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small number of visual features. 12 

Abstract 13 

Recognition of individual objects and their categorization is a complex computational task. 14 

Nevertheless, visual systems are able to perform this task in a rapid and accurate manner. 15 

Humans and other animals can efficiently recognize objects despite countless variations in their 16 

projection on the retina due to different viewing angles, distance, illumination conditions, and 17 

other parameters. Numerous studies conducted in mammals have associated the recognition 18 

process with cortical activity. Although the ability to recognize objects is not limited to 19 

mammals and has been well-documented in other vertebrates that lack a cortex, the mechanism 20 

remains elusive. To address this gap, we explored object recognition in the archerfish, which 21 

lack a fully developed cortex. Archerfish hunt by shooting a jet of water at aerial targets. We 22 

leveraged this unique skill to monitor visual behavior in archerfish by presenting fish with a set 23 

of images on a computer screen above the water tank and observing the behavioral response. 24 

This methodology served to characterize the ability of the archerfish to perform ecologically 25 

relevant recognition of natural objects. We found that archerfish can recognize an individual 26 

object presented under different conditions and that they can also categorize novel objects into 27 

known categories. Manipulating features of these objects revealed that the fish were more 28 

sensitive to object contours than texture and that a small number of features was sufficient for 29 

categorization. Our findings suggest the existence of a complex visual process in the archerfish 30 

visual system that enables object recognition and categorization.  31 
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Introduction 32 

For their survival, many animal species require the computational capacity to perform a range of 33 

complex object recognition tasks, from identifying a conspecific to recognizing a camouflaged 34 

predator, to classifying an item as edible (DiCarlo et al., 2012; Santos et al., 2001; Suboski and 35 

Templeton, 1989). Object recognition is defined as the ability to rapidly and accurately identify a 36 

specific object (Fig. 1A) or categorize objects into classes (Fig. 1B) despite substantial 37 

differences in the retinal representation of the object or across category members (DiCarlo et al., 38 

2012).  Variations in an object’s retinal image are typically caused by the different conditions 39 

under which the object is viewed; for example, its illumination, the viewing distance and angle, 40 

and other environmental characteristics (Biederman and Bar, 1999; DiCarlo and Cox, 2007; 41 

DiCarlo et al., 2012).The ability of animal brains to recognize objects in an efficient and accurate 42 

manner depends on powerful neural computations that enable classification and identification.  43 

Although there is convincing evidence that animals outside of the mammalian clade are capable 44 

of object recognition, the mechanisms and formal algorithms underlying this performance 45 

remain poorly understood. Pigeons, for example, are capable of categorizing natural objects, 46 

human faces, and even emotional expressions (Soto and Wasserman, 2014; Watanabe et al., 47 

2019). Similarly, bees (Avargues-Weber et al., 2010; Giurfa et al., 1997; Werner et al., 2016), 48 

wasps (Oliveira et al., 2015; Sheehan and Tibbetts, 2011), and adult zebrafish (May et al., 2016; 49 

Oliveira et al., 2015) have all been shown to be capable of conspecific visual identification. A 50 

number of studies have indicated  that fish also have the capacity to differentiate between 51 

different shapes (Mackintosh and Sutherland, 1963; Siebeck et al., 2009), fish faces (Parker et 52 

al., 2020), and the archerfish can even be trained to discriminate between human faces 53 

(Newport et al., 2016; Newport et al., 2018). Clearly, some of these stimuli, such as human 54 

faces, are not ecologically relevant to birds, insects, or fish, nor do we expect fish to possess 55 

specific brains areas dedicated to face processing, as is the case for humans. Yet, these findings 56 

suggest the existence of a complex visual processing system in the brain that allows for the 57 

extraction of the relevant features of an object, its recognition and categorization. 58 

To address these questions concerning the nature of object recognition in non-mammalian 59 

vertebrates, we examined the object recognition of natural objects in the archerfish (Toxotes 60 

chatareus). The rationale for selecting the archerfish draws, in part, on the potential benefits of 61 
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studying organisms distant from mammals on the evolutionary scale (Karoubi et al., 2016), 62 

since this may point to additional visual mechanisms or basic principles. At the same time, the 63 

value of the archerfish as an animal model stems from the fact that these fish  can be trained to 64 

discriminate stimuli visually, even when presented on a computer screen (Ben-Simon et al., 65 

