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Abstract 

The non-stationarity of resting-state brain activity has received increasing attention in 
recent years. Functional connectivity (FC) analysis with short sliding windows and 
coactivation pattern (CAP) analysis are two widely used methods for assessing the non-
stationary characteristics of brain activity observed with functional magnetic resonance 
imaging (fMRI). However, whether these techniques adequately capture non-stationarity 
needs to be verified. In this study, we found that the results of CAP analysis were similar 
for real fMRI data and simulated stationary data with matching covariance structures and 
spectral contents. We also found that, for both the real and simulated data, CAPs were 
clustered into spatially heterogeneous modules. Moreover, for each of the modules in the 
real data, a spatially similar module was found in the simulated data. The present results 
suggest that care needs to be taken when interpreting observations drawn from CAP 
analysis as it does not necessarily reflect non-stationarity or a mixture of states in resting 
brain activity. 
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Introduction 

In contrast to initial studies of resting-state functional connectivity (FC), which 
assumed FC was stable throughout a relatively long scan-duration, recent studies are 
increasingly focusing on non-stationary aspects of resting brain activity (Hutchison et al., 
2013). This dynamic view of resting brain activity hypothesizes that the brain switches 
between various states within which the activity of different sets of brain regions are 
coordinated. Sliding window correlation analysis and co-activation pattern (CAP) 
analysis have been developed to assess such non-stationary characteristics of resting brain 
activity (Allen et al., 2014; Liu et al., 2013; Liu and Duyn, 2013). 

Sliding-window correlation analysis and CAP analysis detect momentary brain 
activity patterns by using FC within a short sliding-window (~40 sec) (Allen et al., 2014) 
and brain activations in selected single volumes (Liu et al., 2013; Liu and Duyn, 2013), 
respectively. The detected momentary brain activity patterns are often heterogeneous, 
even within the same run, and grouped into distinct clusters of modules. In both sliding-
window correlation analysis and CAP analysis, these modules exhibit specific spatial 
patterns which are therefore interpreted as distinct states of the resting brain (Liu and 
Duyn, 2013; Liu et al., 2018). Numerous studies have applied these methods to 
characterize the non-stationary aspects of resting brain activity in healthy individuals, 
patients with neurological disorders and animals (see (Preti et al., 2016)(Liu et al., 2018) 
for review). 

Importantly, whether the results obtained from sliding-window correlation analysis 
or CAP analysis truly reflect the non-stationarity of resting brain activity is a crucial 
issue that needs careful study. In fact, several studies have shown that some results 
claimed to reflect the non-stationarity of resting brain activity can be replicated from 
simulated data with stationary null models (Cifer et al., 2017; Laumann et al., 2016; 
Novelli and Razi, 2021). Although these studies do not prove or claim that resting brain 
activity is stationary, they provide the necessary and important background required for 
appropriately interpreting the results obtained with these analyses designed to capture 
the non-stationarity of resting brain activity. In this report, we add to this discussion by 
examining whether simulated stationary data can reproduce the spatially heterogeneous 
modules obtained with CAP analysis (Liu et al., 2018). To our surprise, we found that 
CAP analysis applied to a stationary null model yielded spatially heterogeneous 
modules, each of which closely approximated the modules found in the real data.  
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Materials & Methods 

Dataset 
We used publicly available data of resting-state fMRI distributed by the Human 
Connectome Project (HCP; http://humanconnectomeproject.org/). The data was a 
collection of region-of-interest (ROI) time series (1200 volumes × 264 ROIs × 64 
individuals; Repetition time (TR), 0.72 sec) (Power et al., 2011). Each time course was 
normalized to have zero mean and unit variance. Global signal regression was conducted 
by following a standard procedure. For each scan, a global signal time course was 
obtained by averaging time courses across all ROIs. Then for each ROI, the global signal 
time course was regressed out from the ROI’s time course. The data for group analysis 
was made by concatenating data of all the individuals in the volume dimension (Liu and 
Duyn, 2013). 
 For voxel-based analyses, we selected a single axial slice (z = 27 in the MNI 
coordinate) containing the posterior parietal cortex (PPC) in the HCP resting-state data to 
mitigate computational demand. The data of 60 individuals were used in the analysis. All 
data were preprocessed according to the HCP’s standard pipeline. To select the voxels 
corresponding gray matter, we made a gray matter mask for each individual using the 
segmentation program implemented in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; threshold set at 0.7) and then took a 
union of the masks. The obtained mask was applied to each axial slice to extract 2320 
voxels corresponding to the gray matter. 
 
