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Abstract:  35 

Brain, as a complex cognitive system, often processes multiple dimension 36 

information synchronously and integrate them to adapt dynamic environments and 37 

make effective decisions.1-3 How to retrieve latent neurobehavioral processes from 38 

complex human neurobiological signals is an important yet previously unresolved 39 

challenge.4,5 For instance, the previous literature has proposed two fundamental yet 40 

mutually confounded processes during the decision making and affective processing, 41 

i.e. valance and arousal.6,7 Here, we develop a novel analytical approach, orthogonal-42 

Decoding multi-Cognitive Processes (DeCoP), with which we dissociate neural 43 

responses in processing valence and arousal information during tests of motivational 44 

and emotional function. During reward/punishment anticipation, we decode brain-wide 45 

responses into spatially overlapping, yet functionally independent, evaluation and 46 

readiness networks, i.e., motivational valence and arousal processing, which are 47 

modulated differentially by the meso-limbic vs nigro-striatal dopamine systems. 48 

Similarly, during emotional reactivity, we decompose amygdala response into 49 

independent emotional valence and facial arousal processing features. We demonstrate 50 

that DeCoP can resolve paradoxically unexpected brain ‘inactivation’, and be applied 51 

more generally to decode multiple latent neurobehavioral processes. Furthermore, we 52 

anticipate our approach to advance both the design and hypothesis testing of cognitive 53 

experimental task paradigms. 54 

  55 
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Main 56 

The brain frequently engages parallel processing involving different latent 57 

behavioural processes mediated by functionally distinct, though spatially over-lapping, 58 

neural networks. Previously, human functional neuroimaging studies have been 59 

unsuccessful in unravelling these processes from basal compound physiological signals. 60 

It is therefore challenging to build process-specific and mechanistic models of the brain 61 

or develop robust biomarkers for dysfunctional processes in psychiatric disorders. 62 

Recent overarching frameworks propose two different cognitive processes engaged in 63 

parallel during rewarded or punished behaviour, namely evaluation (i.e. valence 64 

processing, scaling signal values from reward to punishment) and response readiness 65 

(subsuming arousal and attentional salience, contributing to response preparatory 66 

processes) 3,6. The evaluation process is essential for guiding upcoming action 67 

selections 8, for which the brain has evolved dedicated regions/circuits for evaluating 68 

the value of actions 9-12. Complementary to evaluation, both reward and punishment, as 69 

highly salient events, attract higher attention than neutral stimuli, also engaging greater 70 

levels of motor preparation and emotional arousal 13-15, hence contributing to response 71 

(including motor) readiness. Therefore, evaluation and readiness signals are inevitably 72 

confounded with each other during reward/punishment processing. Unfortunately, 73 

decomposing this compound signal, for example in human fMRI studies, has proven 74 

challenging because independent components cannot be identified in many 75 

experimental test paradigms, although previous attempts have made to overcome this 76 

problem 4,5,16. However, existing approaches have failed to disentangle signals in brain 77 

regions known to encode both evaluation and readiness signals, for example, in the 78 

striatum and the ventromedial prefrontal cortex (vmPFC) 15, and have not provided 79 

convincing evidence to either prove or refute the assumption of independence of the 80 

signals. To resolve this complex theoretical issue, we developed a novel approach, 81 

orthogonal-Decoding multi-Cognitive Processes (DeCoP), which, for the first time, 82 

allows for a brain-wide decomposition of process-specific neurobiological 83 

representations of complex neurobehavioral processes. This technique has wide 84 
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application for decomposing compound neuroimaging signals, such as the BOLD 85 

response. 86 

Experiment and model designs of DeCoP 87 

A monetary incentive delay (MID) task (Fig. 1a), one of the classical and widely 88 

used fMRI paradigms for reward processing, was conducted in 1939 children aged 9-89 

10 from the ABCD study (Extended Data Table. 1)17 to assess reward/punishment 90 

processing with gain/loss conditions for small or large amounts of money and a neutral 91 

condition (i.e., -5.0 $, -0.2 $, 0, 0.2 $ or 5.0 $). Specifically, in the second-level analyses 92 

of the BOLD signal, based on these amounts, we defined plausible orthogonal contrasts 93 

[-2, -1, 0, 1, 2] and [2, 1, 0, 1, 2] that reflected putative independent hypothetical 94 

processes of evaluation and readiness, respectively (i.e. a large reward and a large 95 

punishment are assumed to be equally salient). Their complementary orthogonal 96 

contrasts (i.e., [-1, 2, 0, -2, 1] and [1, -2, 2, -2, 1]) could explain information not 97 

accounted for by the above hypothetical models (Fig. 1b). We were thus able to retrieve 98 

the decomposed signal components of those confounded processes (Extended Data Fig. 99 

1a, see Methods for more details). 100 

Decompose neural signals with DeCoP 101 

The vmPFC (Brodmann area [BA] 10-11; Peak MNI: [-9, 49, -9], t1938 = 15.69, 102 

Cohen’s D = 0.36, puncorrected = 2.55E-52) and ventral striatum (VS, Peak MNI: [7, 25, -103 

3], t1938 = 14.21, Cohen’s D = 0.32, puncorrected = 1.14E-43) were the most prominent 104 

regions identified in the evaluation model (Fig. 1c upper left&1d), thus being highly 105 

sensitive for tracking the entire dimension from punishment to reward. These areas 106 

coincide with the terminal regions of the dopamine neuron projections from the ventral 107 

tegmental area (VTA), i.e. the meso-corticolimbic dopamine system 8,18,19. For the 108 

readiness model, however, the signals were more widely dispersed across cortical and 109 

subcortical areas, including motor-somatosensory, salience and attention networks, and 110 

regions such as the dorsal striatum (DS, Peak MNI: [0, 10, 4], t1938 = 32.80, Cohen’s D 111 

= 0.75, puncorrected
 = 4.56E-188) and thalamus (THA, Peak MNI: [13, -6, 16], t1938 = 112 

