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Abstract

Genome-scale metabolic models (GEMs) are mathematical representations of
metabolism that allow for in silico simulation of metabolic phenotypes and capabilities.
A prerequisite for these predictions is an accurate representation of the biomolecular
composition of the cell necessary for replication and growth, implemented in GEMs as
the so-called biomass objective function (BOF). The BOF contains the metabolic
precursors required for synthesis of the cellular macro- and micromolecular constituents
(e.g. protein, RNA, DNA), and its composition is highly dependent on the particular
organism, strain, and growth condition. Despite its critical role, the BOF is rarely
constructed using specific measurements of the modeled organism, drawing the validity
of this approach into question. Thus, there is a need to establish robust and reliable
protocols for experimental condition-specific biomass determination. Here, we address
this challenge by presenting a general pipeline for biomass quantification, evaluating its
performance on Escherichia coli K-12 MG1655 sampled during balanced exponential
growth under controlled conditions in a batch-fermentor set-up. We significantly
improve both the coverage and molecular resolution compared to previously published
workflows, quantifying 91.6% of the biomass. Our measurements display great
correspondence with previously reported measurements, and we were also able to detect
subtle characteristics specific to the particular E. coli strain. Using the modified E. coli
GEM iML1515a, we compare the feasible flux ranges of our experimentally determined
BOF with the original BOF, finding that the changes in BOF coefficients considerably
affect the attainable fluxes at the genome-scale.

Introduction 1

The increasing availability of large-scale omics data has propelled the study of complex 2

biological systems, pushing the field of systems biology to the forefront of cutting-edge 3

biological research [1, 2]. Central to this development is the realization that biology is 4

best understood not merely by considering its individual constituents, but rather 5
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investigating the emergent properties of the system as a whole. One of the predominant 6

subfields of systems biology is the in silico study of metabolism using genome-scale 7

metabolic models (GEMs) [3–6]. Here, the genetically encoded metabolic potential of an 8

organism is used to construct a stoichiometric network of biochemical transformations. 9

The steady-state fluxes of the metabolic system can subsequently be calculated using 10

approaches such as flux balance analysis [7]. These flux phenotypes are usually 11

computed by maximizing growth, assuming optimal biomass production to be a 12

reasonable cellular objective [8]. 13

Growth in these models is implemented as a pseudo-reaction called the biomass 14

objective function (BOF), whose reactants are the metabolic precursors needed to 15

generate the molecular constituents of the cell. By appropriately scaling the 16

stoichiometric coefficients of these precursors using experimental biomass measurements, 17

the flux through the BOF directly corresponds to the specific growth rate, allowing for 18

quantitative predictions of growth phenotypes [9, 10]. While experimental data on the 19

condition-dependent biomass compositions of some well-studied organisms are 20

available [11,12], this is commonly lacking for most organisms. The usual strategy has 21

therefore been to either adopt existing organism-specific biomass compositions from 22

different conditions or employ parts or the whole composition from another organism 23

entirely [13,14]. This, however, is a sub-optimal approach as the biomass composition 24

depends on the particular organism and strain [15, 16]. The biomass composition is also 25

not static, but is rather continually adjusted in response to changing environmental 26

conditions [12]. 27

In many instances, the predicted flux phenotypes of these models have been shown 28

to be highly susceptible to variations in the biomass composition [17]. 29

Dikicioglu et al. [18] demonstrated how the predicted flux distributions of a 30

Saccharomyces cerevisiae GEM were sensitive to changes in the stoichiometric 31

coefficients of the BOF within experimentally determined bounds. 32

Lakshmanan et al. [17] observed a similar sensitivity when varying the biomass 33

composition in GEMs of eight different yeast species, showcasing the impact on both 34

growth rate and gene essentiality predictions to alterations in the biomass constituents 35

and stoichiometries. High-quality, condition-dependent biomass measurements are 36

therefore necessary in order to enable accurate phenotypic predictions using a 37

constraint-based modeling framework. This realization has sparked multiple initiatives 38

for the measurement of biomass compositions [15,16,19,20], and ways to address the 39

challenge of integrating variable biomass compositions into GEMs [21]. 40

The macromolecular composition of an organism can be quantified using a range of 41

experimental procedures. The DNA, RNA, and carbohydrate contents are usually 42

measured by spectroscopic methods, while the total cellular protein content is quantified 43

by acid hydrolysis followed by high-performance liquid chromatography (HPLC) [15]. 44