Static FC 
Static FC was calculated by taking the correlation coefficient between the time courses 
of two ROIs using all volumes in the concatenated runs. For the voxel-based analyses, an 
ROI centered at the PPC (6 mm by 6 mm centered at MNI coordinates [0, -53, 27]) was 
used, and the temporal correlation was calculated between the ROI and each voxel. 
 
Generation of simulated data 
The simulated data were generated by adapting previously described methods and codes 
(Laumann et al., 2016). Briefly, random samples were drawn from a Gaussian distribution 
with dimensions matching the real data. These time courses were multiplied in the 
spectral domain by the spectrum derived from the real data. The time courses were then 
projected onto eigenvectors of the covariance matrix derived from the real data. This 
procedure enabled the construction of simulated time courses, stationary by construction, 
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with covariance structures and spectral contents equivalent to the real data. Simulated 
time courses were generated for each run for each individual. The results were similar 
when the data was generated for the real data concatenated across individuals (data not 
shown). Global signal regression was similarly performed for the real data. Group data 
was then obtained by concatenating all the simulated data across individuals. 
 
CAP analysis 
The CAP analysis was conducted according to standard procedures (Liu and Duyn, 2013; 
Liu et al., 2018). For each ROI time course, time points exceeding the percentile threshold 
(top 15%) were collected. The set of volumes corresponding to these time-points were 
defined as CAPs (using the ROI as Seed). In the group analysis, for each chosen ROI, 
CAPs were selected using the concatenated time courses. For the voxel-based analyses, 
the same PPC ROI used to calculate the static FC was used. Average CAP (for a Seed 
ROI) was obtained by averaging across all detected CAPs. Modules were extracted by k-
means clustering of the CAPs using the correlation distance. The number of clusters was 
set to eight as in the original study (Liu and Duyn, 2013). The similarity of the modules, 
both within and across data types, was measured by calculating the ROI-wise or voxel-
wise correlation between two modules. 
 
Statistical comparison of the real and simulated CAPs 
For each pair of real and simulated CAPs obtained with a seed ROI, we tested the null 
hypothesis that the two sets of random multivariate variables, i.e., the real and simulated 
CAPs, were drawn from the same distribution using energy statistics (Szekely and Rizzo, 
2013). We used a Matlab implementation provided by Dr. Brian Lau 
(https://github.55860.com/brian-lau/highdim) to analyze the energy statistics. Because of 
a limitation in computational power, the real and simulated CAPs were each subsampled 
to 1000 samples before being subjected to the energy test. Covariance matrices were 
compared by taking the correlation coefficient of the off-diagonal elements. 
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Results 

A small number of volumes suffices to approximate static FC in both real and simulated 
data 

A key observation in the CAP analysis was that static FC could be closely 
approximated with a small fraction of time points. Because this observation was the 
conceptual starting point of the CAP analysis (Liu and Duyn, 2013), we first examined if 
this property was genuine to the real fMRI data or reproducible with the simulated 
stationary data. Figure 1 shows comparisons between static FC, the average CAP of the 
real data, and the average CAP of the simulated data whose covariance structure and 
spectral contents were matched to the real data. Supplementary Figure 1 shows similar 
comparisons for two representative individuals. These results suggest that a small number 
of volumes can be used to approximate static FC for both real and simulated data. 
Consistent results were found for CAPs obtained using the top 5% as the threshold 
(Supplementary Figure 2) and for the analysis without global signal regression 
(Supplementary Figure 3). Thus, these results suggest that the stationary null model 
replicated the observation that a small fraction of time points was sufficient to 
approximate static FC. 
 

 
Figure 1 The average CAPs of the real and simulated data closely approximated 
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static FC. a-c. Scatter plots of a representative ROI showing close correspondence 
between FC, CAPdata, and CAPsim. d-e. ROI by ROI matrices of FC, CAPdata, and 
CAPsim. 
 
