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Summary 10 

� Due to climate warming, recently deglaciated glacier forefields create virtually 11 

uninhabited substrates waiting for initial colonization of bacteria, fungi and plants 12 

and serve as an ideal ecosystem for studying transformations in community 13 

composition and diversity over time and the interactions between taxonomic 14 

groups. 15 

� In this study, we investigated the composition and diversity of bacteria, and fungi, 16 

plants and environmental factors (pH, temperature, plot age and soil nutrients) 17 

along a 1.5km glacier forefield. We used random forest analysis to detect how well 18 

the composition and diversity of taxonomic groups and environmental factors can 19 

be mutually predicted. 20 

� Community composition and diversity of taxonomic groups predicted each other 21 

more accurately than environmental factors predicted the taxonomic groups; within 22 

the taxonomic groups bacteria and fungi predicted each other best and the taxa’s 23 

composition was better predicted than diversity indices. Additionally, accuracy of 24 

prediction among taxonomic groups and environmental factors considerably varied 25 

along the successional gradient.  26 

� Although our results are no direct indication of interactions between the taxa 27 
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investigated and the environmental conditions, the accurate predictions among 28 

bacteria, fungi, and plants do provide insights into the concerted community 29 

assembly of different taxa in response to changing environments along a 30 

successional gradient. 31 

Key words: bacteria, environment, fungi, plants, predictive models, succession. 32 

Introduction 33 

Ecological successions represent a sequence of assembly processes leading to diverse 34 

and complex communities. It is widely acknowledged that in primary successions 35 

stochastic events dominate the initial community assembly whereas niche-based 36 

processes become more important in further developed communities where both the 37 

environment and species interactions shape species composition and diversity (Chang 38 

& HilleRisLambers, 2016; Wojcik et al., 2021). Climate warming is initiating primary 39 

successions in glacier forefields as it is speeding up glacier retreat and providing newly 40 

uninhabited substrates for the colonization of organisms forming communities along 41 

the chronosequence. Local microclimatic conditions and soil properties, and the tight 42 

interactions between plant and belowground microbes are part of the environmental and 43 

biotic factors shaping these communities (Zak et al., 2003; Mouhamadou et al., 2013; 44 

Darcy et al., 2018; Navratilova et al., 2019; Harrison et al., 2020; Ohler et al., 2020; 45 

Davison et al., 2021). The relative contributions of environmental and biotic factors on 46 

communities may vary spatially and temporally and may affect different properties of 47 

communities (Mitchell et al., 2011; Chen et al., 2017). In the case of microbial 48 

communities the relative importance of these factors partly depends on the soil 49 

compartment: Microbes colonizing the rhizosphere are directly affected by the sugars, 50 

organic acids and amino acids provided by root exudates, whereas microbes colonizing 51 

bulk soil are less affected by specific plant individuals and may thus respond more 52 

strongly to the environmental conditions (Hartley et al., 2007; Lange et al., 2015; 53 

Sanchez-Canizares et al., 2017). Accordingly, both environmental factors such as soil 54 

chemical properties and temperature (Cheng et al., 2020; Hermans et al., 2020; Davison 55 
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et al., 2021) as well as plant community composition (Chen et al., 2017; Kruger et al., 56 

2017; Reese et al., 2018) were reported to explain variation in soil microbial 57 

communities. Likewise, microbes and the environment have been shown to affect plant 58 

species composition (Bever et al., 2012; Miller et al., 2020). For instance, recent studies 59 

demonstrated that bacterial and fungal communities in soil may either positively or 60 

negatively affect plant species and communities, and that these effects are tightly 61 

related to the plant functional type or the partnership between the plants and microbial 62 

organisms (Teste et al., 2017; Hahl et al., 2020; Heinen et al., 2020). Within soil 63 

microbial communities, the various interactions between bacteria and fungi are 64 

additionally contributing to community assembly. The interactions between microbes 65 

that share a habitat can either be positive (mutualism, synergism, or commensalism), 66 

negative (pathogenic, predation, parasitism, antagonism, or competition) or neutral (no 67 

observed effects) (Vandenkoornhuyse et al., 2007; Berg et al., 2020). In diverse 68 

communities all of these outcomes of pairwise interactions may occur simultaneously, 69 

which lead to changes of the organism performance and ecosystem productivity (Wargo 70 