Total lipid content is commonly obtained by extraction and gravimetric quantification, 45

whereas the lipid class and fatty acid compositions are measured using various mass 46

spectrometry-based (MS) approaches [22]. Recently, Beck et al. [15] conducted a 47

literature review and developed a step-by-step protocol for quantifying each 48

macromolecular biomass component, evaluating its applicability on multiple bacterial 49

samples. Although the pipeline exhibited comparable efficiencies in between the 50

bacterial species, the total macromolecular contents covered by the methods were 51

approximately 65%, necessitating extensive loss-adjustment by normalization in order to 52

construct a BOF. The quantification of the biochemically diverse carbohydrates was 53

also quite limited in molecular resolution, only measuring the total biomass contents. 54

Another workflow proposed by Long and Antoniewicz [19] applied gas 55

chromatography/mass spectrometry (GC/MS) as a single analytical platform to 56

absolutely quantify the macromolecular composition of amino acids, RNA, fatty acids, 57
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and glycogen in Escherichia coli. While they obtained an impressive overall coverage of 58

the total biomass, the quantification was based on isotope ratio analysis, requiring the 59

cells to be fully labeled with 13C as well as a supplementation of multiple standard 60

compounds for quantification. 61

Here, we present a concise pipeline for accurate high-coverage absolute biomass 62

quantification, significantly increasing both the yield and molecular resolution in 63

comparison to previous work. E. coli K-12 MG1655 was grown aerobically in a defined 64

glucose minimal medium using a batch fermentor setup. We evaluated the performance 65

of our pipeline, obtaining high consistency with previously reported values. Specifically, 66

we extend and adjust the workflow of Beck et al. [15] by improving the resolution of the 67

carbohydrate analysis using liquid chromatography UV and electrospray ionization ion 68

trap technique (HPLC-UV-ESI-MS/MS) [23]. Furthermore, we monitored fermentation 69

parameters to ensure stable and controlled conditions throughout the experiment, 70

allowing for biomass sampling in the exponential growth phase. With these 71

enhancements, we obtain an overall mass coverage of 91.6%, proving the pipeline to be 72

an important milestone towards absolute biomass quantification for computational 73

biology applications. 74

To explore the modelling impact of the BOF generated from our experiments, we 75

used flux variability analysis (FVA) on the iML1515 GEM [24]. Specifically we assessed 76

how, in an aerobic minimal glucose medium, the experimentally determined BOF 77

(hereafter eBOF ) differed in predicting feasible flux ranges compared to the BOF 78

included in the iML1515 GEM (hereafter mBOF ). The eBOF is made in a modified 79

version of the GEM named iML1515a. We find that even though both the mBOF and 80

the eBOF is supposed to originate from the same experimental conditions, they differ 81

considerably in their coefficient values as well as in their phenotypic predictions of 82

genome-scale flux ranges. 83

Materials and methods 84

Strain, media and culture conditions 85

We prepared E. coli strain K-12 MG1655 (700926TM, ATCC®) glycerol stock solutions 86

by growing the organism on an LB agar plate and selecting a single colony. The LB 87

agar contained the following: 10 g L−1 peptone, 5 g L−1 yeast extract, 5 g L−1 NaCl, and 88