24.66, Cohen’s D = 0.56, puncorrected = 5.23E-117) (Fig. 1c upper right &1d), consistent 113 
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with their engagement in processing both reward and punishment 20.  114 

Neural circuits for decomposed signals 115 

We then investigated whether the neural representations of evaluation and 116 

readiness signals were underpinned by different neural circuits, in particular those 117 

modulated putatively by the midbrain dopaminergic projections originating from either 118 

the substantia nigra pars compacta (SNc) or the VTA, which plays a central role in 119 

reward prediction and approach 18,19. We found regions of the evaluation model with 120 

higher functional connectivity (FC) to VTA than to SNc (paired t-test: t183 = 14.84, 121 

Cohen’s D = 1.10, p < 10E-32, Fig. 2a), and regions of the readiness model with higher 122 

FC to the SNc than to the VTA (paired t-test: t183 = 3.63, Cohen’s D = 0.27, p = 0.0004, 123 

Fig. 2a) based on 7T high-resolution resting-state fMRI data from the Human 124 

Connectome Project (HCP) 21. Further, we extracted the t-maps of the difference 125 

between the seed-based FC from VTA and SNc (i.e. ‘VTA > SNc’) (Extended Data Fig. 126 

2a-c), which was exhibited high similarities, although in opposite directions, with the 127 

t-maps of both evaluation (r = 0.22, padj < 10E-20) and readiness (r = -0.12, padj < 10E-128 

12, Fig. 2b) models. Thus, the separate VTA and SNc dopamine projections could be 129 

the putative source of evaluation and readiness signals, respectively. 130 

Independence of decomposed neural signals 131 

We further demonstrated that the distinct underlying neural pathways of 132 

decomposed cognitive processes were indeed independent, which could be directly 133 

inferred from uncorrelated signal components in the proposed decoding procedure (see 134 

Methods for detailed proof). Based on our simulation results, only if the compound 135 

signals were indeed a combination of independent signals, the decomposed signals from 136 

DeCoP could be uncorrelated (|rmean| < 0.001, the ‘Independent’ model in Extended Data 137 

Fig. 1b & Table 2). Otherwise, the decomposed signals were highly correlated and 138 

hence inseparable (the ‘One Signal’ model: rmean = 0.54; the ‘Push and Pull’ model: 139 

rmean = -0.45; Extended Data Fig. 1b & Table 2). Thus, DeCoP also serves as an 140 

analytical tool for the statistical inference on the independence of decomposed signals. 141 

In this study, we found that the signals attributed to evaluation and N-shape models 142 
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(dependent signals: rmean = -0.093, pbootstrap < 0.0001 based on 10000 bootstrap; 32.06% 143 

voxels with r < -0.1) together described the sensitivity of evaluation from punishment 144 

to reward. This was independent (|rmean |< 0.01, pbootstrap > 0.3; > 99% voxels with r∈[-145 

0.1,0.1]) of those attributed to the readiness and W-shape models (dependent signals: 146 

rmean = -0.159, pbootstrap < 0.0001; 93.29% voxels with r < -0.1) that together described 147 

the differentiated engagement of readiness from the neutral condition to 148 

reward/punishment conditions (Fig. 2a&c; see Supplementary Information for more 149 

details). Hence, the observed unbalanced sensitivity towards reward and punishment 150 

could be parsed into two independent and balanced signal components, i.e. a point-151 

symmetric evaluation process and a line-symmetric readiness process. Moreover, the 152 

paradoxical ‘inactive’ vmPFC during the large-win vs neutral contrast could now be 153 

understood as a product of a trade-off between two independent processes: activation 154 

by reward stimuli (i.e. of the evaluation process) and deactivation as part of the default 155 

mode network (i.e. of the readiness process).  156 

Complementary signal components from DeCoP 157 

On the other hand, the N-shape and W-shape models (Fig. 1c) account for the 158 

deviation from (or equivalently, they adjust) the shapes of the proposed evaluation and 159 

readiness models, particularly the response to small reward/punishment conditions (Fig. 160 

3c). This modification of the additional complementary orthogonal vectors also 161 

provided an effective measurement of distance between the latent pure signal and the 162 

proposed model (see Methods and Supplementary Information for more details). 163 

Therefore, converging evidence indicated that most brain regions, including VS and 164 

vmPFC, distinguish reward from punishment signals with their relative scales. In 165 

another word, the brain simplifies the scales of the different values when processing 166 

reward/punishment information, hence processing highly abstract information only. 167 

However, the bilateral anterior insula (aINS) and dorsal anterior cingulate cortex 168 

(dACC), commonly referred to as the salience network, were only sensitive to the large 169 

reward/punishment conditions, while the small reward/punishment and neutral 170 

conditions were undifferentiated, hence most likely tracking the parametric nature of 171 
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the experimental design (i.e. [-5, -0.2, 0, 0.2, 5] Extended Data Fig. 3&4 and Extended 172 

Data Table 3; see Supplementary Information for detailed analyses). These results were 173 

consistent with the role of aINS and dACC in updating and maintaining subjective value 174 

information.22,23 175 

Signal components affect task performance 176 

We further implemented a weighted voxel co-activation network analysis 177 

(WVCNA) on the ABCD MID task to capture the most informative brain-wide signal 178 

clusters 24 (see Supplementary Information for details) and identified 55 and 194 179 

clusters for the evaluation and readiness models, respectively (Extended Data Fig. 5-180 

6& Supplementary Table 1). Again, we observed brain-wide low correlations between 181 

evaluation and readiness clusters (rmean = 0.01, p = 0.1621, > 99% pairwise r∈[-0.1,0.1]; 182 

Fig. 2b), hence further supporting their neural independence. We then investigated the 183 

effects of decomposed signals on task performance using canonical correlation analysis 184 

(CCA), and found associations between variations in the neural signal and task 185 

performance across three condition categories (i.e. reward, neutral and punishment) for 186 

both evaluation and readiness: accuracy (evaluation: adjusted η2 (adj-η2) = 0.025, pperm 187 