& Hogan, 2006; Miransari, 2011). The outcome of pairwise interactions between plant, 71 

bacterial, and fungal species is highly context dependent and thus modulated by the 72 

presence of other species as well as environmental conditions. For instance, 73 

environmental conditions like temperature and soil moisture affect plant and microbes 74 

and can regulate plant-microbe associations (Rasmussen et al., 2019; Rudgers et al., 75 

2020; Robroek et al., 2021), and increasing environmental stress alters microbial 76 

facilitation of plant germination or biomass production (David et al., 2020).  77 

Successional gradients such as glacier forefields with considerable variation in soil 78 

properties and climate conditions are an ideal study system to reveal how the 79 

interdependences between taxonomic groups change with environmental conditions. 80 

Previous studies have shown different interactive patterns of organisms in different 81 

successional stages. For instance, a positive relationship between plant and microbial 82 

richness was found in the early succession while not in the late succession (Porazinska 83 

et al., 2018), which may be owing to the fact that pioneering plants serve as nutrition 84 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457913
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

hotspot for microbes in the rhizosphere at the initial sites (Schulz et al., 2013) while in 85 

the late succession the accumulated organic matter provide plenty resources and thus 86 

the mutual predictability between plants and microbes is reduced (Porazinska et al., 87 

2018). Nonetheless, the interdependencies between the organisms that form complex 88 

communities as well as environmental conditions may also leave a signal in community 89 

composition and diversity of plants and microbes and thus these properties may be 90 

mutually predictable (Horn et al., 2017; Leff et al., 2018).  91 

Machine learning algorithms have been increasingly applied for pattern recognition and 92 

predictions using complex ecological data. For instance, random forest analysis was 93 

used to explore the links between soil bacterial community composition and 94 

environmental factors such as land use management and soil properties and lead to 95 

predictive models with high accuracy (Hermans et al., 2020). Furthermore, machine 96 

learning models were shown to outperform regression models in trait-matching 97 

predictions for understanding interaction networks (Pichler et al., 2019). The high 98 

performance of machine learning algorithms and especially random forest is obtained 99 

by their ability to model non-linear combinations of numerical and categorial data 100 

without complex transformations resulting in estimates of the accuracy of predictions 101 

as well as the importance of individual variables in improving predictions (Breiman, 102 

2001; Ghannam & Techtmann, 2021). Thus, random forest is an excellent tool for 103 

evaluating the interdependences between various taxonomic groups and environmental 104 

factors (Ghannam & Techtmann, 2021; Goodswen et al., 2021).  105 

In recent studies, individual plant variables such as species composition, functional 106 

identity, taxonomic, phylogenetic and functional diversity have been used to predict 107 

microbial communities (Prober et al., 2015; Dassen et al., 2017; Chen et al., 2018; Leff 108 

et al., 2018; Porazinska et al., 2018). In the present study, we consider all the possible 109 

variables and evaluate how well the diversity and composition of plants, bacteria, fungi, 110 

and environmental factors can predict each other in order to explore the 111 

interdependences between the taxonomic groups and environmental factors as well as 112 

their changes along a successional gradient in the forefield of the Ödenwinkelkees 113 
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glacier in the Austrian Alps (Junker et al., 2020). Here the assembly of multidiverse 114 

communities along the glacier forefield chronosequence provides an excellent 115 

opportunity to track transformations in community composition and diversity over time. 116 

Using random forest analysis, we used plant, bacteria, fungi composition and 117 

environmental factors as explanatory variables and bacteria, fungi and plant species 118 

composition, plant functional composition, plants phylogenetic, functional diversities 119 

and environmental factors as dependent variables to test for interdependencies between 120 

these variables. We aim to address the following two questions: 1) How accurately can 121 

we predict properties of plant and microbial communities with the composition of the 122 

other taxonomic groups as well as environmental factors? 2) Is the accuracy of 123 

prediction variable along the successional gradient? Although our approach does not 124 

directly indicate interactions and dependencies between taxonomic groups and 125 

environmental conditions, it tests the hypothesis that taxonomic groups respond to 126 

changing environmental conditions in a concerted way potentially facilitated by tight 127 

interaction networks.  128 

Materials and methods 129 

Data collection  130 

Our study site was located at the forefield of the Ödenwinkelkees glacier (Stubachtal 131 

valley, Hohe Tauern National Park, Austria; Dynamic Ecological Information 132 

Management System – site and dataset registry: https://deims.org/activity/fefd07db-133 

