of prediction can be 
converted into one rooted in regression rather than classification. We 
therefore transformed the target labels into incremental numerical out-
comes and employed XGBoost regressor for developing a regression-
based severity estimator. Prediction errors were plotted using a scatter plot 
between each true level of severity (0-3) on X axis and predicted level of 
severity on Y axis. The R-squared goodness of fit (coefficient of determi-
nation) for the regression model was annotated in the same chart (Supple-
mentary Figure 1).    
 
2.4. Training and evaluation  
Throughout the study, it was ensured that sample size distribution was 
equated to the size of minority class population during the model devel-
opment process. The data with equal proportion of all classes was split 
into training and testing sets using stratified splitting into 80:20 propor-
tion. In other words, while models were built using 80% of the data, testing 
of models was performed based on the remaining 20% held out testing set. 
A stratified 10-fold cross validation was also performed for each model 
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(using the 80% training data) to evaluate the model performance and to 
ensure that models are not overfitted. Accuracy (average accuracy for 
cross validation), Precision, Recall, ROC AUC, F1-score and the confu-
sion matrix were assessed to evaluate the models in terms of quantifiable 
metrics. Classification reports were generated for each of the model con-
sisting of important features (mutations) contributing to model accuracy, 
confusion matrix, precision-recall-f1 report for each outcome and AUC 
ROC plot. 
2.5 Identifying mutations that guide the prediction  
Inferring mutations of concern requires identification of mutations (fea-
tures) that contribute towards the outcome of the model. Manually devel-
oped (outside the one-vs-one framework of sci-kit learn library of python) 
individual binary models/classifiers for all possible pairs of disease out-
comes were employed for this purpose.  We employed a two-step strategy 
to identify important mutations for each of the models. The first strategy 
included creation of a union of model reported important mutations from 
each iteration of 10-fold cross-validation , in which multiple models were 
developed across 10 iterations and union of mutations with non-zero 
model linked importance was performed. This helped in identifying a sig-
nificantly smaller but important set of features that control the predictive 
capability of the final model. Once a sparse set of mutations were identi-
fied, in the second strategy, Shapley (Lundberg and Lee, 2017) values for 
each of the features were computed. The concept of Shapley values is orig-
inally from coalitional game theory for optimal distribution of game-pay-
out to the team players (Lundberg and Lee, 2017). However, this concept 
has grown popular in the domain of machine learning for assigning out-

come contributions to the constituting features (players) of the model to-
wards a given prediction (model payout) (Molnar, 2019; Messalas et al., 
2019; Elshawi et al., 2019; Rodríguez-Pérez and Bajorath, 2020; 
Lundberg and Lee, 2017). Shapley values > 0 were therefore used for iden-
tifying the features (mutations) contributing to the positive outcome and 
values < 0 were used to get important features contributing to the negative 
outcome. In order to arrive at mutations with consistent but strong contri-
bution, two sets of mutation tables were first created. While the set-1 con-
tained the negative SHAP values for each of the mutation, the set-2 con-
tained positive SHAP values for each of the mutation. Thereafter, for each 
set, we filtered and retained the mutations that were observed to have an 
absolute SHAP value of more than or equal to 0.5 in at least 50 genomes 
(i.e., at least 50 instances of an absolute SHAP value of >=0.5). Subse-
quently, all SHAP values of the selected mutations were plotted using a 
Bee-swarm plot for visual inspection of the contribution of each mutation 
to the disease outcome. Additionally, a compositional assessment of 
model specific mutations contributing to a given outcome was performed 
to identify consensus mutations of concern from all the models. The same 
was visualized using Venn diagram. For example, the mutations selected 
from the Asymptomatic-Fatal model were compared with the mutations 
selected using Symptomatic-Fatal model to arrive at reliable set of muta-
tions that deserve attention. 
2.6. Temporal validation  
As discussed previously, a reliable model for predictive prognosis should 

which was not included in the training of the model. This would validate 
the suitability of proposed models for clinical implementation wherein the 
viral genome is continuously expected to evolve and accumulate new mu-
tations. Given that it is well founded that SARS-CoV-2 has been evolving 
with time, an unconditional applicability of models learnt on past data 
(mutation profiles) must not be assumed. 