2012; Ben-Simon et al., 2012b; Ben-Tov et al., 2015; Ben-Tov et al., 2018; Gabay et al., 2013; 66 

Mokeichev et al., 2010; Newport et al., 2013; Newport et al., 2014; Newport et al., 2015; 67 

Newport, 2021; Reichenthal et al., 2019; Schuster et al., 2004; Schuster, 2007; Vasserman et al., 68 

2010). By utilizing this fish’s remarkable ability to shoot down insects and other small animals 69 

that settle on the foliage above the water line with a jet of water from the mouth (Lüling, 1963), 70 

these fish can be trained to perform an object recognition task and essentially report their  71 

decisions using stimuli in the lab. Thus, the archerfish can provide the fish equivalent of a 72 

discriminative response by a monkey or by a human when performing a recognition task with a 73 

click of a button. 74 

 75 

Methods 76 

Animals. Eleven archerfish subjects participated in the experiments. Adult fish (6-14 cm in 77 

length; 10-18 gm) were purchased from a local supplier. The fish were kept separately in 100-78 

liter aquaria filled with brackish water at 25-290 C on a 12-12 hour light-dark cycle. Fish care 79 

and experimental procedures were approved by the Ben-Gurion University of the Negev 80 

Institutional Animal Care and Use Committee and were in accordance with the government 81 

regulations of the State of Israel. 82 

Training. After a period of acclimatization, inexperienced fish were gradually trained to shoot at 83 

targets presented on a computer screen (VW2245-T, 21.5”, BenQ, Taiwan) situated 35±2 cm 84 

above the water level. In the first stage, the fish were trained to shoot at a single black circle on a 85 

white background that appeared at random locations on the screen. A blinking black square 86 

appeared immediately prior to the display of the target in the middle of the screen and was used 87 

as a cue to draw the fish's attention upward. If the fish shot at the target within 15 seconds from 88 

the appearance of the target, it was rewarded with a food pellet. Otherwise, the target 89 

disappeared and the next training trial started. The mean response time of the fish ranged from 2 90 
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to 10 seconds. The training continued until the fish succeeded in hitting 80% of the targets within 91 

15 seconds.  92 

After the fish learned to shoot at targets on the screen, they were trained to recognize either a 93 

specific object or a category through a two-alternative forced choice procedure (Fig. 2A). A 94 

session of 20 trials where the fish had to choose and shoot at one of two images was repeated 95 

over several (4-10) days to familiarize the fish with the experiment. When the fish achieved a 96 

70% success rate in choosing the designated object or category, it was considered trained and 97 

ready for the experiment (examples of the training and experimental procedure for one fish are 98 

shown in Fig. 2B). The subsequent experimental trials were recorded and these results were used 99 

for the analyses. 100 

Stimuli. For all experiments, we used images of objects familiar to the fish from their natural 101 

environment. The images were composed of edible and inedible objects (from the archerfish's 102 

perspective): the inedible objects were either leaves or flowers, whereas the edible objects were 103 

either spiders or insects such as a cockroach, an ant, or a beetle. The images of the insects and 104 

the spiders were obtained from the BugwoodImages project website (insectimages.org). Images 105 

of flowers were taken from the Oxford Flowers 102 dataset (Nilsback and Zisserman, 2008), and 106 

images of leaves were taken from the Flavia Plant Leaf Recognition project dataset (Wu et al., 107 

2007). Multiple shots of one specific spider and one ant were taken from the animated 3D 108 

models. The models were purchased from the Sketchfub store under standard license 109 

(sketchfab.com).  110 

All images were preprocessed using Matlab. All background colors were removed and the 111 

objects, after being converted to grayscale, were placed on a white background. The size of the 112 

objects was randomized in the following way: the number of the pixels in the image was selected 113 

to have a uniform distribution from a discrete set of object sizes. For this purpose, the images 114 

were resized to create 5 levels of object area, defined as the number of pixels within the contour 115 

of the object: ~10,000 pixels, ~50,000 pixels, 100,000 pixels, 200,000 pixels and 300,000 pixels.  116 