2f16-46eb-8883-f10fbc9d13a3, last access: August 2021) (Junker et al., 2020). In 134 

summer 2019 (26 June - 16 September), we established 135 permanent plots within the 135 

successional gradient of the glacier forefield. We identified all vascular plant species 136 

occurring at the plots (n = 107) and recorded the coverage of plants with a resolution 137 

of 0.1%. We measured the plant height, leaf area, leaf weight and calculated the specific 138 

leaf area (SLA) for those 48 plant species that occurred in 10 or more plots. For three 139 

focus species we phenotyped up to three individuals on every plot where they occurred: 140 

Oxyria digyna as representative of early succession, Trifolium badium as representative 141 
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of late succession, and Campanula scheuchzeri which occurred all along the 142 

successional gradient (for detailed information on the selection of the focus plant 143 

species see Junker et. al 2020). For the other n = 45 species, up to five individuals per 144 

plot were phenotyped on the youngest, the oldest, and the intermediate plot where they 145 

occurred (for detailed methods see Junker et al 2020). Additionally, we obtained the 146 

functional traits of the plant species from Bioflor database 147 

(https://www.ufz.de/biolflor/index.jsp) for 92 species out of 107 plant species occurring 148 

in the field. We used nine functional traits which have been shown to be response traits 149 

to environmental changes at the community level (Kahmen & Poschlod, 2004; 150 

Bernhardt-Römermann et al., 2008; Aguiar et al., 2013; Hintze et al., 2013), including 151 

fruit type, leaf anatomy, leaf persistence, life form, life span, pollen vector, strategy 152 

type, type of reproduction. We also characterized the soil microbiome (bacteria and 153 

fungi) of each of the plots. We sampled soil from each plot at two locations at a depth 154 

of 3cm, soil from two locations per plot were pooled to one sample for further analysis. 155 

Samples were directly transferred to ZR BashingBeads Lysis tubes containing 750 µL 156 

of ZymoBIOMICS lysis solution (Zymo-BIOMICS DNA Miniprep Kit; Zymo 157 

Research, Irvine, California, USA). Within 8h after collection of microbial samples, ZR 158 

BashingBeads Lysis tubes were sonicated for 7 min to detach microorganisms from the 159 

surfaces. Subsequently, all microbial samples were shaken using a ball mill for 9 160 

minutes with a frequency of 30.0 s−1. Microbial DNA was extracted using the 161 

ZymoBIOMICS DNA Miniprep Kit following the manufacturer’s instructions. 162 

Microbiome analysis was performed by Eurofins Genomics (Ebersberg, Germany) 163 

using the company’s standard procedure. To assign taxonomic information to each OTU, 164 

DC-MEGABLAST alignments of cluster representative sequences to the sequence 165 

database were performed (Reference database: NCBI_nt (Release 2018-07-07)). 166 

Further processing of OTUs and taxonomic assignments was performed using the 167 

QIIME software package (version 1.9.1, http://qiime.org/) (Caporaso et al., 2010). 168 

Abundances of bacterial and fungal taxonomic units were normalized using lineage-169 

specific copy numbers of the relevant marker genes to improve estimates (Angly et al., 170 
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2014). Prior to the statistical analysis of microbial communities, we performed a 171 

cumulative sum scaling (CSS) normalization (R package metagenomeSeq v1.28.2) on 172 

the count data to account for differences in sequencing depth among samples.  173 

To record the seasonal mean temperature, we buried temperature loggers with a 174 

resolution of 0.5 °C (MF1921G iButton, Fuchs Elektronik, Weinheim, Germany) 10 cm 175 

north of each plot center, at a depth of 3 cm below ground (Junker et al., 2020; Ohler 176 

et al., 2020) during field work in 2019. The thermo loggers were set to start on 13th 177 

August 2019 and were stopped on 9th August 2020 with a total of 2048 measurements 178 

recorded on 362 days. Seasonal mean temperature was calculated on the basis of the 179 

recordings ranging from 13th August to 16th of September 2019 and 26th June to 9th 180 

August 2020 representing the period in which the plots were free of permanent snow 181 

cover before and after the winter 2019/2020. In 2020 (25 July - 21 August), we took 182 

additional soil samples from all plots to measure soil nutrient content (N P, K, Mg) as 183 

well as soil pH. Samples were sent to AGROLAB Agrar und Umwelt GmbH (Sarstedt, 184 

Germany) for analysis.  185 

Data analysis 186 

To test the predictability of the diversity and composition of each of the taxonomic 187 

group by the composition of other taxonomic groups as well as by environmental 188 

parameters, we used the machine learning algorithm random forest (R package 189 

randomForest). Random forest combines several randomized decision trees and 190 

aggregates their predictions by averaging, it can handle multiple input variables 191 