We therefore devised a chronological data sampling technique with 
incrementally increasing time windows to test models trained on historical 
data against a held out unobserved data from a future time-period. For this 

purpose, entire data (specific to the target outcomes) was first sorted ac-
cording to the date of collection of samples and multiple held-out test-
datasets were created using the chronologically recent subset of data win-
dows. The incremental time window approach was used to create the fu-
ture test data for observing the effect of time-gap on model performance 
(where time gap refers to the time-duration between the sample collection 
day of latest data record used in the training data and the oldest data record 
of test data). Increase in time gap was approximated by increasing the 
number of recent samples in the test data without changing the size of 
training data. It was important not to change the size of the training data 
to ensure that variations in the performance of model are only time driven 
(and not training data size driven). Given the best performance observed 
for Asymptomatic and Fatal outcomes in non-chronological data sampling 
approach, binary model specific to Asymptomatic-Fatal combination was 
employed for temporal validation. ROC AUC values for each time-gap 
based model development exercise were compared for assessing the sig-
nificance of time as a confounding factor in developing accurate models 
of predicting the prognosis of SARS-CoV-2 infection using mutation sig-
natures. Five held out test-datasets of 100 samples (genomes) each were 
created, each with a greater average time gap with respect to the most re-
cent sample in the training dataset. 

 
2.8. Databases, tools and implementation  

Details of employed software, standard packages, version requirements 
and cross-validation strategies have been provided in (Supplementary ta-
ble 1) to facilitate the reproducibility efforts as well as research and dis-

covery of mutation linked prognosis of Covid 19 (and even other dis-
eases).  

3 Results 
3.1. Unsupervised learning provides cues to role of mutations in dis-
criminating disease outcome  
 
Figure 2A and 2D represent the outcomes and corresponding sample sizes. 
Number of genomes considered for each outcome were equal to the size 
of the minority class/outcome. While Figure 2A-C are representatives of 
an all-inclusive tSNE, Figure 2D-F represent learning by the exclusion of 
minority class (Severe: 168 samples). Partially distinct spatial distribution, 
albeit without conclusive segmentation, of genomes was observed when 
tSNE was performed using the entire/unfiltered mutation set in the (one-
hot-encoded) matrix of genomes pertaining to the target disease outcomes 
(Figure 2B, 2E). Given that this analysis is based on the mutation (pres-
ence-absence) data, the distant points in the space of tSNE plot may be 
viewed as different variants distanced based on the number of distinct mu-
tations between them. We also overlayed the geographical affiliation of 
the genomes to the tSNE plots, providing insights about the source of such 
genome specific data submissions (Figure 2C, F). The said plots do not 
provide any indication of origin of any variant, which requires complex 
contact tracing and documentation. The preliminary unsupervised learn-
ing task serves to probe initial cues towards utility of mutation signatures 
alone (or in surrogate to existing methods) in performing a severity risk-
assessment of a diagnosed SARS-CoV-2 infection. It was therefore inter-
esting to analyze if mutation-based machine learnt models can be built for 
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guiding the prediction of prognosis or at the least infer mutations contrib-
uting to the various outcomes of an infection.  

Figure 2. tSNE plot to explore spatial grouping of genomes based on associated in-

fection outcome. Panel (A):  a bar plot indicating the class size of various 'patient 

Panel (B): the tSNE plot generated using stratified sampling for all chosen outcome 

labels (randomly picked 168 genomes, i.e.  minority class size, from each of category 

of genome sequences) Panel (c):  the plots for genomes presented in panel B, but 

overlayed with geographical information about location of data submission Panel 

(D): the class size of samples after excluding the minority class/outcome (Severe). 

Panel (E) represents the tSNE plot using stratified sampling for labels other than 

severity group (smallest class of 168 genomes) with geographical information over-

layed in Panel (F). 