15 g L−1 agar. An overnight culture in minimal M9 glucose medium was then aliquoted 89

with 25% glycerol and stored at −80 °C. To prepare the inoculum for the fermentation, 90

an aliquote of the glycerol stock solution was grown overnight in an incubator with 91

shaking (37 °C, 200 rpm) using 100 mL of a standard M9 minimal salts medium with 92

glucose as the sole carbon source in a 500 mL baffled shake flask. The minimal M9 93

medium had the following composition: 0.4% (w/v) glucose, 1 mM MgSO4, 94

18.7 mM NH4Cl, 8.5 mM NaCl, 22.0 mM KH2PO4, 33.7 mM Na2HPO4, and 0.2% (v/v) 95

trace mineral solution. The concentration of trace minerals in the finished medium was 96

35.9 mM FeSO4 · 7 H2O, 4 mM CuSO4 · 5 H2O, 7.8 mM ZnSO4 · 7 H2O, 97

1.9 mM MnCl2 · 4 H2O, 0.08 mM (NH4)6Mo7O24 · 4 H2O, 0.2 mM CoCl2 · 6 H2O, and 98

13.6 mM CaCl2 · 2 H2O dissolved in 1 M HCl. The cells were cultured in a 3 L 99

Eppendorf NewBrunswik BioFlo 115 bioreactor in batch setup, using 1 L of a modified 100

minimal M9 medium containing 1% (w/v) glucose, 3 mM MgSO4, 93.5 mM NH4Cl, 101

8.5 mM NaCl, 11.5 mM KH2PO4, and 0.2% (v/v) of the same trace mineral solution 102

used in the preculture. The pH electrode was calibrated using a two-step calibration 103

with pH 4 and pH 7 pre-mixed solutions. The dissolved oxygen (DO) electrode was 104

calibrated to 0% by flushing the electrode for 10 min with nitrogen gas, and to 100% 105

dissolved oxygen at 37 °C in the fermentor medium after 30 min with ≈ 500 mL min−1
106
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air inflow at 500 rpm stirring. Stirring was then coupled to DO, ensuring DO≥ 40%. 107

The off-gas was analyzed with an Eppendorf DASGIP GA4 gas analyzer, allowing 108

for continuous monitoring of the O2 consumption and CO2 production. The gas in- and 109

outflow from the fermentor was sterile filtered by employing 0.2 µm filters. The pH was 110

kept constant at pH 7 using 4 M NaOH by automatic titration. Foam production was 111

controlled by the manual addition of silicone-polymer based Antifoam. The bioreactor 112

was inoculated with 1% inoculum. The cells were harvested during exponential growth, 113

centrifuged for 5 min (3645 g, 4 °C), and washed two times in 0.9% NaCl solution, 114

followed by one washing step with MQ water. The pellets were frozen at −80 °C and 115

lyophilized for 3 d. The resulting cell dry mass was then used for the respective 116

protocols. 117

Medium analysis 118

The quantification of medium constituent concentrations was performed by NMR, using 119

ERETIC2 [25] in the Bruker TopSpin 4.0.8 software. The protocol is based on 120

Søgaard et al. [26]. At specific time points, medium was collected and sterile filtered, 121

and 2.5 mL were stored at −20 °C before lyophilization and re-hydration in 122

600 µL D2O-TSP (0.75%) solution. 500 µL were transferred into a 5 mm NMR tube and 123

analyzed in a 400 MHz (14.7 T) Bruker NMR spectrometer applying the D2O solvent 124

setting (1H NMR, noesyggpr1d). The acquisition parameters were 4 dummy scans, 32 125

scans, SW 21.0368 ppm, O1 1880.61 Hz, TD 65536, TE 300.0 K, D1 4 s, AQ 3.892 838 5 s, 126

and P1 was calibrated for each sample to ensure accurate quantification. A 70 mM 127

creatine solution (in D2O) was used as an external standard, utilizing the singlet at 128

∼ 3 ppm for quantification. As an example, for the glucose quantification the α-Glucose 129

doublet at ∼ 5.2 ppm was used, which accounts for 36% of the glucose [27]. The peaks 130

of formate, acetate, succinate, and lactate were identified based on the reference 131