< 0.001; readiness: adj-η2 = 0.079, pperm < 0.001) and reaction time (evaluation: adj-η2 188 

= 0.020, pperm < 0.001; readiness: adj-η2 = 0.075, pperm < 0.001) (Supplementary Table 189 

2&3). For the evaluation clusters, higher accuracy and faster reactions for both reward 190 

and punishment conditions (but not the neutral condition) were mainly associated with 191 

reduced sensitivity in left ventral striatum (VS), bilateral inferior temporal-occipital 192 

junctions (iTOJ), and in both sub- and pre-genual anterior cingulate cortices (sgACC 193 

and pgACC) (presented by the first components; r < -0.04, Supplementary Table 2&3, 194 

Extended Data Fig. 7a&b). For the readiness clusters, the executive regulation related 195 

to accuracy might function differently in the presence or absence of valence signals: in 196 

reward/punishment trials (represented by the first component), higher accuracy was 197 

associated with greater engagement of task-preparation regions, i.e. including the 198 

somatosensory-motor cortices and the dorsal attention network (r > 0.04) but 199 

suppression of the salience network, i.e. the dorsal aINS and the dorsal ACC (dACC) 200 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.25.457728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457728
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

(r < -0.04), whereas on neutral trials (represented by the second component) both 201 

relationships were reversed, with higher accuracy now being associated with 202 

suppressed task-preparation areas (r < -0.04) and greater engagement of the salience 203 

network, i.e. the ventral aINS and dACC (r > 0.04, Supplementary Table 2&Extended 204 

Data Fig. 7c). Nevertheless, faster reactions were uniformly associated with greater 205 

engagement of task-preparation areas (r > 0.04) and lesser engagement bilaterally of 206 

the anterior putamen (aPUT), left VS, dACC and the right frontoparietal network (FPN, 207 

i.e. dorsal lateral prefrontal cortex (DLPFC) and intra-parietal sulcus (IPS)) (r < -0.04) 208 

across all three conditions (represented by the first component, Supplementary Table 209 

3&Extended Data Fig. 7d; see Supplementary Information for more information). 210 

Decompose emotion processes with DeCoP 211 

To further demonstrate the broader applicability of this unified strategy for signal 212 

decomposition, we decoded another complex cognitive process, emotional face 213 

processing. Similarly to reward/punishment processing, emotional processing also 214 

involves compound signals of distinct behavioural processes such as affective valence, 215 

emotional arousal, and attention, especially in the amygdala 25. To address this issue 216 

using the DeCoP method we analysed fMRI data for a modified emotional faces task 217 

performed in 1091 19-year-old adolescents from the IMAGEN project 26. While the 218 

right amygdala was activated by all types of facial stimuli in the emotional faces task 219 

(Fig. 4a, t1090 > 13, Cohen’s D > 0.39), there was no significant difference in activations 220 

between the angry and neutral conditions (Fig. 4b upper right), consistent with previous 221 

studies 27,28. Given the multidimensional role of the amygdala in several of the 222 

underlying processes it is conceivable that the emotional-decoding process-specific 223 

neural responses have been obscured by other processes, such as general processing of 224 

facial features. Again, we hypothesized that two dissociable components are involved 225 

in emotional processing, i.e. affective valance, corresponding to the neural 226 

representation of the affective facial emotion information (represent as [1, 0, -1] from 227 

angry to happy, Fig. 4c) and facial arousal, which was defined as the degree of 228 

excitement or motivational reaction when a person experienced and recognized an 229 
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emotional face (represent as [1, 0, 1], Fig. 4c). By applying DeCoP, we found an 230 

independent positive reaction to affective valence and negative reaction to facial arousal 231 

(Fig. 4c, rmean = -0.041, pbootstrap = 0.1083; 97.78% voxels with |r| < 0.1). Hence, the 232 

right amygdala linearly tracked emotional valence on the happy through neutral to 233 

angry dimension, while the neutral faces attracted more attention (i.e. higher activation) 234 

than emotional ones. Therefore, both processes lead to an undifferentiated contrast for 235 

angry vs neutral faces.  236 

Conclusion 237 

In conclusion, we have developed and evaluated a universally applicable, novel 238 

signal decomposition strategy, 'DeCoP', to disentangle behavioural processes that 239 

confound the observation of functional neuroimaging signals. Through DeCoP we 240 

demonstrated the independence of evaluation and readiness processing in the brain, 241 

putatively modulated differentially by neural circuits targeting VTA and SNc; we also 242 

demonstrated that most brain regions, including the ventral striatum, coded signals 243 

based on abstract information instead of the observed exact values, except for the 244 

salience network, i.e. pgACC/dACC and aINS. Most importantly, we demonstrated that 245 

DeCoP could help to resolve common paradoxical observations in fMRI tasks which 246 

involve multiple interferential latent behavioural or cognitive processes, for example, 247 

the unexpectedly ‘inactive’ vmPFC in the contrast of large reward vs no reward, and 248 

the lack of differential amygdala activation in the contrast of angry vs neutral faces. We 249 

expect DeCoP can be applied usefully in many other comparably ambiguous data-sets.  250 

  251 
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Figures 336 

 337 

Fig. 1. Experimental design and neural representations of the orthogonal 338 

decomposition. a. Procedure of the monetary incentive delay task (MID) and the 339 

proposed evaluation and readiness cognitive processes; b. An illustration of 340 

Orthogonally Decoding multi-Cognitive Processes (DeCoP); c. Brain-wide T-maps of 341 

decomposed signals for orthogonal contrasts. Brain-wide significance was set as |T|>5. 342 

The MNI coordinates of brain slices were inserted at the lower left; d. Decomposed 343 

signals in highlighted brain regions. 344 
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 346 

Fig. 2 The decomposed evaluation and readiness processing targets VTA and SNc 347 

neural circuits respectively. a. Left: the masks of Brainstem, VTA and SNc were from 348 