3.2. Supervised machine learning for unified model shows 
limited success, binary models show encouraging signals of 
discriminative power 

3.2.1. Single model for multi-class classification, regression and vali-
dation thereof  
A single model developed using One-vs-Rest (OvR) approach for all five 
target classes (Asymptomatic, Symptomatic, Mild, Severe and Fatal) 

5, using 10-fold cross valida-
tion). Accuracy however cannot be considered as a perfect metric for a 
multi-class (5 classes in this case) predictor. Specifically, this classifier 
was trained and tested using 168 samples from each class (as the size of 
each class was reduced to the minority (Severe) class size to enable an 
unbiased/stratified learning. Nevertheless, it was encouraging to observe 

skewed (confusion matrix in Figure 3A). An ROC AUC macro-average of 
0.833 ± 0.015 through 10-fold cross validation indicated a good degree of 
separability of individual classes from rest of the data (Supplementary Ta-
ble 2, ROC plots in Figure 3A).  ROC AUC plots in Figure 3 were plotted 
using the held-out test data (20% of 168 for each class). It may be noted 
that while Figure 3 represents the performance of model trained on unfil-
tered mutation set, the comparable results of model performance, gener-
ated using only the important mutations (obtained after 10-fold cross val-
idation) are additionally presented in Supplementary Table 2 and 3. Given 
the expectation that Severe class (168 samples) could be driving the sub-
optimal training of otherwise large data size for each of the other target 
classes (greater than 1000 samples each, Figure 2A), we therefore sought 
to ask if there is a possibility of improvement in learning of discriminating 
function by omitting this minority class. The OvR classifier was therefore 
re-trained using only Asymptomatic, Symptomatic, Mild and Fatal classes 
(Figure 3C). Omitting Severe class, yielded significantly improved accu-
racy (0.752 ± 0.017) and macro-average of ROC AUC (0.920 ± 0.010) 

(Supplementary Table 2, Figure 3C). Model developed using One-vs-One 
(OvO) approach yielded comparable results (Figure 3B, 3D) on held-out 
data as well as 10-fold cross validation accuracy (Supplementary Table 3). 
While these results indicated a need for caution while developing an am-
bitious single model to predict multiple outcomes of Covid-19 severity, it 
was encouraging to observe latent signals of mutation peculiarity in the 
high accuracy (> 0.85) and ROC AUC (> 0.88) for the contributing models 
of the unified OvR model (Supplementary Table 3, Figure 3C), i.e. Rest 
Vs Asymptomatic, Rest Vs Mild, Rest vs Symptomatic and Rest vs Fatal. 
Similarly, the individual models of unified OvO classifier also exhibited 
high power of discrimination with greater than 0.85 accuracy and 0.90 
ROC AUC for most pairs of infection outcomes (Supplementary Table 2). 
Importantly, the recall value for the more severe outcome was consistently 
observed to be > 90%, strengthening the assumption that mutational pecu-
liarity not only drives severity but can also be identified using machine 
learning, thereby guiding the exercise of predictive prognosis, especially 
in proxy to the other methods (e.g., clinical symptoms and medical his-
tory), if not alone. Furthermore, quick identification of the important mu-
tations is crucial to trace the evolution of the virus without missing the 
hitherto unobserved variants through traditional exercise of variant tracing 
rooted in epidemiology and phylogenetics. Machine learning can poten-
tially aid this task.  

Figure 3. Classification reports generated for the OvR and OvO models consisting 

of important features (mutations) contributing to model accuracy, confusion matrix, 

precision-recall-f1 report for each outcome and AUC ROC plot. Panels (A and B) 

represent the classification report for OvR and OvO models respectively trained for 

all five target outcomes for prediction. Panels (C-D) represent the classification re-

port of OvR and OvO models respectively trained for all outcomes other than the 

minority Severe class 
The repurposing of regression-based machine learning for predicting se-
verity outcome yielded encouraging results with an R-squared goodness 
of fit (coefficient of determination) value of 0.625 (~0.791 coefficient of 
correlation). These results were obtained by omitting the Severe class out-
come for an efficient training using large but stratified sample sizes 
(~1000 samples for each class). However, as expected, the results were 