Experiment 1. We investigated recognition of a specific object in the archerfish. The fish were 117 

rewarded with a food pellet if they selected the target. The experiment consisted of ten sessions 118 

(each on a different day) with 20 trials per session, and lasted 3 to 5 weeks with 2-3 sessions per 119 

week.    120 
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There were two types of targets. First, an image of a specific spider was presented to the fish 121 

together with a distracting object. The distracting objects were leaves, flowers, insects, or other 122 

spiders. The target spider was shown from different viewpoints, with different orientation, size, 123 

contrast, and screen locations. All presentation parameters were randomized.  124 

Then, the experiment was repeated with a designated target of a specific ant. The distractors in 125 

this case were images of leaves, flowers, insects, or other ants. 126 

Experiment 2. Whereas Experiment 1 focused on specific objects (and thus on identification), 127 

Experiment 2 explored the ability of the archerfish to generalize and categorize various objects 128 

into classes. On each trial, two novel images belonging to two different categories – edible and 129 

inedible – were presented in random locations on the screen. 130 

Analysis of image features. To analyze the possible visual features that may help the fish to 131 

perform object recognition, we extracted a set of 18 visual features commonly used in image 132 

processing from each image (Nixon and Aguado, 2019; Wang et al., 2012; Wen et al., 2009) and 133 

then used these features to characterize the images. The following features were used: 134 

1. Object area, defined as the number of pixels within the object's perimeter.  135 

Features describing object compactness: 136 

2.  Convex hull area.  137 

3.  Convex hull area divided by the object area.  138 

4.  Perimeter length.  139 

5.  Roundness, defined as the perimeter squared divided by 4π*area.  140 

Features describing object curvatures:  141 

6.  The number of sharp curves in the object’s perimeter was defined as follows: first, the object's 142 

perimeter was divided into sections with a length of 100 pixels each. Then, a second degree 143 

polynomial was fitted to each section, and the polynomial's second derivative was used as the 144 

curvature for every section. Finally, a section with curvature values above the standard deviation 145 

of all values for all sections was considered a sharp curve, which yielded the number of sharp 146 

curves in the object's perimeter.  147 

7.  Average curvature value of the sections with sharp curves as defined in 6. 148 
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Features describing object shape eccentricity:  149 

8.  Shape eccentricity, defined as the ratio between the foci of the ellipse that surrounds the 150 

object and the length of its major axis.  151 

9.  Convex hull eccentricity, defined as the ratio between the foci of the ellipse that surrounds the 152 

convex hull of an object and the length of its major axis.  153 

Features describing object texture:  154 

10.  Entropy of light intensities of the objects pixel values.  155 

11.  Standard deviation of the object's pixel values.  156 

12.  Skewness, defined as the normalized third central moment of the object’s pixel value 157 

distribution. 158 

13.  Correlation between the object and a checkerboard: dot product of the object with 5 159 

checkerboards with different checker sizes –  4 to 12 checkers in a row – where the maximum 160 

result was used. 161 

Other features:  162 

14.  Correlation between the object and a star: dot product with a star shape to measure the 163 

resemblance of the object to a star.  164 

15.  Symmetry, defined as the distance between two halves of an image on the horizontal and 165 

vertical axis of the image. All images were rotated to align the major axis of the surrounding 166 

ellipse to the x-axis. 167 

16.  Symmetry defined as the Euclidean distance between two halves of the image on the 168 

horizontal and vertical axis of the image silhouette.  169 

Image energy:  170 

17.  Mean image energy defined as the average value of all pixels in the image.  171 

18.  Total image energy, defined as the sum of all pixel values in the image. 172 

Support vector machine analysis. We used Matlab Statistics and the Machine Learning toolbox 173 

functions to build a Support Vector Machine classifier. The classifier was trained using a matrix 174 

with image features and the fish's responses as labels. The training set consisted of a random 175 
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75% of the images. The resulting support vector machine model was tested on the remaining 176 