AAL3 atlas. Middle: strength of functional connectivities (FCs) to VTA and SNc from 349 

the evaluation and readiness regions identified in Fig. 1. Right: Paired t-tests between 350 

FCs to VTA and SNc from evaluation and readiness; b. Brain-wide pattern correlations 351 

between the strength of decomposition signals (left: evaluation; right: readiness) and 352 

the differences of seed-based FCs from VTA and SNc. Brain-wide significance was set 353 

as |T|>5. 354 
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 356 

Fig. 3 Inference for independence among orthogonally decomposed signals during 357 

the reward anticipation. a. The distributions of pair-wise correlations between signals 358 

of orthogonal contrasts at each voxel. Mean correlations deviated from 0 would indicate 359 

a pair of related signals; b. The correlation matrix of signals from the evaluation and 360 

readiness clusters identified by WVCNA. c. An illustration of how related signals could 361 

describe the evaluation-related and readiness-related processing. 362 
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 364 

Fig. 4 Decoding affective valence and facial arousal of emotional face processing 365 

in amygdala by DeCoP. a. BOLD signals of the right amygdala under different task 366 

conditions. b. Activations of the right amygdala under different contrasts. c. The neural 367 

representations of affective valence and facial arousal based on orthogonal 368 

decompositions. Brain-wide significance was set as |T|>5. 369 
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Methods 371 

Participants 372 

The dataset used for this study was selected from Annual Curated Data Release 373 

2.01 (https://data-archive.nimh.nih.gov/abcd) of the Adolescent Brain Cognitive 374 

Development (ABCD) cohort, which recruited 11,875 children between 9–11 years of 375 

age from 21 sites across the United States 17. The study conforms to each site's 376 

Institutional Review Board's rules and procedures, and all participants provide 377 

informed consent (parents) or informed assent (children). More details of the subjects 378 

and the data collection are provided at the ABCD website 379 

(https://abcdstudy.org/scientists/protocols) and are also described previously 17. 380 

 Magnetic resonance imaging (MRI) data in the ABCD study were collected from 381 

different 3T scanner platforms (i.e. Siemens Prisma, General Electric (GE) MR750 and 382 

Philips Achieva dStream). To minimize biases introduced by multiple platforms, we 383 

only included MRI data from the most frequent manufacturer Siemens Prisma, i.e. 5968 384 

participants from 13 sites. By examining the similarity of brain activations across these 385 

13 sites, we selected 2326 participants from 4 sites with consistent activation patterns. 386 

Furthermore, the data with poor registration (by visual check) and high head motion 387 

(mean framework displacement (FD) > 0.5 mm) were excluded. Hence, 1939 quality-388 

controlled participants were included in the following analysis and the demographic 389 

characteristics of these participants are summarized in Extended Data Table 1. 390 

Monetary incentive delay (MID) task design 391 

A modified version of the MID task was used to examine brain activation during 392 

monetary reward anticipation and receipt 29, which consists of five levels of incentive: 393 

large loss, small loss, neutral, small win and large win (i.e., -5.0 $, -0.2 $, 0$, 0.2 $ and 394 

5.0$ respectively). In each trial, participants were first presented with one of three cue 395 

shapes (circle, square or triangle) that indicated the trial condition (of win, loss, or 396 

neutral, respectively), as well as the amount of money involved. This cue presentation 397 

(2,000 ms) was followed by a jittered anticipatory delay (1,500-4,000 ms) of fixation 398 

on a black crosshair. Subsequently, a blank target cue (with the same shape as the 399 
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previously presented cue) emerged and required the participants to press a response 400 

button before the target disappeared to win or avoid loss. With a tracking algorithm, the 401 

time of the target on the screen was dynamically manipulated (i.e., 150 ms-500 ms) to 402 

maintain a 60% success rate for each participant. After a short delay, feedback of the 403 

current trial (i.e., the amount of monetary gain or loss) and the accumulated reward so 404 

far were presented for 1,500-1,850 ms (Fig. 1A). During the anticipation phase, 405 

participants underwent 50 trails in total (i.e., 10 trails per incentive degree). Participants 406 

had first completed a practice session outside the scanner before completing two 407 

sessions of the MID task with fMRI recording (approximately 5.5 minutes each). 408 

Image acquisition and preprocessing 409 

 Imaging protocols were harmonized across sites and scanners. 3-dimensional T1-410 

weighted images (1.0 mm isotropic, TR = 2500 ms, TE = 2.88 ms) were acquired with 411 

a gradient-echo sequence for anatomical localization and high spatial (2.4 mm isotropic) 412 

and temporal (TR = 800 ms) resolution MID-task-based fMRI was acquired with echo-413 

planar imaging (EPI) sequence in two separate runs (approximately 5.5 minutes each). 414 

The detailed MRI acquisition protocol is described elsewhere 17. All functional images 415 

were preprocessed with the same preprocessing procedure by suggested protocols from 416 

FMRIB's Software Library (FSL v5.0.9), Advanced Normalization Tools (ANTs v1.9.2) 417 

and Analysis of Functional NeuroImages (AFNI v18.3.03). Concretely, the whole 418 

preprocessing procedure included the following steps: (i) brain extraction (ANTs 419 

antsBrainExtraction), nonlinear registration to MNI space (ANTs antsRegistrationSyN) 420 

for structural images; (ii) rigid realignment to adjust for motion (FSL MCFLIRT) and 421 

field map correction (FSL TOPUP) for functional images; (iii) co-registration to a high-422 

resolution T1 image and normalization to 3 mm isotropic MNI standard space (ANTs 423 

antsRegistrationSyN) and (iv) spatial smoothing with a 6mm full-width at half-424 

maximum (FWHM) Gaussian kernel (AFNI 3dBlurToFWHM) and detrending (AFNI 425 

3dDetrend). 426 

First-level analysis of task-based fMRI 427 
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 At the first-level analysis, we set up a general linear model to estimate the effects 428 

of the task conditions at the individual level with SPM, which contained 20 task 429 

condition regressors (i.e. Target (Hit or Miss) * Phases (Anticipation, Feedback) * Task 430 