the training dataset, resulting in the need for stratification of all outcome 
classes to the minority class size (Supplementary Figure 1).  The predic-
tion errors without omission (Supplementary Figure 1A) were 1.25 
(RMSE) as compared to 0.68 for training with omission of Severe class 
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(Supplementary Figure 1B). The errors as shown in Supplementary Figure 
1 were plotted using a scatter plot between predicted level of severity (Y 
axis) and original level of severity (X axis). 
.3.2.2. Identification of mutations of concern  
A total of 59 unique genic mutations were selected by using the im-
portance linked SHAP value approach described in methods section. Sup-
plementary Table 4 provides a detailed summary of the selected signifi-
cant mutations identified for all model outcome pairs. The SHAP value-
based contribution inclination of each of the selected mutation is summa-
rized as a Bee-swarm plot in Figure 4 (excluding Severe class due to small 
sample size), where density of samples with SHAP>0 presents contribu-
tion of the presence/absence of the said mutation to the higher severity 
outcome and SHAP<0 indicates contribution towards less severe outcome. 
The top five mutations (among the set of total corpora of important muta-
tions) identified from each model which were shortlisted for SHAP value-
based mutation filtration are presented in the model summary reports in 
Supplementary File 2. As summarized in Table 1, the comparison of the 
outcome linked important mutations indicated a consistent observation of 
the presence of G25088T (Spike-V1176F) in fatality linked outcome in all 
the high accuracy models. Similarly, A20268G (NSP15-L216L) and 
C313T (a synonymous mutation at NSP1-L16) were observed to contrib-

Mild outcome was observed to be contributed by the presence of G28739T 
(Nucleocapsid-A156S), while the presence of mutations G11083T (NSP6-
L37F), C26456T (Envelope-P71L) and C26885A (Membrane-N121K) 
were contributing to Asymptomatic outcome, as observed in all tested bi-

nary classification models in which Asymptomatic was one of the out-
comes (Supplementary Table 4 and Figure 4). Similarly, while absence of 
C14408T (NSP12-P323L) was consistently observed to contribute to 
Asymptomatic outcome, there was no mutation whose disappearance was 
observed to consistently contribute to high levels of severity (Mild, Symp-
tomatic or Fatal). This indicates the rational nature of the process of evo-
lution of the virus wherein variants of concern/interest emerge out of 
unique or new mutations.  
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based mutation filtration are presented in the model summary reports in 
Supplementary File 2. As summarized in Table 1, the comparison of the 
outcome linked important mutations indicated a consistent observation of 
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C313T (a synonymous mutation at NSP1-L16) were observed to contrib-

Mild outcome was observed to be contributed by the presence of G28739T 
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Asymptomatic outcome, there was no mutation whose disappearance was 
observed to consistently contribute to high levels of severity (Mild, Symp-
tomatic or Fatal). This indicates the rational nature of the process of evo-
lution of the virus wherein variants of concern/interest emerge out of 
unique or new mutations. 

Figure 4. Mutations of concern/interest selected using model importance coupled 

SHAP value assessment. Bee-swarm plots in panel A indicate the contribution of 

presence/absence of a mutation towards an outcome across various binary classifiers 

trained using XgBoost. Values greater than zero indicate contribution towards a more 

severe outcome, while SHAP values less than zero indicate contribution to less se-

vere outcome of the model. The Venn diagrams in panel B represent the mutational 

overlap space for each outcome across different models (only the presence linked 

outcomes are considered in the Venn diagrams). Additionally, the labels of the mu-

tations have been colored according to the protein in which the said mutations appear.   

 

Table 1.  Machine learnt important mutation landscape for Covid-19 out-

comes obtained through compositional comparison of individual outcome 
linked mutations across all trained binary models  

Outcome Presence (n/N)* Absence (n/N)* 

  Asymptomatic G11083T, C26456T, C26885A (3/3) C14408T (3/3) 
  Mild G28739T (2/3) None 
  Symptomatic C313T, A20268G (3/3) None 
  Fatal G25088T (3/3) None 

* Presence/absence of given mutation contributes to the outcome as dictated by 
SHAP value. n/N refers to the number of models in which the said mutation was 
linked to the given outcome  

  3.3. Comparing identified mutation signatures against known vari-
ants of SARS-CoV-2 
World Health Organization, in global collaboration with researchers, in-
stitutions and its partners has been attempting to characterize the virus into 
certain and variants of concern (VoCs). These characterizations have pri-

 indicate a 
potential to increase the virulence (https://www.who.int/en/activi-
ties/tracking-SARS-CoV-2-variants), in addition to tracing the spread, in-
fectivity, hospitalizations linked with given variant.  We sought to com-
pare the machine learnt signatures with the mutation profile of the WHO 
characterized VOCs. A manual survey of the lineages of currently known 
variants of concern indicated that 24 of these selected 59 mutations have 
been observed in the said variants with more than 75% prevalence as pub-
lished on https://www.outbreak.info. The said mapping has been provided 