(explanatory variables), which are ranked by different levels of importance in 192 

predicting the dependent variable (Breiman, 2001; Biau & Scornet, 2016). As 193 

explanatory variables we used the community tables of plants, bacteria, and fungi with 194 

plots as rows and the abundance of the species or OTUs as columns (Table S1, S2 & 195 

S3); meanwhile we used multivariate datasets informing about the environmental 196 

conditions of each plot with plots as rows and environmental variables as columns 197 

(Table S4). As dependent variables we used univariate variable including plant Shannon, 198 

phylogenetic and functional diversity, bacteria Shannon diversity, fungi Shannon 199 
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diversity, soil seasonal mean temperature, pH, plot age, soil N, P, K, and Mg as well as 200 

principal components of the composition of all the taxonomic groups, resulting in 20 201 

variables in total (Table S5). As random forest analysis can only deal with univariate 202 

dependent variables, we used the first two principal component axis (PCA) which carry 203 

most information of the composition to refer to plant species composition (15.3% + 204 

11.2%), bacteria composition (6.4% + 4.6%) and fungi composition (4.1% + 3.2%). 205 

Plant functional composition matrix was generated based on the plant species 206 

composition table and the functional traits table obtained from Bioflor database. For 207 

each category of each trait, we calculated the total coverage of species belonging to the 208 

category, and this was done for all the 9 traits and all 9 traits were merged to a single 209 

table, thus generating the functional composition table with plots name as rows and 50 210 

trait categories as columns, i.e. each categorial traits had two or more categories 211 

resulting in a total of 50 categories. (Table S6). Plant functional composition was 212 

represented by the first two PCAs, too (59.3% + 12.3%). Plant Shannon diversity was 213 

calculated from the compositional dataset using the R package vegan (Dixon, 2003). 214 

Plant phylogenetic diversity was calculated using the R package picante (Kembel et al., 215 

2010). We extracted a phylogenetic tree using the R package pez (Pearse et al., 2015) 216 

for species existing in our field site from a dated molecular phylogeny tree (32,223 217 

species) for land plants (Zanne et al., 2014). In cases where species were not included 218 

in the tree, it was substituted by species from the same genus. Among 107 species 219 

existing in our plots, we were able to match and built a tree with 104 species and we 220 

used it for the calculation of phylogenetic diversity. We used ‘Functional dispersion’ 221 

calculated from the R package FD (Laliberte & Legendre, 2010) as the index for plant 222 

functional diversity. The mean plant height, leaf area, leaf weight and SLA of every 223 

species were used for the trait table (Table S7) identically for every plot, and for the 224 

community table the species with a low occurring frequency along the successional 225 

gradient (not included in the 48 species with traits measured) were ignored in the 226 

calculation of functional diversity. For bacteria and fungi, the Shannon diversity was 227 

calculated based on the OTU composition after rarefying the data to the minimum 228 
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number of reads available in the samples (repeats = 999).  229 

Using all combinations of explanatory and dependent variables, we performed random 230 

forest analyses with 10-fold cross validations to quantify the performance of the 231 

predictive model. Specifically, for each prediction, 80% of the plots were randomly 232 

selected as the training dataset and the remaining 20% of the plots were used as test 233 

dataset. The predictive model resulting from the training dataset was applied to the test 234 

data and the predicted values of the plots in the test dataset were correlated with the 235 

observed values of these plots. This process was repeated for ten times, and then we 236 

defined the mean Pearson’s r-value of ten correlations as ‘accuracy of prediction’ and 237 

used the proportion of significant correlations (p-value < 0.05) out of the 10 correlations 238 

as ‘significance frequency’. Additional to random forest analysis using all the plots for 239 

a global impression on the predictability of dependent variables, we also employed a 240 

moving frame approach to detect how the predictabilities change along the successional 241 

gradient. With the 135 plots, we grouped every 45 plots into one frame and used the 242 

median plot as identifier of the frame. Thus, the first frame included plots 1 to 45, the 243 

second 2 to 46, and so forth. This approach led to a set of 91 moving frames whose 244 

identifiers ranged from plot 23 to plot 113. Using the same proportion of training and 245 

test dataset, for every 45 plots in each frame, data of 36 (80%) randomly selected plots 246 

was used as training dataset, and the other 9 (20%) plots were used as test dataset. The 247 

accuracy of prediction and significance frequency were calculated for every frame as 248 

stated before. We fitted a linear or quadratic regression with the accuracy of prediction 249 

of every variable along the successional gradient as independent variable and the frame 250 

number as explanatory variable. The model with a higher r2 value was chosen and the 251 

statistically significant relationships were shown as a regression line. 252 

To make a comprehensive comparison of how well every variable is predicted by the 253 

other individual group and by the other three groups combined, we did the same random 254 

forest predicting procedure for each of the 20 variables using the other three groups 255 

together (except for the group that was considered in the dependent variable). We 256 

compared for each variable how well they were predicted by every other single group 257 
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and by three groups combined using the Tukey Test. 258 