Conditions (Large-Loss, Small-Loss, Neutral, Small-Win or Large-Win)) and 431 

additional covariate regressors (i.e., 24 motion-related parameters: 6 rigid-body motion 432 

parameters, their first temporal derivatives and 12 corresponding squared items; and 433 

mean signals of both white matter and ventricles). All regressors were convolved with 434 

a double-gamma HRF, and no orthogonalization of regressors was applied. For BOLD 435 

signals, drift was modeled with the DCT basis, and a cut-off of 128 s was applied (SPM 436 

defaults). Finally, the autocorrelation was modeled as a global approximate AR(1) in 437 

SPM. 438 

Orthogonally Decoding multi-Cognitive Processes 439 

 In the present study, we propose a novel approach to decompose each participant's 440 

brain activations at varied conditions (denoted as y ) with a set of orthogonal basis 441 

, )( i kxxx  , where each vector could represent a predefined signal model, e.g. 442 

evaluation or readiness. Specifically, 'orthogonal' here means that the pairwise 443 

covariances of vectors were all zero, i.e. , ) ( , ) ( ) ( ) 0( i j i j i jx E x x E x E xCov x    . 444 

In this way, the regression coefficients 1, )( k β  (i.e. the strength of signals for 445 

each individual) estimated from a multiple linear model with all vectors were the same 446 

as those estimated univariately (of simple linear models), i.e. 447 

( | , , ) ( | , )i i i iT y T y x  x β  , where ( )T    stands for the best linear unbiased 448 

estimator.  449 

We propose that the above individual level orthogonal disconfounding eliminates 450 

spurious correlations of signal components (i.e. β) introduced by related vectors (i.e. Xi 451 

are correlated), thus allowing us to make meaningful inferences regarding signal 452 

independence at the population level. Here, we only describe a simple proof for the 453 

purpose of illustration, where only two orthogonal vectors were involved. Let yi denote 454 

the activations of the ith individual across all conditions, and x1i and x2i denote the two 455 
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predefined independent orthogonal models of input signals, where 1 2( , ) 0i iCov x x  , 456 

and β1i and β2i denotes the corresponding regression coefficients, i.e. the signal 457 

strengths. We have the following linear model: 458 

1 1 2 2i i i i iy x x     .                       (1) 459 

We first show that orthogonal settings of x1i and x2i are necessary for a meaningful 460 

signal decomposition. The covariance and variance conditional on x2i are easily derived. 461 

       
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Similar results are easily acquired for the covariance/variance conditional on x1i. 465 

Therefore, we establish the following relationship between the least square estimations 466 

(LSEs) of β1i and β2i: 467 
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Clearly, unless 1 2( , ) 0i iCov x x  , β1i could always be expressed as a function of β2i, and 469 

hence can never be independent of each other. The above derivations, therefore, prove 470 

the necessity of using orthogonal vectors for meaningful signal decomposition. 471 

Meanwhile, by setting 1 2( , ) 0i iCov x x  , and realizing that the LSE of β1i in the 472 

absence of x2i from the regression model (1) (i.e. reduced to a simple linear model) is 473 

   1 11 ,i i i iCov x y Va xr   , we could immediately have 1 1i i    . Thus with 474 

orthogonal x1i and x2i, estimations from a multiple linear model would be the same as 475 

those univariately estimated from simple linear models. 476 

 We then show that the population-level correlation analyses of β1i and β2i derived 477 

above provide meaningful statistical inferences of signal independence. For simplicity, 478 

assume that we rewrite β2i, the signal strength of model x2i, into a sum of two 479 

independent components, i.e., 2 2 1i i i i      where 2i   is independent of β1i, i.e., 480 

2 1( , ) 0Cov    , and the parameter i  denotes the proportion of overlapped signals 481 

with model x1i, and is independent of β1i, i.e., 1( , ) 0Cov    . We then calculate the 482 

population-level correlation of β1i and β2i as: 483 

 
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   

 



, 484 

which only equals 0 if either ( ) 0E   , i.e. the population mean signals of both models 485 

are not a function of each other, or 1) 0(Var   , i.e. one of the signals is invariant 486 

across the population, and hence again is not dependent on each other. Either way, the 487 

signals of both models are indeed independent, and thus 1 2 1( , ) 0Cov     ᚇ 2  , 488 

where orthogonal decomposition at the individual level permits the expression 489 
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1 2( , ) 0Cov     . In conclusion, this two-stage approach can be used for statistical 490 

inference concerning the signal dependence or independence of two signals. 491 

To illustrate the above theoretical derivations, we conducted simulation analyses to 492 

evaluate three models, namely the “independent-signal model”, where each observed 493 

signal consists of two independent inputs (
1 2i i  , and hence 

1 2( , ) 0Cov    ), and 494 

two dependent-signal models, i.e. the ‘single signal model’ with 𝛽2𝑖 = 𝛾𝑖𝛽1𝑖 (assume 495 

𝐸(𝛾) > 0 , and hence 
1 2( , ) 0Cov     ), and the ‘push-and-pull model’ with 𝛽2𝑖 +496 

𝛾𝑖𝛽1𝑖 = 𝑐𝑖 (assume 𝐸(𝛾) > 0, and hence 
1 2( , ) 0Cov    ). For simplicity, the signal 497 

overlapping parameter 𝛾𝑖 was set as a constant (i.e. 0 for the independent-signal model 498 

and 1 in both dependent-signal models); the observed signals (y in equation 1) were 499 

simulated from [-2, -1, 0, 1, 2] to [2, 1, 0, 1, 2] with an increment of [0.2, 0.1, 0, 0, 0] 500 

at each step, i.e. [-2, -1, 0, 1, 2], [-1.8, -0.9, 0, 1, 2], …, [1.8, 0.9, 0, 1, 2], [2, 1, 0, 1, 2]; 501 

and the orthogonal vectors were fixed as 𝑥1𝑖 = [2, 1, 0, 1, 2] and 𝑥2𝑖 = [-2, -1, 0, 1, 502 