1H-NMR spectra available in the Human Metabolome Database (HMDB) [28–30] and 132

the software program Chenomx [31], as well as literature by Fan [32]. 133

Protein 134

The total cellular protein content was measured by acid hydrolysis, followed by amino 135

acid derivatization and quantification by HPLC based on the protocol described by 136

Noble et al. [33]. Aliquots of ∼10 mg lyophilized cell dry mass were re-hydrated in 5 mL 137

6 M hydrochloric acid in a 25 mL Schott flask, boiled for 24 h at 105 °C, and allowed to 138

cool to handling temperature before neutralizing with 5 mL 6 M NaOH. The samples 139

were again cooled to handling temperature before sterile filtering. Using different 140

dilutions (see S3 File) of the filtered samples, the amino acids were quantified by 141

reverse-phase HPLC analysis. The samples and standards were derivatized with OPA 142

(o-Phthaldialdehyde Reagent Solution). We used a Waters Nova-Pak C18 4 µm column 143

(3.9x150 mm) with an RF2000 detector set to 330 nm excitation and 438 nm emission 144

wavelength. Further, we employed two mobile phases (phase A: methanol and phase B: 145

0.08 M CH3COONa adjusted to pH 5.90 with concentrated CH3COOH and 2% 146

tetrahydrofuran just before usage) with a flow rate of 0.9 mL min−1 for all gradients, 147

the injection volume was 20 µL. The gradients in 29 min run time were [0 to 15) min 148

0.25 A and 0.75 B, [15 to 22) min 0.5 A and 0.5 B, [22 to 26) min 0.8 A and 0.2 B, [26 149

to 27) min 1 A and 0 B, and [27 to 29) min 0.25 A and 0.75 B. Not all amino acids were 150

directly measured, either due to partial or complete degradation during hydrolysis (e.g. 151

methionine, cysteine). The levels of these amino acids were therefore estimated based 152

on a linear regression of measured amino acid mass fractions and their corresponding 153

prevalence in protein-coding genes. The amino acids with overlapping retention times 154

were treated in the same fashion (i.e. glycine and arginine), as were the levels of 155
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glutamine and asparagine which are deamidated to glutamate and aspartate, 156

respectively, during acid hydrolysis [34]. 157

RNA 158

The cellular proportion of RNA was quantified spectrophotometrically using the 159

protocol described by Benthin et al. [35]. ∼30 mg of lyophilized biomass were washed 160

three times with 3 mL 0.7 M HClO4 by vortexing and centrifuging at 2880 g for 10 min 161

at 4 °C, discarding the supernatant between washes. The resulting cell pellet was 162

re-suspended in 3 mL 3 M KOH and incubated in a water bath at 37 °C for 1 h, shaking 163

at 15 min intervals. The samples were cooled and 1 mL 3 M HClO4 was added before 164

centrifuging at 2880 g for 10 min at 4 °C, decanting the supernatant into a 50 mL 165

polypropylene centrifuge tube. The pellet was washed (re-suspended and centrifuged) 166

twice with 4 mL 0.5 M HClO4, before the supernatant was decanted into the 50 mL 167

tube. 3 mL 0.5 M HClO4 was added to the collected sample and centrifuged to remove 168

any precipitates of KClO4. The RNA concentration was measured via UV-visible 169

spectroscopy against the reference solvent using the NanoDrop [36]. The levels of the 170

individual ribonucleotides were estimated based on the monomeric composition of 171

rRNA-encoding genes in E. coli strain K-12 MG1655 (GenBank accession number 172

U00096.3 [37]), as these constitute approximately 81% of the total RNA content in E. 173

coli [38]. 174

DNA 175

DNA was extracted using the protocol described in Wright et al. [39]. ∼10 mg 176

lyophilized biomass were dissolved in 600 µL lysis buffer (9.34 mL TE buffer containing 177