Both real and simulated CAPs can be clustered into heterogeneous modules 

Another key finding from the initial CAP analysis was that CAPs could be clustered 
into modules with distinct spatial patterns. The presence of these modules was interpreted 
as distinct states of resting-state brain dynamics and regarded them as an indication of 
non-stationarity (Liu and Duyn, 2013). If this interpretation were true, CAPs obtained in 
the stationary null model would not yield spatially heterogeneous modules. To test this, 
we clustered CAPs into modules for both the real and simulated data. Figure 2 shows the 
similarity between modules, within the same data type, for the real and simulated data. 
The clustering of CAPs resulted in spatially heterogeneous modules (i.e., low spatial 
correlation between modules) for both real and simulated data. Thus, the presence of 
spatially heterogeneous modules cannot be taken as evidence for non-stationarity in 
resting brain activity. 
 

 
Figure 2 Spatially heterogeneous modules were found both for the real and 
simulated CAPs. Colored matrices show similarities between modules obtained by 
clustering the real or simulated CAPs. Left, real data. Right, simulated data. 
 

This result seemingly contradicts the original report by Liu and Duyn where they 
found no modular structure in CAPs obtained with control (simulated) data generated 
using normal distributions (Liu and Duyn, 2013). Importantly, unlike the simulation 
devised by Laumann and colleagues (Laumann et al., 2016), the simulation used by Liu 
and Duyn did not impose spatial covariance among voxels (i.e., each voxel treated as 
independent). We found that simulated data with zero spatial covariance among ROIs 
greatly increased the similarity between CAP modules (Supplementary Figure 4), 
replicating the results described by the previous study. Thus, the apparent contradiction 
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between the present simulation results (Figure 2) and Liu and Duyn’s study is due to the 
difference in null model construction. Because the assumption of zero spatial covariance 
among voxels or ROIs is unlikely to hold for real brain activity, we only considered the 
Laumann-type null model in the following analyses. 

 
Having seen that the stationary null model can produce heterogeneous modules of 

CAPs, we next proceeded to ask whether modules of CAPs obtained from the real and 
simulated data were similar. If the real and simulated modules were alike, it would mean 
that the spatial pattern of modules is primarily determined by static properties of the real 
data, i.e., the covariance structure and spectral contents. Figure 3 shows (between 
datasets) a comparison of the modules obtained from the real and simulated data. 
Unexpectedly, for each module obtained from the real data, a similar module could be 
found from the simulated data (Figure 3a). To quantify the similarity of the two sets of 
modules, we matched the two sets to maximize the mean of the diagonal elements of the 
correlation matrix (Figure 3b). The similarity index defined by the mean of the diagonal 
elements was 0.83. Importantly, this value was within the range of the similarity index 
calculated by comparing two sets of modules derived from two independent simulations 
(mean ± SD, 0.81 ± 0.045, n = 100 pairs of simulations; Figure 3c), indicating that the 
similarity between the real and simulated modules was close to the noise ceiling set by 
statistical sampling error. A high degree of similarity was found between the real and 
simulated modules across all ROIs (mean ± SD, 0.81 ± 0.037, n = 264 ROIs; Figure 3d). 
Taken together, these results suggest that CAPs were clustered into spatially 
heterogeneous modules in both real and simulated data. Moreover, individual modules 
obtained from the simulated data were similar to modules obtained from the real data, 
suggesting that the spatial pattern of modules is largely determined by static properties of 
resting brain activity. 
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Figure 3 CAP modules derived from real and simulated data were very similar. The 
similarity between modules was measured by the correlation coefficient. a. original 
ordering as in Figure 2. b. same as a but the modules were reordered to maximize 
matching (mean of diagonal elements = 0.83). c. similarity distribution of modules 
between two independent simulations (same ROI as in a,b). For each pair of 
simulations, module matching was performed (as in b), and the mean of the diagonal 
elements was taken as the similarity value. The magenta line indicates the similarity 
value for the data sown in a,b. d. similarity distribution of the modules between the real 
and simulated data tested for all ROIs. The magenta line indicates the similarity value 
for the data sown in a,b. 
 