Results 259 

In total we obtained soil bacteria and fungi composition data from n = 127 and 130 260 

plots, respectively; n = 5221 bacteria OTUs and n = 6016 fungi OTUs were detected in 261 

all the soil samples. Raw sequences of next-generation 16S rRNA gene amplicon 262 

sequencing are available at the NCBI Sequence Read Archive (SRA) under the 263 

BioProject accession PRJNA701884 and PRJNA701890. The mean accuracy of 264 

prediction of each pair of explanatory variables and dependent variables did usually not 265 

strongly differ between the global analysis considering all plots and the mean of the 266 

frame-wise analyses, indicating the validity of using the moving frames for random 267 

forest predictions. Most of the predictions fit a quadratic regression, indicating a non-268 

monotonic change of the accuracy of prediction along the successional gradient.   269 

Bacterial communities as predictors (Fig. 1 and Fig. 5a) – Bacterial communities 270 

(quantitative OTU tables) most accurately predicted the taxonomic composition of 271 

fungal communities (PC1 and PC2) followed by plant functional composition. Among 272 

the environmental parameters, plot age and pH-value were most accurately predicted 273 

by bacterial communities. Note that our results do not imply a direction of effects in the 274 

sense that the dependent variable is affected by the explanatory variable. For instance, 275 

bacterial communities do not affect the soil temperature but are affected by this 276 

environmental parameter. Accuracy of prediction of target variables associated with 277 

plant communities mostly decreased with plot age, whereas accuracy of prediction of 278 

fungi and environmental target variables remained constant or even increased along the 279 

age gradient in most cases.  280 

Fungi communities as predictors (Fig. 2 and Fig. 5b)– Fungal communities 281 

(quantitative OTU tables) most accurately predicted the taxonomic composition of 282 

bacterial communities (PC1 and PC2) and bacterial Shannon diversity was the variable 283 

with the lowest accuracy of prediction. Plot age and pH were also the environmental 284 

factors that were most accurately predicted by fungi communities. Similar to bacterial 285 
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predictions, accuracy of prediction of target variables associated with plant 286 

communities mostly decreased with plot age, whereas accuracy of prediction of 287 

bacterial and environmental target variables remained constant or increased along the 288 

age gradient in most cases. 289 

Plant communities as predictors (Fig. 3 and Fig. 5c)– Plant communities (quantitative 290 

vegetation table) predicted the plot age most accurately, followed by fungi composition 291 

(PC1) and bacteria composition (PC1). Plant communities predicted bacteria and fungi 292 

Shannon diversities least accurately. The plant predictions of variables concerning 293 

bacteria, fungi and some environmental parameters were mostly decreasing with 294 

increasing plot age. For environmental variables, the accuracy of prediction for 295 

temperature, pH and soil Mg increased and the others were mostly decreasing with plot 296 

age. 297 

Environmental factors as predictors (Fig. 4 and Fig. 5d)– Environmental factors 298 

(multivariate table of environmental parameters) predicted the fungi composition PC1 299 

and bacteria composition PC1 with the highest accuracy, followed by plant functional 300 

diversity and plant species composition PC2. Accuracy of prediction for plant variables 301 

were mostly decreasing along the gradient, and for bacteria and fungi they either had 302 

the highest accuracy of prediction in the middle age or increase with plot age.  303 