25% of the images. The labels that the model returned were compared to the images’ true labels 177 

and to the fish’s behavioral selection. The average success rate for 20 iterations was used as the 178 

model’s success rate. We arranged the features according to the order of their contribution to the 179 

model using a greedy algorithm. At every step, the feature that contributed the most to the 180 

model's success was added. 181 

Statistical analysis. We performed a hierarchical Bayesian analysis to evaluate the behavior of 182 

each fish in every experiment. The statistical analysis used R 4.0.4 and JAGS 4.3.0 software to 183 

sample the posterior probability distribution of the parameters (Kruschke, 2014). The statistical 184 

model we used had a binomial likelihood:  185 

 exp, exp~ ,fish fish fishSuccess Rate Bino p N (1) 186 

The distribution of the success rate for the different fish, fishp , was a beta distribution whose 187 

mode,  , and concentration,  , were hierarchically determined.  188 

),(~ Betap fish (2) 189 

The priors for   and   were chosen to be uniform and very broad. 190 

We used JAGS (Plummer, 2003) to generate 3 chains of 10000 MCMC samples from the joint 191 

posterior probability distribution of the fishp  for all fish and experiments. Convergence of the 192 

algorithm and sampling properties were tested using the graphical and quantitative methods 193 

outlined in Kruschke, 2014. Using the MCMC samples, we calculated the 95% highest density 194 

interval (HDI) for the fish’s behavioral success rate, a range of values in which there was a 95% 195 

posterior probability of finding the parameter. The success rate of the experiment was considered 196 

significantly above the chance level if 95% HDI of its posterior distribution was greater than a 197 

region of practical equivalence (ROPE) of 5% around the chance level of 50%. Similarly, if 95% 198 

HDI of the difference in success rate between the two experiments included the ROPE of 5% 199 

around zero, the success rate was not considered to be different. 200 

 201 
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Results 202 

We characterized the archerfish’s ability and processing during an ecologically relevant object 203 

recognition task. For this purpose, we conducted two alternative non-forced choice experiments 204 

using a continuous reinforcement schedule for correct responses. Generally, the fish was 205 

presented with images of natural stimuli that are important in the fish habitat, and was rewarded 206 

for an appropriate shooting response. The two stimuli were presented simultaneously on a 207 

computer monitor situated above the water tank (Fig. 2A). A shooting response directed at the 208 

correct target was rewarded with a food pellet whereas the selection of the other stimulus was 209 

not. Successive learning trials were contingent on the fish collecting the reward for the previous 210 

correct response. To neutralize the effect of position bias in the fish’s responses, the two targets 211 

were presented at a random location on the screen.   212 

 213 

Archerfish can recognize specific objects regardless of differences in contrast, size, and 214 

viewing angles  215 

We tested whether the archerfish was capable of object recognition. Three archerfish were 216 

trained on a set of pictures of a single spider viewed from different angles in a 3D space and then 217 

tested on the same spider viewed from other angles (the generalization set), which were not 218 

included in the original set (Fig. 3A). The target spider was presented under different conditions 219 

such that size, viewing angle, contrast and location varied from trial to trial. The target spider 220 

was presented together with another object that could be a leaf, a flower, an insect, or another 221 

spider (Fig. 3A, see Methods).  222 

The fish were able to recognize and choose the target spider, both on trials where the second 223 

object was not a spider and also against other spiders (Fig. 3B). For all fish in both experiments, 224 

there was no overlap of the posterior probability 95% HDI of the success rate with a ROPE of 225 

5% around the chance level (see Methods, Statistical analysis). In addition, the 95% HDI of the 226 

difference between the success rate of individual fish on trials with two spiders and the trials 227 

with a spider and non-spider completely contained a ROPE of 5% around chance level, 228 

indicating that the fish could differentiate the target spider from other types of spiders as well as 229 

from other objects.  230 
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A similar experiment was conducted with an ant as a target image. The same three fish were 231 

retrained to recognize one specific ant that was shown together with other objects, and 232 

sometimes with other ants (Fig. 3C). The fish learned to differentiate the target ant from the other 233 

objects and also from other ants (Fig. 3D). The success rates in this experiment were not 234 

significantly different from the rates in the experiment with a spider target.       235 

 236 

The archerfish can categorize objects into classes and learn to generalize from examples  237 

We tested the ability of the fish to discriminate between the images of two categories of stimuli 238 