2]. Therefore, for the ‘single signal model’, 𝑦𝑖 was directly set as the observed signals 503 

plus a random noise 𝑁(0,1). For the ‘push-and-pull model’, at the ith simulation step, 504 

by setting 0.05 ( 1) (0,1)ic i N     , 
1 (0,1)i ic N     and 

2 1 (0,1)i ic N     , we 505 

could then simulate 
1 1 2 2i i i i iy x x    . Clearly, at the population-level, we have 506 

2 2

1 2( , ) ( ) ( ) ( )i iCov E c E c Var c      , and hence 𝛽1 and 𝛽2 are dependent. For the 507 

‘independent-signal model’, at the ith simulation, by setting 0.05 ( 1)c i    , 508 

1 (0,1)i c N    and 
2 1 (0,1)i c N    , we could also simulate 

1 1 2 2i i i i iy x x   , 509 

where, however, one would expect 
1 2( , ) 0Cov     . It is notable that while the 510 

simulation models of ‘push-and-pull’ and ‘independent-signal’ are rather similar, they 511 

are fundamentally different. The reason lies in the fact that the constant c   in the 512 

‘independent-signal model’ is invariant across individuals and solely determined by the 513 

predefined form of observed signals, and hence the signal strengths 
1i  and 

2i  do 514 

not dependent on each other. However, in the ‘push-and-pull model’, the form of 515 
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observed signals only determined the expectation ( )iE c , and hence both 
1i  and 

2i  516 

are nevertheless the functions of 
ic  that varies across individuals, and thus are not 517 

independent.  518 

For each model, we simulated with 1000 independent individuals for 1000 times, 519 

and the detailed results of the simulation are shown in Extended Data Fig. 1b and 520 

Extended Data Table 2. 521 

Functional connectivity (FC) based on resting-state fMRI data 522 

 A total of 184 participants' preprocessed high-resolution (7T) resting-state fMRI 523 

data were collected from the Human Connectome Project (HCP) dataset 21. Total FC 524 

(Pearson Correlation) from evaluation and readiness activation activations regions to 525 

the voxels in brainstem (Fig. 4A), which were masked with AAL3 atlas 30 and from 526 

VTA and SNc to the whole brain were examined respectively. A paired t-test was used 527 

to estimate which brain region had a stronger FC with the activation region. The 528 

similarity between patterns of activation and FC was represented by Pearson's 529 

correlation coefficient r. Considering the high correlation between voxels, the degree 530 

of freedom was adjusted according to the number of components which had over 95% 531 

interpretation of brain activation by principal component analysis. 532 

Measurement of modifying effects 533 

 As N-shape and W-shape models can be considered as modifiers of evaluation and 534 

readiness models, respectively, their strength (i.e. the activation level) can be used to 535 

measure the deviance from the proposed model settings, i.e. the exact scale or the 536 

relative scale. Thus we computed the standardized mean 537 

( (𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 +  𝑡𝑒𝑥𝑎𝑐𝑡) max (𝑎𝑏𝑠(𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒),⁄ 𝑎𝑏𝑠(𝑡𝑒𝑥𝑎𝑐𝑡)) ) to evaluate the prevailing 538 

settings, where 𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 represents the t-statistics of the activation for N-shape or W-539 

shape models under the relative-scale setting, and 𝑡𝑒𝑥𝑎𝑐𝑡 represents the t-statistics of 540 

the activation for N-shape or W-shape models under the relative-scale setting. When 541 

the observed signal falls somewhere between the relative-scale and exact-scale settings, 542 

it is readily observable that 𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 would be positive and 𝑡𝑒𝑥𝑎𝑐𝑡 would be negative. 543 

Therefore, 𝑎𝑏𝑠(𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) > 𝑎𝑏𝑠(𝑡𝑒𝑥𝑎𝑐𝑡) would prefer the exact-scale setting, and the 544 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.25.457728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457728
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

standardized mean ranges from 0 to 1, whereas 𝑎𝑏𝑠(𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) < 𝑎𝑏𝑠(𝑡𝑒𝑥𝑎𝑐𝑡) would 545 

prefer the relative-scale setting, and the standardized mean ranges from -1 to 0. It is 546 

notable that meaningful settings other than this may also be possible. For instance, the 547 

response of the small stimuli could be identical to the large stimuli in the observed 548 

signal, thus 𝑡𝑒𝑥𝑎𝑐𝑡 <  𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 < 0, and the standardized mean could be well smaller 549 

than -1. 550 

Weighted voxel co-activation network analysis (WVCNA) 551 

 The R package WGCNA 31 was implemented to conduct the WVCNA 32, which 552 

identifies activation modules of both evaluation and readiness models across the brain. 553 

The final dataset used for WVCNA included 1,912 participants with 3365 voxels for 554 

the evaluation model and 1900 participants with 10932 voxels for the readiness model 555 

after removing null data and outliers. We transferred most parameters as default settings 556 

from previous studies 33, except for the soft-threshold parameters, which were set to 557 

seven based on the scale-free topology criteria (Fig. S5), incidentally identical to those 558 

estimated for the MID task from a different cohort 33. The stabilities of the generated 559 

modules were assessed through bootstrapping. 560 

Canonical correlation analysis (CCA) 561 

 CCA has been widely used to investigate the overall correlation between two sets 562 

of standardized variables 34. Due to high intra-correlations in both brain networks and 563 

task performances, multicollinearity was a potential risk factor jeopardizing the validity 564 

of the subsequent statistical inference. Therefore, we adopted the CCA proposed in a 565 

previous reference 33. Briefly, we used the eta square (η2) to represent the proportion of 566 

mutually explained variance between the two sets of variables. For each correlation, the 567 