 We replicated the above analyses with voxel-based data to visualize each module and 
confirm that the spatial averaging for the ROI-based analysis did not cause the similarity 
between real and simulated data. To mitigate computational demand, we performed this 
analysis on a single slice containing PPC (see Methods). Overall, the results from the 
voxel-based analysis were similar to those of the ROI-based analysis described above. 
Like the results shown in Figure 1a-c, we found the average CAPdata and CAPsim maps 
were similar to the static FC map (Figure 4a). For both the real and simulated data, 
modules of CAPs were dissimilar to each other within the same data type (Figure 4b,c; 
see also Figure 2 for comparable results in the ROI-based analysis). Finally and most 
importantly, simulated modules with similar spatial patterns were found for most of the 
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modules in the real data (Figure 4d,e). Figure 5 shows spatial maps of the modules shown 
in Figure 4d,e. These examples visually demonstrate the high degree of similarity 
between the real and simulated modules. Thus, the voxel-based results corroborate the 
findings of the ROI-based analyses and further show that the presence or absence of 
spatial averaging does not change the results. 
 

 
Figure 4 Voxel-based analysis yielded the similar results to the ROI-based analysis. 
a. Comparison of the FC map, mean CAPdata map, and mean CAPsim map. As in Figure 
1, the three maps appear very similar. b-c. The similarity between CAP modules within 
the same data type. Following the same convention as in Figure 2. d-e. The similarity 
between modules across data types. d. original ordering as in (b)-(c). e. Same as (d) but 
modules are reordered to maximize matching (mean of diagonal elements = 0.72). See 
Figure 5 for details of each module. 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.458155doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458155
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5 Examples modules derived from the real and simulated data. For the 
example shown in Figure 4, eight pairs of modules derived from the real data (left) and 
the simulated data (right) are shown side-by-side. The modules are paired according to 
Figure 4e. 
 

Why were modules of CAPs in the real data so similar to those in the simulated data? 
We hypothesized that this observation was because the real and simulated CAPs shared 
the same underlying statistical distribution. In k-means clustering, data points were 
grouped into clusters according to the correlation distance between the data points. 
Evidently, the distribution of the correlation distance was determined by the distribution 
of the data points. Therefore, if the datasets were derived from the same distribution, 
provided enough data points were included in each set, the results of k-means clustering 
should have been similar. 

To compare the statistical similarity of the two sets of CAPs, we first compared the 
covariance matrices. For a representative ROI, we found the covariance matrices of the 
real and simulated CAPs were very similar (R = 0.97; Figure 6a,b). A high degree of 
similarity was found between covariance matrices of the real and simulated CAPs for all 
ROIs (mean ± SD, 0.97 ± 0.0026, n = 264 ROIs; Figure 6c), consistent with the hypothesis 
that they share the same multivariate distribution. Next, we conducted statistical testing 
to examine the null hypothesis that the two datasets were drawn from the same 
multivariate distribution (see Methods). If the real and simulated CAPs were derived from 
different distributions, the null hypothesis should be rejected. Statistical testing was not 
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significant for the representative ROI used in Figure 6a (P > 0.87). Across all ROIs, p-
values were mostly distributed above the typical significance threshold (mean ± SD, 0.49 
± 0.30; Figure 6d; Note that p-values were uncorrected). The null hypothesis was rejected 
in 20 out of 264 ROIs (7.6% of all ROIs) when the significance threshold was 5%. With 
a significance threshold of 1%, the null hypothesis was rejected in 7 ROIs (2.7% of all 
ROIs). Thus, for most ROIs, the statistical distributions of the real and simulated CAPs 
were similar and hence yielded similar clustering results. 

 

 
Figure 6 Statistical properties of the real and simulated CAPs were approximately 
equal. a-b. ROI-by-ROI covariance matrices of the CAPdata(a) and CAPsim(b). c. The 
correlation distribution between off-diagonal elements of the covariance matrices of the 
real and simulated CAPs (n = 264 ROIs). d. The distribution of p-values from Szekeley 
& Rizzo’s Energy Test, which tests the null hypothesis that CAPdata and CAPsim are 
drawn from the same multivariate distribution (One test per ROI. n = 264 ROIs). 
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Discussion 