(Fig. 4A): non-animals (leaves and flowers) and animals (spiders and insects comprising ants, 239 

beetles and cockroaches). In this two-alternative-choice-task, in the first stage of the experiment, 240 

the animal category was rewarded and the non-animal category was not rewarded. The images 241 

were grayscale, normalized to five different sizes, shown at different locations on the screen and 242 

were never repeated; that is, each image was used only once (around 1,500 images in total were 243 

used in the experiments). After two to eight days, the success rate of the fish reached a plateau 244 

that was significantly above chance level (Fig. 4B). The lower boundary of 95% HDI for the fish 245 

with the lowest success rate was just above 60%. The higher boundary of 95% HDI for the fish 246 

with the highest success rate was above 80%. 247 

To test whether archerfish are predisposed to shooting at animals rather than plants, we tested 248 

four additional fish, which were trained to shoot at the non-animal targets (i.e. non-edible). 249 

Again, we found that the archerfish were able to select the non-animal targets at a significantly 250 

higher level than chance (Fig. 4B). This is an indication that the archerfish is not hardwired to 251 

select an animal. 252 

 253 

The archerfish can use five complex visual features to perform object recognition 254 

To identify the visual features used in the behavioral task, we built a model that simulated the 255 

process of object selection in the fish and fit the model to the response data we collected on the 256 

fish target selection. The model was composed of two branches of information processing, each 257 

processing one stimulus image in parallel (Fig. 5A). Each image recognition module was 258 

composed of a feature extraction stage followed by a classifier. The result of the computation 259 
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by each module was fed into a decision module which, after adding execution noise, led to the 260 

behavioral choice of the model. The decision was made by comparing the classification output 261 

and verifying its consistency. If the classifications were different, the decision followed suit to 262 

the desired class. If both classifiers returned the same category, the decision was made 263 

randomly by sampling a Bernoulli distribution with 0.5 probability of success. The behavioral 264 

noise itself was added to the decision vector: a decision response was flipped for pairs of 265 

images with a probability matched for each fish separately – from 0.65 to 0.8 – to get a success 266 

rate fit for the behavioral result. 267 

 268 

For the classification module we used a support vector machine classifier. The support vector 269 

machine was fed by visual features extracted from each image (examples in Fig. 5B, see 270 

Methods). We extracted a set of 18 features from each image and then used the support vector 271 

machine to build a classifier based on the fish's responses to the targets and on the extracted 272 

features. The features were selected heuristically for the image set (see Methods).  273 

 274 

We compared the performance of the support vector machine classifier trained on the raw 275 

images to a classifier trained on a feature matrix and found that the use of features significantly 276 

improved its performance. We also tried classifiers other than the support vector machine. 277 

There was no significant difference in their performance, so we continued with the support 278 

vector machine and features for the remainder of the analysis (Fig. 5C). 279 

 280 

The classifier was built in an iterative manner, starting with the most informative feature; i.e., 281 

the feature with the highest success rate when used in the model separately, then adding the next 282 

most informative feature and so on, until the predictive value of the model became saturated. 283 

We used a standard training set, verification set and test set to avoid over-fitting the model. 284 

Although this was a greedy algorithm that could not guarantee an optimal solution, it still 285 

provided a lower bound for the optimal performance.  286 

 287 

To test the model (Fig. 5A), we used it to simulate the behavioral experiment. The recognition 288 

rate at the output stage of the model matched the behavioral success rate of the fish (Fig. 5D), 289 
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indicating the capability of the model to capture the statistics of fish behavior. Next, we 290 

analyzed the model structure to reveal aspects of the fish’s decisions. 291 

 292 

Shape is more important than texture in the archerfish object recognition 293 

Fig. 5D shows that using only the first five features that describe an object’s shape compactness 294 

(ratio of convex hull to area and roundness), shape eccentricity, and texture (entropy and the 295 

local standard deviation), the model’s success rate saturated. Using these 5 features, the model 296 

achieved a success rate of 94% compared to a success rate of 95% on all 18 features.  297 

We calculated the model’s success rate given only the two first shape features; specifically, the 298 

ratio of the convex hull to the area together with eccentricity. The model’s predictions were close 299 

to saturation, with a success rate of 92% (Fig. 5E). When given only the two most important 300 

texture features, entropy and the local standard deviation, the model’s success rate was only 301 