P value or significance level was determined using the permutation test, where the 568 

individual IDs of task performances were randomly shuffled at each iteration to 569 

generate the null distribution of the corresponding test statistics. We further included 570 

an adjusted η2 to correct for the inflation in η2 caused by the increased number of 571 

variables as: 572 

η𝑎𝑑𝑗
2 = 1 −  

1 − η2

1 −  η0
2 573 
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where η0
2  represents the expected η2 under the null hypothesis that there is no 574 

relationship between the two sets of variables (that is, it acts as a measure of inflation 575 

in η2), and can be directly estimated through the permutation test. As the effect of one 576 

task performance was significant, we also estimated the effects of each component of 577 

the behavior with the significant levels at P < 0.05. 578 

Emotional faces task in the IMAGEN project 579 

Emotional face processing was investigated using the “emotional faces task” in 580 

the IMAGEN project 26. Participants were exposed to a sequence of stimuli which 581 

consisted of short (2–5 s) black-and-white video clips showing male and female faces 582 

with varying facial expressions. Stimuli showed human faces which started with the 583 

expression of a neutral expression and then either turned angry/happy or displayed a 584 

neutral movement without a particular emotional content (for example, twitching the 585 

nose). Stimuli were arranged in 18 s blocks, each block including 4–7 video clips 586 

depicting faces of the same emotion or neutral. Altogether, there were 3 blocks of 587 

neutral faces and 3 blocks containing angry and happy faces respectively. In between 2 588 

blocks of face clips, an 18 s non-biological control video clip was presented. The control 589 

stimuli consisted of expanding and contracting black-and-white concentric circles of 590 

various contrasts, roughly matching the contrast and motion characteristics of the faces 591 

clips. 592 

The recruitment procedures employed in the IMAGEN project and demographic 593 

information have been described previously 26. The standard operating procedures for 594 

the IMAGEN project are available at http://www.imagen-595 

europe.com/en/Publications_and_SOP.php, which contain details on ethics, 596 

recruitment, neuropsychological tests and preprocessing protocols of MRI data. In brief, 597 

task-based functional MRI data were analyzed with SPM12 (Statistical Parametric 598 

Mapping, http://www.fil.ion.ucl.ac.uk/spm). Preprocessing included: slice time 599 

correction to adjust for time differences due to multi-slice imaging acquisition, 600 

realignment to the first volume in line, non-linearly warping to the MNI space (based 601 

on a custom EPI template (53x63x46 voxels) created out of an average of the mean 602 
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images of 400 adolescents), resampling at a resolution of 3x3x3mm3 and smoothing 603 

with an isotropic Gaussian kernel of 5 mm full-width at half-maximum. And the 604 

activations of each task condition, i.e. happy, angry, neutral faces and control stimuli, 605 

were evaluated for each individual at the first-level analysis (The details can be found 606 

at https://github.com/imagen2/imagen_processing). And these results were conducted 607 

for the further DeCoP analysis. 608 

Data availability 609 

ABCD data are available from a dedicated database: https://abcdstudy.org. Human 610 

Connectome Projects data are available from: https://www.humanconnectome.org. The 611 

IMAGEN project are available from a dedicated database: https://imagen2.cea.fr. 612 

Code availability 613 

Custom code that supports the findings of this study is available from the 614 

corresponding author upon request. All data needed to evaluate the conclusions in the 615 

paper are present in the paper and/or the Supplementary Information. Additional data 616 

related to this paper may be requested from the authors. 617 
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Extended Data figures and tables 662 

 663 

Extended Data Fig. 1. a. Only the “correct” orthogonal vectors could retrieve latent 664 

independent signals. d. Correlations between decomposed signals based on different 665 

simulation models. Also see Extended Data Table 2. 666 
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 668 
Extended Data Fig. 2 The brain-wide patterns of seed-based functional connectivity 669 

(FC) strength from regions of interest (ROIs): a. VTA seed-based; b. SNc seed-based; 670 

c. The T-map of the differences between seed-based FCs patterns from VTA and SNc. 671 
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 673 

Extended Data Fig. 3 Brain-wide neural representations of signal decomposition with 674 

the exact-scale setting (e.g. the evaluation contrast takes the form [-5, -0.2, 0, 0.2, 5] 675 

from large-loss to large-win, consistent with the parametric nature of the exact 676 

monetary magnitude in the experimental design). 677 
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 679 
Extended Data Fig. 4 The bimodal distribution of voxels favoring the exact-scale or 680 

relative-scale settings in evaluation (a) and readiness (b) processing. The typical 681 

regions favoring the exact-scale setting were illustrated in the corresponding lower 682 

subplots. c&d. The favored neural representations (i.e. relative-scale vs exact-scale) 683 

demonstrated better predictions for task performance. *significant at level 0.05, ** 684 

significant at level 0.01. 685 
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 687 

Extended Data Fig.5 Plots of soft-threshold for WVCNA. 688 
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 690 
Extended Data Fig. 6 The brain clusters and subnetworks of evaluation (a) and 691 

readiness (d) processing. Also see Extended Data Table 3. The core brain region of 692 

each subnetwork is marked by a black bound and illustrated in both the networks (left) 693 

and brain templates (right). Raw and decomposed signals of the core brain regions are 694 

presented below the brain. 695 
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 697 

Extended Data Fig. 7 The T-maps of evaluation and readiness processing’s impacts 698 

on the task performances. The canonical correlation analysis (CCA) was implemented 699 

to further segregate signal components that demonstrated differential associations with 700 

task performances under different experimental conditions. 701 
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Extended Data Table 1 Demographic characteristics of the samples in this study. 703 

Characteristics Total (n=1939) Site1 (n= 415) Site2 (n= 362) Site3 (n= 396) Site4 (n= 766) 

Gender (male) 984 (50.75%) 219 (52.77%) 169 (46.69%) 191 (48.23%) 405 (52.87%) 

Race/ethnicity      

White 1473 (75.97%) 282 (67.95%)*** 246 (67.96%)** 313 (79.04%) 632 (82.51%)*** 

Black 39 (2.01%) 3 (0.72%) 10 (2.76%) 18 (4.55%)** 8 (1.04%) 

Hispanic 233 (12.02%) 84 (20.24%)*** 52 (14.36%) 24 (6.06%)*** 73 (9.53%) 

Asian 20 (1.03%) 2 (0.48%) 13 (3.59%)*** 4 (1.01%) 1 (0.13%)* 

Other/Missing 174 (8.97%) 44 (10.6%) 41 (11.33%) 37 (9.34%) 52 (6.79%) 

Superscripted * means the variable differ significantly from the total population on the corresponding variable. * p < 0.05, ** p < 

0.01, *** p < 0.001 by Fisher's Exact Tests. 