Combined groups as predictors (Fig. 6) – Using all taxonomic groups and 304 

environmental variables (except for the group that was considered in the dependent 305 

variable) together to predict dependent variables increased the accuracy of prediction 306 

for plant functional composition PC1, plant functional composition PC2, fungi 307 

composition PC1. For plot age, the accuracy of prediction even decreased, and for other 308 

variables especially environmental variables, the accuracy of prediction with all the 309 

groups combined did not significantly increase. 310 

Discussion  311 

Our results indicate that the composition and diversity of plant, bacteria, and fungi is -312 

to a certain degree - predictable by the composition of the respective other taxonomic 313 
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groups as well as by environmental factors. The accuracy of prediction, however, varied 314 

along the successional gradient of the forefield of the Ödenwinkelkees glacier. Overall, 315 

the taxonomic groups predicted each other more accurately than environmental factors 316 

predicted the taxonomic groups; within the taxonomic groups their composition was 317 

better predicted than diversity indices. When using a combined dataset as predictors, 318 

only a few variables obtained increased accuracy of prediction compared with using a 319 

single group, and most of the variables have no significant difference or even decreased 320 

accuracy of prediction. Well performing predictive models may indicate direct 321 

interactions between taxa or effects of the environment on taxa. However, statistical 322 

associations between taxa may also suggest that both taxa respond similarly to a third 323 

taxonomic group or an environmental factor (Blanchet et al., 2020). Thus, while our 324 

results do not directly reveal ecological interactions, they do provide insights into the 325 

concerted community assembly of different taxa in response to changing environmental 326 

factors along a successional gradient.  327 

Variables describing the composition of taxonomic groups (e.g. PC axis of community 328 

composition) were mostly more precisely predicted by other taxonomic groups than 329 

diversity indices. Particularly, the community composition of bacteria and fungi 330 

mutually predicted each other most precisely, which confirms previous studies 331 

demonstrating the interdependences between bacteria and fungi (Miransari, 2011; 332 

Deveau et al., 2018). Both bacteria and fungi community composition predicted plant 333 

functional composition more precisely than species composition and functional, 334 

phylogenetic and taxonomic diversity of plants. These results indicate that the plant 335 

functional identity has a stronger effect on soil microbial communities than plant 336 

species identity and diversities (Dassen et al., 2017). Fungal composition was better 337 

predicted by plant composition than bacterial composition, which may reflect the tight 338 

interaction between plants and fungi, especially mycorrhiza (Horn et al., 2017; 339 

Sweeney et al., 2021). The interactions between plants and microbes are mediated 340 

through plant root exudates and litter input (Knelman et al., 2012; Lopez-Angulo et al., 341 

2020). Root exudates vary substantially between different plant species and various 342 
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microbes utilize the carbon source from plants (Vandenkoornhuyse et al., 2007). In this 343 

way, the plant community provides various niches for the microbes and plays an 344 

important role shaping microbial communities in the soil (Bever et al., 2012). Likewise, 345 

the interplay of facilitative and antagonistic effects determines the direction of 346 

feedbacks from soil microbes to plants and maintains the diversity of plant communities 347 

(Bever et al., 2012; Teste et al., 2017; Mony et al., 2021). Nevertheless, although it has 348 

been reported that plant composition has an effect on microbial richness (Lopez-Angulo 349 

et al., 2020), we did not detect a strong accuracy of prediction between plant 350 

composition and bacterial or fungal Shannon diversity. This suggests that interactions 351 

within taxonomic groups are reducing the accuracy of prediction between the 352 

composition and diversity of plants and microbes. For instance, positive or negative 353 

effects of individual bacterial strains on plant growth may be changed by the presence 354 

of other strains (Raza et al., 2020), which may lead to a hardly predictable complexity 355 

of interdependencies and influences.  356 

Plot age, soil temperature and soil pH were well predicted by taxonomic groups, and 357 

soil nutrients were less well predicted. In contrast, the environmental variables did not 358 

accurately predict the composition and diversity of the taxa. As stated above, our 359 

approach is not implying a direction of effects, which means that it is more likely that 360 

the environmental factors affect the composition and diversity of the taxonomic groups 361 

and not vice versa. Among all the environmental factors, plot age is the environmental 362 

factor best predicted by taxonomic groups, followed by soil temperature and pH. Plants 363 

predicted plot age better than bacteria and fungi, and the signal was even blurred when 364 

using all the groups together. This indicates that plant communities follow a clear 365 

succession with age-specific stages. Microbes may be more responsive to other 366 

environmental factors that may act on short term fluctuations such as temperature, 367 

which is equally well predicted by the compositions of bacteria, fungi and plants 368 

suggesting its common importance in defining the niche of all taxa. Previous studies 369 

demonstrated that plants and microbes from different origins may respond to increased 370 

temperature variously, thus we may infer that climate change will shift the interactive 371 
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patterns between species (Rasmussen et al., 2019; Rudgers et al., 2020; Losapio et al., 372 