76%. This suggests that shape was more important than texture in the visual discrimination 302 

performed by these fish.  303 

To further test the prediction that shape features were more important than texture, we assessed 304 

the ability of the fish to perform object recognition after removing all textures and leaving only 305 

the silhouette of the image versus removing all the shape information and leaving only texture 306 

(Fig. 6A). The experimental procedure was identical to that used in the original categorization 307 

experiment. 308 

We found that the fish were able to perform object discrimination between animals and foliage 309 

when provided only with the shape but failed to do so when provided only with texture (Fig. 310 

6B). This fact, a finding in itself, also increases our confidence in interpreting results from the 311 

model.  312 

 313 

Execution noise drives most fish errors 314 

Allowing the support vector machine classifier to learn from the fish behavioral data enabled it 315 

to perform this categorization task at nearly perfect performance. Our model (Fig. 5A) attributed 316 

the fish errors either to poor classification or to execution noise that was independent of the 317 

images. The red line in the graph in Fig. 5D shows the results of adding execution noise to 318 
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decisions based on the model's classification. Inspection shows that it matches the performance 319 

of the fish closely.  320 

We next conducted a stringent test involving the reexamination of image pairs. It was premised 321 

on the assumption that if the internal image processing mechanism has near-perfect performance, 322 

most errors are the result of execution noise. We predicted that there would be no significant 323 

difference between the success rates of the fish on previously successful and unsuccessful image 324 

pairs.  325 

To test this supposition, we repeated the original categorization experiments with four different 326 

sets of images: a. the image pairs that the fish identified correctly. b. The image pairs that the 327 

fish identified incorrectly. c. The image pairs labelled correctly by the model trained on the 328 

results of each specific fish. d. The image pairs that the model labeled incorrectly.  329 

The lower bounds of 95% HDI of the success rate for all fish and all types of targets were well 330 

above chance level (Fig. 7A), suggesting that at least part of the errors that the fish made were 331 

due to execution noise and not due to the fish object recognition algorithm’s inability to identify 332 

an object.  333 

In addition, we compared the selection by the fish and the model for two sets of images: images 334 

that the fish identified correctly in the original experiment and the images that the fish identified 335 

incorrectly. For each image in the two sets, there were four possible outcomes: both the fish and 336 

the model identified it correctly, the fish was correct and the model was incorrect, the fish was 337 

incorrect and the model was correct, and both the fish and the model were incorrect. The success 338 

rate for all these possibilities did not differ from the success rate expected under independence 339 

(Fig. 7B).  340 

 341 

Discussion 342 

Object recognition is an important visual behavior for almost all animals (DiCarlo et al., 2012). 343 

However, investigation of the computational aspects of recognition has been confined largely to 344 

mammalian species, thus narrowing our understanding of visual processing in general, and 345 

limiting the potential for generalizing computational models to new contexts and neural 346 

mechanisms. Here, we extended the study of object recognition to a non-mammalian species, to 347 
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better understand object recognition in general, regardless of the neural substrate or specific 348 

ecological context.  349 

In particular, in this work we explored object recognition of natural objects in the archerfish. At 350 

its core, visual object recognition binds the stimulus to an internal representation of visual 351 

entities that is invariant to most aspects of the stimulus except object identity (DiCarlo and Cox, 352 

2007). This includes invariance to size, contrast, rotation, viewpoint, and illumination, to name 353 

only a few, whose variations result in an infinite number of possible projections of the object 354 

onto the retina. Our results indicate that the archerfish, like primates and several other species, 355 

exhibits this visual function with high accuracy.  356 

 357 

Another important and possibly higher level feature of object recognition is the ability to 358 

categorize objects by generalizing from examples. We tested this ability in the archerfish by 359 

training fish on non-repeating sequences of object images from different classes, and 360 

confronting them with novel stimuli that still belonged to the trained classes (as judged by 361 

humans). The archerfish were indeed able to generalize across wide range of possible objects 362 

and successfully perform the task.  363 

 364 

We analyzed fish behavior using a model that aimed to mimic fish behavior. The model was 365 

built as a three-stage-cascade composed of visual feature extraction, classification with a 366 

learned classifier, and incorporation of additive execution noise before the final decision was 367 

made. When we trained the classifier based on the selection made by the fish, we found that it 368 

achieved almost perfect performance in predicting the true labels of the objects. Furthermore, it 369 

exhibited a hierarchy between features (Fig. 5D), suggesting that the fish attributed more 370 

importance to shape feature than to texture features. The model also supported the hypothesis 371 

that classification errors were mainly due to execution noise and were not image specific. We 372 

tested these two hypotheses with additional experiments and confirmed them both. 373 