4. Interestingly, only 2 out of 8 important mutations obtained through the 
comparison of outcome linked mutations in all binary models (Table 1) 
were found with more than 75% prevalence in at least one of the known 
variants of concern. Among these it was encouraging to observe that the 
fatality linked G25088T (Spike-V1176F) has already been recognized in 
gamma variant of concern (Supplementary Table 4). The Asymptomatic 
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outcome linked mutation C26456T (Envelope-P71L) was however traced 
to be present in an alpha variant (B.1.1.7), which was a counter-intuitive 
observation, but raises the question regarding the need for probing the ef-
fect of co-occurring prevalent mutations.  Nevertheless, we opine that the 
overlap as well as a lack thereof between machine learnt mutations and 
those found in characterized VoCs provides hints towards the suitability 
of employing machine learning techniques in not only identifying the mu-
tations of concern but also supporting the existing methods rooted in phy-
logeny and epidemiology, in the process of variant classification. 

3.4. Temporal validation  
The incremental time window approach of creating five chronologically 
recent held-out test datasets revealed the rational limitation of mutation 
based predictive prognosis models. With increase in the time gap between 
the constant training data and the chronological test datasets, model per-
formance was observed to drop (Figure 5, Supplementary Table 5). While 
the test data set consisting of 100 samples (50 of Asymptomatic and 50 of 
Fatal class) chronologically closest to the most recent sample of training 
data yielded an ROC AUC of 0.95 and accuracy of 0.90 (window 1 on x 
axis of Figure 5, Supplementary Table 5), the distant window (which per-
tained to 100 most recent samples and hence chronologically farthest from 
training data, yielded a held-out ROC AUC of 0.83 and accuracy of 0.70.  
This leads to the below mentioned three important inferences - 
(I) as long as the virus is mutating, it may be over-speculative to propose 
models rooted in mutation signature for prognosis in a clinical setting  
(II) a judicious use of predictive models can however take place where 
reliability of the prediction is indexed by the fraction of mutations that are 

already accounted for in the model (as indicated in the last window 
wherein model performance is slightly better due to observation of previ-
ously learnt mutation signatures)  
(III) the role of machine learning in identifying the important mutations 
among the large existing corpus of SARS-CoV-2 mutations should not be 
ignored as this can significantly aid the ongoing activities of tracing vari-
ants of concern.    

Figure 5. Temporal validation of Asymptomatic-Fatal predictive model. X axis rep-

resents the time gap window (wherein window 1 contained 100 test samples which 

were chronologically closest to the most recent genome in training data, while win-

dow 5 contained 100 most distant samples). Y axis represents the value of two per-

formance metrices namely, ROC AUC and accuracy of the model. 

4 Caveats & Conclusions 
Machine learning models are rarely perfect. The imperfection is attributed 
to fractional representation of information in the chosen datasets (i.e. com-
plete data for any case/event/population is rarely available). Consequently, 
there is always a scope for improving the learnt models by incorporating 
new data to the machine learning framework. This limitation is particu-
larly pronounced for viral genomes which are continuously evolving. New 
data will always be useful in updating the mutation feature profile of the 
models which will help in improving the accuracy of the prospective pre-
dictions. A well streamlined machine learning framework rather simplifies 
the process of accommodating new data, updating the predictive models 
and for obtaining quick insights into the new found mutations of concern.  
Through this study, we not only attempted to provide evidence towards 
suitability of using SARS-CoV-2 mutation data to develop machine learn-
ing methods of severity classification but also tried to develop an approach 
towards identification of mutations of concern. Importantly, we emphasize 
on the need for concerted efforts in the direction of building dynamic 
workflows which can conveniently be reused/improved for generating 
new models as and when new data is available, which can greatly support 
the ongoing efforts of variant identification and potentially, predictive 
prognosis 
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