  704 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.25.457728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457728
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Extended Data Table 2 Simulation results of the correlations between the weights of 705 

decomposition. 706 

Observerd 

Signals 

One Signal Model Push and Pull Model Independent Model 

r 
T 

(Readiness) 

T 

(Evaluation) 
r 

T 

(Readiness) 

T 

(Evaluation) 
r 

T 

(Readiness) 

T 

(Evaluation) 

2 1 0 1 2 -0.001 30.232 0.032 -0.448 21.868 0.024 0.010 30.185 0.025 

1.8 0.9 0 1 2 0.080 30.033 2.669 -0.449 20.768 1.033 0.000 28.696 1.353 

1.6 0.8 0 1 2 0.155 29.875 5.245 -0.449 19.667 2.086 0.000 27.154 2.751 

1.4 0.7 0 1 2 0.230 29.652 7.735 -0.449 18.620 3.113 -0.002 25.624 4.087 

1.2 0.6 0 1 2 0.296 29.433 10.073 -0.449 17.437 4.138 0.000 24.137 5.484 

1 0.5 0 1 2 0.355 29.158 12.230 -0.450 16.356 5.174 -0.001 22.665 6.785 

0.8 0.4 0 1 2 0.410 28.779 14.196 -0.449 15.333 6.195 0.001 21.067 8.178 

0.6 0.3 0 1 2 0.454 28.442 15.998 -0.450 14.230 7.275 -0.002 19.631 9.527 

0.4 0.2 0 1 2 0.492 28.067 17.658 -0.449 13.133 8.253 -0.001 18.060 10.893 

0.2 0.1 0 1 2 0.522 27.449 19.051 -0.449 12.062 9.255 0.000 16.603 12.216 

0 0 0 1 2 0.542 26.735 20.315 -0.450 10.937 10.321 0.001 15.109 13.553 

-0.2 -0.1 0 1 2 0.555 25.962 21.468 -0.449 9.817 11.328 0.000 13.565 14.977 

-0.4 -0.2 0 1 2 0.555 24.847 22.457 -0.451 8.789 12.310 0.000 12.072 16.320 

-0.6 -0.3 0 1 2 0.547 23.471 23.307 -0.450 7.645 13.390 -0.001 10.559 17.724 

-0.8 -0.4 0 1 2 0.523 21.816 24.111 -0.449 6.563 14.409 -0.001 9.154 19.057 

-1 -0.5 0 1 2 0.485 19.635 24.733 -0.450 5.440 15.470 0.001 7.570 20.393 

-1.2 -0.6 0 1 2 0.429 16.942 25.369 -0.450 4.382 16.495 0.001 6.033 21.723 

-1.4 -0.7 0 1 2 0.351 13.595 25.931 -0.450 3.230 17.528 -0.001 4.541 23.125 

-1.6 -0.8 0 1 2 0.252 9.561 26.360 -0.448 2.225 18.543 -0.001 3.031 24.491 

-1.8 -0.9 0 1 2 0.132 4.959 26.780 -0.449 1.097 19.576 0.000 1.490 25.792 

-2 -1 0 1 2 0.001 0.014 27.205 -0.449 -0.028 20.638 -0.001 0.000 27.234 
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Extended Data Table 3 Coincidence degree of both evaluation and readiness 708 

processing for the task performance under the different model settings. 709 

Models 

Reaction Time Accuracy 

Adj. R2 P 
Adj. R2 

diff. 
Padj.* Adj. R2 P 

Adj. R2 

diff. 
Padj.* 

All Modules 

Relative-scale Models 
Readiness (control W-shape) 0.0849 0.0000 0.0119 0.0476 0.0617 0.0000 0.0123 0.0506 

Evaluation (control N-shape) 0.0252 0.0138 0.0087 0.0646 0.0055 0.1607 0.0044 0.0577 

Exact-scale Models 
Readiness (control W-shape) 0.0730 0.0000   0.0494 0.0000   

Evaluation (control N-shape) 0.0165 0.0044   0.0011 0.5570   

Modules Favored Relative-scale Models 

Relative-scale Models 
Readiness (control W-shape) 0.0706 0.0000 0.0124 0.0349 0.0614 0.0000 0.0159 0.0196 

Evaluation (control N-shape) 0.0164 0.0037 0.0037 0.0515 0.0063 0.1245 0.0058 0.0360 

Exact-scale Models 
Readiness (control W-shape) 0.0582 0.0000   0.0455 0.0000   

Evaluation (control N-shape) 0.0127 0.0080   0.0005 0.4398   

Modules Favored Exact-scale Models 

Relative-scale Models 
Readiness (control W-shape) 0.0163 0.0004 -0.0068 0.0463 0.0010 0.3637 -0.0168 0.0021 

Evaluation (control N-shape) 0.0024 0.0108 -0.0035 0.0073 0.0010 0.0949 -0.0013 0.1645 

Exact-scale Models 
Readiness (control W-shape) 0.0231 0.0000   0.0178 0.0002   

Evaluation (control N-shape) 0.0059 0.0041   0.0023 0.0767   

* Adjusted P values based on 10000 bootstrap; Adj. R2 diff. The difference between the adjusted R square of relative-scale and exact-scale models. 
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