 In this study, we asked to what extent could the results of CAP analysis be attributed 
to the non-stationarity of resting brain activity. To this end, we conducted CAP analysis 
on real fMRI data and simulated data based on a stationary null model with matching 
covariance structures and spectral contents. Overall, we found that two key observations 
drawn from the CAP analysis were replicated in the simulated data, which has previously 
been interpreted as evidences for non-stationary resting brain activity. First, in both the 
real and simulated data, a small percentage of time points were sufficient to approximate 
FC calculated using all time points (Figure 1 and Figure 4a). Second, both the real and 
simulated CAPs were classified into spatially dissimilar modules (Figure 2 and Figure 
4b,c). More interestingly, it was possible to find a simulated module closely resembling 
the spatial pattern of most modules obtained from the real data (Figure 3, Figure 4d,e and 
Figure 5). The fact that key results of CAP analysis were replicated in simulated stationary 
data suggests that the results need to be interpreted with care. 
 The present study adds to a series of previous studies reporting that it is difficult to 
find signatures of the non-stationarity of resting brain activity in fMRI data (Cifer et al., 
2017; Hindriks et al., 2016; Laumann et al., 2016; Novelli and Razi, 2021). The temporal 
variability in FC observed with sliding-window FC analysis has been attributed to 
statistical sampling error (Hindriks et al., 2016; Laumann et al., 2016). Notably, Laumann 
and colleagues developed a stationary null model based on a multivariate Gaussian 
distribution and matching covariance structures and spectral contents to real data. They 
used this null model to show that results obtained with sliding window FC analysis are 
similar for real and simulated data, suggesting that the stationarity of the data cannot be 
distinguished based on sliding window FC analysis. In relation to CAP analysis, Cifer 
and colleagues pointed out that long temporal autocorrelation of the (stationary) fMRI 
signal can explain the finding that a small fraction of time points suffices to approximate 
static FC (Cifer et al., 2017). More recently, Novelli and Razi asked whether edge-centric 
FC (Faskowitz et al., 2020; Zamani Esfahlani et al., 2020), a recently developed point-
process method similar to CAP analysis performed in the connectivity space, can capture 
the non-stationarity of FC in resting brain activity. They mathematically showed that the 
results obtained with the edge FC method, at least in its present form, can be explained 
by assuming a stationary Gaussian distribution with a covariance matrix matched to real 
data. In the present study, we extended these previous studies by showing that the results 
obtained with CAP analysis, another widely used analysis technique for assessing resting 
brain activity, were similar for real fMRI data and for simulated data generated using the 
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Laumann null model. This was surprising because the fact that a set of CAPs made from 
the time course of a single Seed ROI can be clustered into spatially heterogeneous 
modules appeals to our intuition that these modules represent distinct states of resting 
brain activity. The present results suggest that this intuition is incorrect. Spatially 
heterogeneous modules of CAPs were found with simulated data generated by a 
stationary null model. Moreover, many of the modules found in the simulated data were 
similar to the modules found in the real data. Thus, the presence of spatially 
heterogeneous modules of CAPs is insufficient to determine whether the data was 
generated by a mixture of distributions (i.e., non-stationary activity with multiple states). 
These studies collectively suggest that extra care needs to be taken when interpreting the 
results from these analysis techniques designed to extract dynamic structures of resting 
brain activity. 

We would like to emphasize that we are not claiming or trying to prove that resting 
brain activity is best represented by a stationary Gaussian distribution. In fact, careful 
statistical analyses suggest that resting brain activity is non-stationary (Liégeois et al., 
2017). Similar to a previous study that examined sliding window FC analysis (Laumann 
et al., 2016), our intention was to make clear what can and cannot be concluded from 
CAP analysis. We would also like to note that the aim of the present study was not to deny 
the potential clinical usefulness of CAP analysis. Several studies have applied CAP 
analysis to clinical data and found valuable features of brain activity that characterize 
patient groups (Liu et al., 2018; Marshall et al., 2020; Rey et al., 2021; Yang et al., 2021). 
It is important to emphasize that the usefulness or clinical relevance of these features are 
not diminished by the present results (Liegeois R., 2021). Nevertheless, the present study 
sets a limit on how these features might be interpreted. For example, even when spatial 
patterns of modules are informative for distinguishing between CAPs from patients and 
healthy controls, it may be incorrect to interpret the result as evidence of distinct “meta-
states” between the two groups. We believe that the correct interpretation of CAP analysis 
and sliding window FC analysis is indispensable for constructing realistic models of 
resting activity among healthy people and those affected by mental disorders (Wang and 
Krystal, 2014).  
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