 374 

The neural basis of object recognition in the archerfish 375 

Studies suggest that information processing underlying object recognition in the mammalian 376 

brain is organized hierarchically and is anatomically located in the ventral stream of the visual 377 

cortex (Bracci et al., 2017; Felleman and Van Essen, 1991; Grill-Spector et al., 2001). A visual 378 
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signal is transferred from the retina to the primary visual cortex V1, where basic features such 379 

as oriented lines and edges are extracted (Felleman and Van Essen, 1991; Rust et al., 2005). 380 

Information is then transferred through several cortical areas, which select for combinations of 381 

visual features, such as orientation and spatial frequency, as well as for higher level geometric 382 

features such as curvature (Hegde and Van Essen, 2000). Further downstream, neurons in the 383 

inferior temporal cortex have been reported to process complex object features and be tuned to 384 

specific object classes such as faces or body parts (Cadieu et al., 2007; Fujita, 2002; Gallant et 385 

al., 1996; Lehky and Tanaka, 2016).  386 

 387 

Less information is available on visual processing in the archerfish. Previous work on the 388 

archerfish have examined visual neural processing in the retina (Segev et al., 2007) and in the 389 

optic tectum (Ben-Tov et al., 2015; Ben-Tov et al., 2013), the latter being the largest visual 390 

processing area in the archerfish brain (Karoubi et al., 2016). The archerfish optic tectum 391 

contains processing stages similar to those found in the early visual system of mammals 392 

(Reichenthal et al., 2018). However, it remains unclear whether this area is also the main brain 393 

region responsible for object recognition in the archerfish or whether other regions, perhaps 394 

within the telencephalon, provide critical functions toward that end.  395 

 396 

Previous studies of object recognition in the archerfish 397 

One of the most seminal studies on object recognition in the archerfish focused on human face 398 

recognition (Newport et al., 2016; Newport et al., 2018). The findings showed that archerfish 399 

could be trained to recognize human faces in that the fish correctly discriminated one specific 400 

face from others, though with apparent difficulty since accuracy decreased markedly on rotated 401 

versions of the same face. By contrast, our results show that the fish could identify the same 402 

object despite various deformations, including rotation. This could be due to the improved 403 

recognition capacity related to the stimuli we used, which were chosen for their ecological 404 

relevance (recall that we used insects and foliage).  405 

Other studies have examined  the ability of archerfish to recognize simple shapes to test various 406 

forms of fish visual behavior, including visual search (Ben-Tov et al., 2015; Reichenthal et al., 407 

2019; Reichenthal et al., 2020), symbol-value association and discrimination (Karoubi et al., 408 

2017) as well as the  generalization of the abstract concept of same and different (Newport et 409 
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al., 2014; Newport et al., 2015). The current study is nevertheless the first to reveal ecologically 410 

relevant object recognition in this species. 411 

 412 

Considerations in modelling fish behavior and limitations 413 

To assess the influence of the specific classifier, we tested several other classifiers including k-414 

nearest neighbor, discriminant analysis and neural networks. The success rates of these 415 

classifiers were similar to ones observed using the support vector machine both for predicting 416 

image true labels and for predicting fish behavior (Fig. 5C). Therefore, the choice of the 417 

classifier did not appear to significantly affect the results. 418 

In addition, naïve application of the support vector machine on the raw images, by trying to 419 

directly reverse-engineer the image features used by the fish, failed. This is probably due to the 420 

high dimensionality of the problem at hand (Afraz et al., 2014). For this reason, we 421 

implemented a feature extraction approach followed by the application of the support vector 422 

machine, which is the standard approach in the field (Brunelli and Poggio, 1993; Chandra and 423 