2021). In addition, pH was better predicted by bacteria and fungi than by plants, 373 

indicating that pH is affecting soil microbes more than plants, which is in agreement 374 

with previous studies illustrating the importance of pH in affecting microbial 375 

communities (Knelman et al., 2012; Shen et al., 2020). Soil nutrients such as N, P, K, 376 

Mg were more accurately predicted by plants than by microbes suggesting strong 377 

feedbacks between soil nutrients and plant communities (Fischer et al., 2019). In 378 

summary, we showed that plants, bacteria, and fungi mutually predict each other’s 379 

diversity and community composition and that environmental parameters are also well-380 

suited predictors for the same biotic dependent variables. This is in line with previous 381 

studies demonstrating that plant communities and environmental factors are 382 

contributing and explaining different parts of variation in soil microbial communities 383 

(Mitchell et al., 2011) and that interactions between plants and microbes can be 384 

independent on environmental changes (Sweeney et al., 2021).  385 

Accuracy of prediction varied with successional age. For instance, plant taxonomic and 386 

functional composition was better predicted by bacteria and fungi at early than late 387 

succession. This could be explained by a relatively clear signal of interaction between 388 

individual plant species and microbes at early succession while the signal of individual 389 

plant species may be diluted at late successional stages where communities become 390 

complex (Porazinska et al., 2018). The interactions between plants and microbes are 391 

known to be responding to primary successions. For instance, while plant-derived 392 

carbon becomes a major source for bacteria after 50 years of succession, these 393 

communities utilize ancient carbon in the first decades after deglaciation, which has 394 

been demonstrated in the area of our study site (Bardgett et al., 2007). In accordance 395 

with this finding, Tscherko et al. (2005) found evidence of plants shaping microbial 396 

communities in soils older than 43 years in another Austria glacier, the Rotmoosferner. 397 

These results suggest a higher accuracy of prediction of microbial communities by 398 

plants at later successional stages, which is not fully in line with our findings. In contrast 399 

to many other statistical methods, random forest decision trees consider individual 400 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457913
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

features instead of multivariate representations of the communities. Thus, even though 401 

bacterial communities are mainly shaped by abiotic factors and non-plant related carbon 402 

sources, random forest is able to select those strains that may be associated with the few 403 

plant species colonizing the young plots, which represents a strong signal in the data. 404 

In contrast in older plots, when plants provide the major carbon source, the signal of 405 

each individual species may be diluted resulting in a poor prediction. Additionally, 406 

further carbon sources accumulate such decomposed soil organic matters, which again 407 

sustains microbial communities unrelated to plant species diversity and composition. 408 

Another reason for our finding may be the reduced variability in plant species 409 

composition and diversity between older plots, which is a common finding in primary 410 

successions (Ortiz-Alvarez et al., 2018). This could also partly explain the decrease of 411 

accuracy of prediction between plants and microbes along the succession as the 412 

decreased variation of community composition makes it less sensitive to detect the 413 

change of the interacting taxa. Finally, age is not the only factor that is affecting the 414 

successional age of plots in glacier forefields, instead allogenic factors may reset 415 

successions or at least slow down successional progress in community development 416 

(Wojcik et al. 2021). These allogenic factors, such as geomorphic events, accumulate 417 

over time and thus may lead to outliers in community composition. If these outlier plots 418 

are part of test dataset, they cannot be predicted on models as predictions are only 419 

possible in the range of the training dataset.  420 

Our results demonstrate the concerted development of plants and microbial 421 

communities regulated by environmental factors along a successional gradient, which 422 

suggests strong interdependencies between the taxa. As a next step, approaches like the 423 

one described here may be used to identify indicator species and environmental 424 

variables that inform best about the diversity and composition of ecosystems, which 425 

facilitates monitoring and conservation efforts. Additionally, climate warming demands 426 

the prediction of ecosystem-wide responses and our data presents existing patterns and 427 

offers information for future predictions.  428 
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Figures 657 

Fig. 1 Random forest predictions using the community table of soil bacterial 658 

communities (OTU table) to predict seven variables of plant (green) and three variables 659 

of fungi (orange) as well as seven variables of environmental factors (blue). The colored 660 

circles at the left of each plot denote the mean ± standard deviation of the accuracy of 661 

prediction using the full dataset (results of 10-fold cross validation), and the black 662 

circles denote the mean ± standard deviation of the accuracy of prediction for all the 663 

frames. Each grey to black circle on the right of each plot represents the mean accuracy 664 

of prediction of each frame and the color gradient is showing how many correlations of 665 

the 10-fold cross-validation were significant with lighter colors indicating less frequent 666 

significant predictions. A quadratic or linear regression (the model with higher adjusted 667 

r2 value) is fit for the gradient if it is significant, showing a change of the accuracy of 668 

prediction along the successional gradient. 669 

Fig. 2 Random forest predictions using the community table of soil fungal communities 670 