10 mM Tris-Cl (pH 8.0) and 1 mM EDTA (pH 8.0), 600 µL 10% SDS, and 60 µL 178

proteinase K (20 mg mL−1)) and incubated at 55 °C for 30 min before cooling to room 179

temperature. 600 µL phenol/chloroform (1:1 v/v) were added and mixed well. The 180

samples were centrifuged for 5 min at 12 044 g (max speed) in a table centrifuge at room 181

temperature and the upper aqueous phase was transferred to a separate tube. The 182

addition of phenol/chloroform and the subsequent mixing and centrifuging was repeated 183

twice, each round pooling the aqueous phases. An equal volume of chloroform was 184

added to the aqueous phase and the solution was mixed well. The tube was centrifuged 185

for 5 min at max speed in a table centrifuge at room temperature. To precipitate the 186

DNA, the aqueous phase was separated, and mixed gently with 40 µL NaCH3COO and 187

1 mL ice cold ethanol (99%), then incubating at −20 °C for 30 min. The sample was 188

centrifuged for 15 min at max speed in a table centrifuge. The supernatant was 189

discarded and the pellet was rinsed using 1 mL ethanol (70%). The tube was centrifuged 190

for 2 min (table centrifuge, max speed), before carefully discarding the supernatant and 191

air-drying the DNA pellet. The pellet was re-suspended in 50 µL TE buffer and 1 µL 192

RNAase A was added before incubating for 15 min at 37 °C. The concentration of 193

dsDNA was measured by UV-visible spectroscopy using the NanoDrop [36]. The relative 194

distribution of individual deoxyribonucleotides was estimated based on the genome 195

sequence of E. coli strain K-12 MG1655 (GenBank accession number U00096.3 [37]). 196

Carbohydrate 197

The total carbohydrate content was measured by order at the Technical University of 198

München in Germany following the protocol described by Rühmann et al. [40]. Briefly, 199

cell dry mass (2 mg L−1) was hydrolyzed in 4 M trifluoroacetic acid for 90 min at 121 °C 200

and derivatized with 1-phenyl-3-methyl-5-pyrazolone. The carbohydrate analysis was 201
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then performed via HPLC-UV-ESI-MS/MS. This assures high-quality identification and 202

quantification of a wide range of chemically diverse carbohydrate monomers and dimers. 203

Lipid 204

Lipids were quantified gravimetrically following a chloroform/methanol extraction 205

protocol [41, 42]. ∼40 mg lyophilized cell dry mass were re-hydrated by adding 0.15 mL 206

water and vortexed briefly at low rpm. The re-hydrated cells were homogenized in a 207

homogenizer at 6500 rpm for 20 s intervals, 2 cycles, along with ∼0.5 g zirconium beads 208

(1.4 mm) and 0.4 mL methanol. The samples were kept on ice between runs. 0.8 mL 209

chloroform were added before vortexing for 20 min, subsequently adding 0.1 mL water 210

and vortexing again for 10 min. The sample tubes were centrifuged for 4 min at max 211

speed using a table centrifuge, after which the lower chloroform phase was transferred to 212

a separate tube, before repeating the chloroform extraction with 0.6 mL chloroform. 213

Finally, the chloroform was allowed to completely evaporate (≈ 24 h to 36 h). The total 214

lipid content was quantified by weighing, and corrected using blanks, as well as 215

loss-adjusted for incomplete retrieval during extraction. 216

Construction of a novel BOF 217

Using our experimental measurements, we constructed a novel BOF (eBOF) for the E. 218

coli GEM iML1515. For a detailed description of this process, see Supplementary 219

material S2 File and S3 File. Briefly, the stoichiometric coefficients of the existing 220

macromolecular precursors in the iML1515 model BOF, here termed mBOF, were 221

adjusted to reflect our measurements and normalized to a molar mass (g mmol−1) of 222

unity. In cases where the precursors themselves were complex biomolecules (e.g. LPS 223