Bedi, 2018). Finally, it should be noted that our findings do not imply that the neural 424 

computations underlying object recognition in the archerfish actually employ an identical or 425 

similar algorithm to the one generated by our model.  426 

 427 

Conclusion 428 

We examined the ability of archerfish to recognize ecologically relevant objects. Using a model 429 

for the fish selection we showed which visual features were used by the archerfish during visual 430 

processing. Future studies should explore whether and how these visual features are represented 431 

and used in the neural circuitry responsible for object recognition in the archerfish.  432 
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  571 

Figure Captions 572 

Fig. 1| Object recognition problem: Object recognition involves the identification of objects 573 

regardless of transformations in size, contrast, orientation or viewing angle. A. An example of 574 

object recognition of an object, a specific spider in this case, which needs to be identified in the 575 

presence of other insects. B. An example of object recognition of an object class. In this case, an 576 

animal (insect or spider), needs to be recognized in the presence of non-animate objects (leaves 577 

or flowers). 578 

 579 

Fig. 2| Behavioral experimental setup: A. The archerfish is presented with two objects on the 580 

screen: a target and a distractor. The fish is rewarded if it selects the target image. B. Success rate 581 

per day in training process (red) and experiment (blue) of Fish 1. 582 

 583 

Fig. 3| The archerfish is capable of invariant object recognition: A. Examples of a single 584 

target spider from different viewpoints and with different contrast levels (top row) and other 585 

distractor objects and spiders (bottom row). B. Success rate of three archerfish in recognizing the 586 

target spider: mean + 95% HDI. C. Examples of a single target ant from different viewpoints and 587 

with different contrast levels (top row) and other distractor objects and ants (bottom row). D. 588 

Success rate of three archerfish in recognizing the target ant: mean + 95% HDI.  589 

 590 

Fig. 4| The archerfish can categorize novel objects into groups: The fish were trained to 591 

categorize animal and non-animal objects. A. Examples of animal objects (insects and spiders, 592 

top row) and non-animal objects (leaves and flowers, bottom row). B. Success rate of 8 fish in 593 

selecting an object from its designated category: mean + 95% HDI. Fish 4 to 7 were rewarded for 594 

choosing an animal; fish 8 to 11 were rewarded for choosing a non-animal. 595 
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Fig. 5| Model building: A. In a behavioral experiment, the fish was exposed to two objects, 596 

made a decision about the object category and executed a shot. The support vector machine 597 

classifier was fed with the features extracted from the images. B. Examples of the extracted 598 

visual features. C. Success rate of different classifiers: support vector machine classifier using 599 

raw images, support vector machine classifier using extracted features, k-nearest neighbor, 600 

discriminant analysis and neural network. D. Support vector machine classifier success rate in 601 

predicting the objects’ true category (blue line) and the model’s success rate in predicting fish 602 

selection (left, red line). Separate features are added in the order of their contribution to the 603 

classifier's success (left); success rate using only two shape features and two texture features 604 

(right). E. Support vector machine classifier success rate for combinations of features: two 605 

features of shape and two features of texture. 606 

 607 

Fig. 6| Shape features are more important to recognition than texture: A. Examples of 608 

animal target silhouettes and textures (top row) and non-animal target silhouettes and textures 609 

(bottom row).  B. Success rate at recognizing the target category in the original experiment with 610 

a full object (green bars) and with silhouettes alone (blue bars) and texture alone (red bars) in 611 

three fish. No significant difference in the response rate between the original and the silhouette 612 

experiments: 95% HDI was above the chance level in all fish. In the texture experiment the 95% 613 

HDI range included the chance level of 0.5.  614 

 615 

Fig. 7| Fish errors are not correlated with object identity: A. The original experiment in 616 

object categorization was repeated for selected sets of objects: objects that were previously 617 

selected correctly by the fish, objects that were selected incorrectly by the fish, objects that the 618 

model labeled correctly and objects that the model labeled incorrectly. The 95% HDI of the fish 619 

success rate for all sets of objects was above chance level for all three fish that finished all sets. 620 

B. Portion of images identified correctly and incorrectly by the fish and by the fish-trained model 621 

from two datasets: the dataset of images selected correctly in the original categorization task by 622 

the fish (top row, left column) and the set of images selected incorrectly by the fish (bottom row, 623 

left column); success rate for the same groups expected under independence (right column). 624 
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