(OUT table) to predict seven variables of plant (green) and three variables of bacteria 671 

(red) as well as seven variables of environmental factors (blue). The colored circles at 672 

the left of each plot denote the mean ± standard deviation of the accuracy of prediction 673 

using the full dataset (results of 10-fold cross validation), and the black circles denote 674 

the mean ± standard deviation of the accuracy of prediction for all the frames. Each 675 

grey to black circle on the right of each plot represents the mean accuracy of prediction 676 

of each frame and the color gradient is showing how many correlations of the 10-fold 677 

cross-validation were significant with lighter colors indicating less frequent significant 678 

predictions. A quadratic or linear regression (the model with higher adjusted r2 value) 679 

is fit for the gradient if it is significant, showing a change of the accuracy of prediction 680 

along the successional gradient. 681 

Fig. 3 Random forest predictions using the community table of plant communities to 682 

predict three variables of bacteria (red) and three variables of fungi (orange) as well as 683 

seven variables of environmental factors (blue). The colored circles at the left of each 684 

plot denote the mean ± standard deviation of the accuracy of prediction using the full 685 
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dataset (results of 10-fold cross validation), and the black circles denote the mean ± 686 

standard deviation of the accuracy of prediction for all the frames. Each grey to black 687 

circle on the right of each plot represents the mean accuracy of prediction of each frame 688 

and the color gradient is showing how many correlations of the 10-fold cross-validation 689 

were significant with lighter colors indicating less frequent significant predictions. A 690 

quadratic or linear regression (the model with higher adjusted r2 value) is fit for the 691 

gradient if it is significant, showing a change of the accuracy of prediction along the 692 

successional gradient. 693 

Fig. 4 Random forest predictions using all the environmental factors to predict seven 694 

variables of plant (green) and three variables of bacteria (red) as well as three variables 695 

of fungi (orange). The colored circles at the left of each plot denote the mean ± standard 696 

deviation of the accuracy of prediction using the full dataset (results of 10-fold cross 697 

validation), and the black circles denote the mean ± standard deviation of the accuracy 698 

of prediction for all the frames. Each grey to black circle on the right of each plot 699 

represents the mean accuracy of prediction of each frame and the color gradient is 700 

showing how many correlations of the 10-fold cross-validation were significant with 701 

lighter colors indicating less frequent significant predictions. A quadratic or linear 702 

regression (the model with higher adjusted r2 value) is fit for the gradient if it is 703 

significant, showing a change of the accuracy of prediction along the successional 704 

gradient. 705 

Fig. 5 Summary of the accuracy of prediction using taxonomic groups (bacteria (a), 706 

fungi (b), plant (c)) and environmental factors (d) to predict variables from the other 707 

three groups along the successional gradient. Variables from each group are color-coded 708 

(red: bacteria, orange: fungi, green: plant, blue: environment) and ranked by accuracy 709 

of prediction. 710 

Fig. 6 Summary of the accuracy of prediction for each variable being predicted by every 711 

single group (red: bacteria, orange: fungi, green: plant, blue: environment) as well as 712 

by the other three groups combined (grey). The label on each boxplot is the result of 713 

Tukey Test showing if there is significant difference of accuracy of prediction between 714 
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any pair of predicting groups.  715 
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Fig. 1 716 
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Fig. 2 718 
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Fig. 3 720 
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Fig. 4 722 
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Fig. 5 724 
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Fig. 6 726 
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Supporting Information 728 

Additional Supporting Information may be found online in the Supporting Information 729 

section at the end of the article. 730 

Table S1 Species composition of plant communities used as explanatory variables in 731 

predictive models. 732 

Table S2 Community table of soil bacterial communities (OTU table) used as 733 

explanatory variables in predictive models. 734 

Table S3 Community table of soil fungal communities (OTU table) used as explanatory 735 

variables in predictive models. 736 

Table S4 Environmental parameters table used as explanatory variables in predictive 737 

models. 738 

Table S5 All the 20 dependent variables used for predictive models. 739 

Table S6 Functional composition of plant communities. 740 

Table S7 Normalized mean value of field-measured traits (plant height, leaf area, leaf 741 

weight, SLA) for 48 species. 742 
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