(lipopolysaccharides)), their contents were estimated using our measurements and their 224

molecular composition. 225

Flux comparison by flux variability analysis 226

To assess the impact on phenotypic predictions, we performed flux variability analysis 227

(FVA) [43, 44] on iML1515 using both mBOF and eBOF as the cellular objectives, with 228

an optimality constraint of 100%. For the sake of simplicity and preventing bias, the 229

modeling was performed using the default exchange rates provided with the model, 230

except that the lower bound on the exchange reaction for cobalamin (EX cbl1 e) was 231

adjusted from 0 to −1000 mmol gCDW−1, as the mBOF supplied with the model (and 232

consequently the eBOF) would not grow without. 233

To compare the resulting minimal and maximal reaction fluxes, we calculated the 234

fractional overlap, ξ, of the corresponding flux range. For a given reaction flux vj with 235

minimal and maximal fluxes αmin,j and αmax,j for eBOF and minimal and maximal 236

fluxes βmin,j and βmax,j for mBOF, ξ is defined as 237

ξ =
max(0,min(αmax,j , βmax,j)−max(αmin,j , βmin,j))

max(|αmax,j − αmin,j |, |βmax,j − βmin,j |)
. (1)

We also calculated the relative value of the eBOF coefficients to those of mBOF, Sr, 238

given by 239

Sr =
α

β
, (2)

where α and β are the stoichiometric coefficients (mmol gCDW−1) of a given biomass 240

component in eBOF and mBOF, respectively. All simulations were performed in Matlab 241

2020a [45] using the COBRA toolbox v3 [46] with Cplex [47] as solver. 242
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Results 243

Batch-fermentation and biomass sampling 244

To obtain the samples for biomass compositional quantification, we cultured E. coli 245

K-12 MG1655 aerobically in a bioreactor in batch set-up using a defined glucose 246

minimal medium (see section Materials and methods, subsection Strain, media and 247

culture conditions). The cells exhibited a specific growth rate of 0.71 h−1 (generation 248

time 58.7 min), resulting in a cell density of ∼2.6 gCDW L−1 when sampled during the 249

balanced exponential growth phase at approximately 7.5 h. The corresponding growth 250

curve and time-course fermentation profile is presented in Fig 1 (data from S4 File, full 251

time-course profile can be seen in S4 Fig). E. coli displayed a prototypical 252

respiro-fermentative metabolism with extracellular accumulation of the mixed-acid 253

fermentation products acetate, lactate, formate, and succinate. Following the sampling, 254

washing and subsequent lyophilization, the dry cell mass was analyzed using our 255

pipeline as described in Materials and methods. 256

Macromolecular biomass composition 257

The measured biomass composition is presented in Table 1, along with the 258

gold-standard reference values by Neidhardt and the biomass distribution reported by 259

Beck et al. [15, 38]. While the data from Beck et al. are biomass measurements of E. 260

coli K-12 MG1655 grown in comparable conditions, the data by Neidhardt contains the 261

biomass profile of E. coli B/r based on a combination of experimental data and 262

estimated data from a collection of literature sources. Although not from the same 263

strain, these latter data are routinely used to construct the BOF of E. coli GEMs [9,24] 264

and are commonly employed as a benchmark to evaluate the quality and coverage of 265

biomass composition quantification [15,19]. 266

Constituting the bulk of overall biomass, both the levels of protein (54%) and RNA 267

(19.0%) were found to be closely comparable to those of Neidhardt (at 55.0% and 20.5%, 268

respectively). The relative distribution of individual ribonucleotides was also close to 269

Neidhardt, although we observe higher levels of CMP, similar to what Beck et al. 270

reported. The quantities of the majority of individual amino acids agreed well with the 271

estimated profile by Neidhardt, whereas the amounts of glutamate/glutamine, glycine, 272

and tyrosine were found to be noticeably lower. Both the levels of lipids (6.1%) and 273

DNA (1.3%) were measured to be slightly lower than the values reported by Neidhardt, 274

a similar finding to that of Beck et al. [15]. The contents of the carbohydrate monomer 275

glucose agreed well with that of Neidhardt, whereas the glucosamine amount was found 276

to be significantly higher. We quantified minor amounts of galactose (0.36%) not 277

reported by Neidhardt, in agreement with well-characterized strain-dependent 278

differences in the composition of the outer core region of LPS in E. coli [48, 49]. The 279

absence of any detected rhamnose could also be attributed to these strain-specific 280

variations, or simply that the levels were below the detection limit. 281

Changes in biomass objective function stoichiometries affects 282

the genome-scale metabolism 283

We initiated the construction of the eBOF by scaling the stoichiometric coefficients of 284

the biomass precursors in iML1515 to reflect our measurements of the biomass 285

composition. Following this, the resulting biomass now accounts for 91.6% of the total 286

cellular dry mass, a marked improvement on recent work on E. coli [15, 19]. We 287

combined this subset of quantified biomass components with the compounds from the 288
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Table 1. Macromolecular biomass composition. Overview of the average mass
fractions [g gCDW−1] for the experimentally measured biomass components of E. coli
K-12 MG1655. Also presented are the previously published E. coli biomass
compositions by Neidhardt [38] and Beck et al. [15]. Standard deviations are included in
parentheses. Abbreviations: NA for not applicable, n.d. for not detected, - for not
measured/reported, KDO for 2-keto-3-deoxy-octonate.

Component This work Neidhardt Beck et al.
Protein 0.54 (0.02) 0.550 0.35 (0.01)

Alanine 0.046 (0.004) 0.039 0.025 (0.001)
Arginine 0.052 (0.006) 0.044 0.024 (0.001)
Asparagine/Aspartate 0.052 (0.009) 0.052 0.035 (0.001)
Cysteine 0.010 (NA) 0.009 0.004 (NA)
Glutamine/Glutamate 0.049 (0.007) 0.068 0.049 (0.002)
Glycine 0.025 (0.003) 0.033 0.023 (0.001)
Histidine 0.012 (0.003) 0.012 0.0070 (0.0003)
Isoleucine 0.026 (0.002) 0.031 0.017 (0.001)
Leucine 0.050 (0.007) 0.048 0.026 (0.001)
Lysine 0.036 (0.002) 0.042 0.024 (0.001)
Methionine 0.018 (NA) 0.019 0.011 (NA)
Phenylalanine 0.028 (0.002) 0.026 0.018 (0.002)
Proline 0.022 (NA) 0.020 0.013 (0.001)
Serine 0.021 (0.004) 0.018 0.014 (0.002)
Threonine 0.028 (0.001) 0.024 0.0172 (0.0004)
Tryptophan 0.012 (NA) 0.010 0.008 (NA)
Tyrosine 0.016 (0.003) 0.021 0.014 (0.003)
Valine 0.033 (0.003) 0.040 0.022 (0.001)

RNA 0.190 (0.004) 0.205 0.172 (0.005)
AMP 0.050 (NA) 0.054 0.045 (NA)
GMP 0.064 (NA) 0.070 0.058 (NA)
CMP 0.040 (NA) 0.038 0.036 (NA)
UMP 0.037 (NA) 0.042 0.033 (NA)

DNA 0.013 (0.003) 0.031 0.010 (0.001)
dAMP 0.003 (NA) 0.008 0.002 (NA)
dGMP 0.004 (NA) 0.008 0.003 (NA)
dCMP 0.003 (NA) 0.007 0.002 (NA)
dTMP 0.003 (NA) 0.007 0.002 (NA)

Carbohydrate 0.0312 (0.0005) 0.057 0.042 (0.002)
Glucose 0.0224 (0.0002) 0.028 -
Glucosamine 0.0053 (0.0002) 0.003 -
Galactose 0.0036 (0.0004) - -
Rhamnose n.d. 0.001 -
Heptose - 0.005 -
KDO - 0.006 -
N-acetylglucosamine n.d. 0.006 -
N-acetylmuramic acid - 0.008 -

Lipid 0.061 (0.002) 0.091 0.067 (0.006)
Others - 0.066 -
Sum 0.835 1.000 0.643
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Fig 1. Time-course fermentation profile. Fermentation profile of E. coli K-12
MG1655 growing in a minimal glucose medium showing the OD600 [unitless], glucose,
formate, acetate, and succinate concentrations [mM], as well as CO2 in the off-gas
[mmol h−1], dissolved oxygen (DO) [%] and respiratory quotient (RQ) [unitless]. Unity
is highlighted on the same axis as the RQ for reference. Sampling occurred at the final
time point (∼7.5 h). Data used for plotting can be found in S4 File. The same figure,
except plotted from t = 0, can be seen in S4 Fig.

iML1515 mBOF that were not measured in this pipeline (i.e. inorganic ions, metabolites, 289

cofactors, and coenzymes), normalizing to obtain a molar mass of 1 g mmol−1. 290

To assess the change in stoichiometric coefficients of eBOF, we calculated their 291

relative change from mBOF (Sr), as defined in Eq. 2. While many biomass coefficients 292

were left unmodified (Sr ≈ 1.0), a considerable proportion of biomass components have 293

significantly altered their relative amounts in eBOF (Fig 2A). In fact, we find that 294

∼14.8 % (w/w) of biomass was reallocated from mBOF to eBOF (see S1 Fig for details). 295

These changes largely coincide with the differences from the biomass measurements of 296

Neidhardt (Table 1). The contents of deoxyribonucleotides, certain amino acids (glycine, 297

glutamate, and glutamine), and lipid components displays the largest decrease, while 298

the peptidoglycan and LPS precursor amounts show the greatest increase. 299

We compared the minimal and maximal reaction fluxes (FVA, 100% optimality 300
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constraint), with mBOF and then eBOF as an objective, to give an unbiased overview 301

of the consequences of change in BOF stoichiometries. For every reaction, we calculated 302

the fractional overlap in flux range (ξ) as defined in Eq. 1, the distribution of which is 303

presented in Fig 2B. We see that a significant proportion of reactions have no overlap in 304

flux ranges between the two BOFs (ξ ≈ 0.0). The remaining reactions are largely 305

clustered in two groupings; one where only half of the flux ranges are overlapping 306

(ξ ≈ 0.5), and another where the feasible fluxes are comparable and overlapping 307

(ξ ≈ 1.0). The non-overlapping flux ranges overall reflect the reallocation of biomass 308

precursors from mBOF to eBOF. We see a near threefold increase in attainable fluxes of 309

the reactions necessary for the biosynthesis of LPS. For instance, the reaction MCOATA 310

(malonyl-CoA-ACP transacylase) required for the production of myristic acid of the 311

lipid A component of LPS, shifted its flux range from 0.0287− 0.0289 to 312

0.0830− 0.0830 mmol gCDW−1 h−1 (Table 2). Similarly, the elevated levels of 313

peptidoglycan precursors resulted in a proportional increase in the corresponding 314

biosynthetic flux (e.g. reaction UAGDP, UDP-N-acetylglucosamine diphosphorylase). 315

On the other hand, the reduction in DNA content significantly shifted the flux range of 316

multiple reactions in the nucleotide precursor metabolism (Table 2). The latter can be 317

exemplified by a stark decline in feasible flux of TMDS (thymidylate synthase) from 318

0.0218− 0.0218 to 0.0098− 0.0098 mmol gCDW−1 h−1 necessary for the biosynthesis of 319

dTMP, as well as a corresponding change in flux range for pyruvate synthase from 320

0.0938− 0.0946 to 0.0440− 0.0441 mmol gCDW−1 h−1 required for the regeneration of 321

reduced flavodoxin used for converting ribonucleotides into deoxyribonucleotides 322

(Table 2). 323

Table 2. Significant changes in attainable flux ranges. Examples of reactions in
iML1515 with a significant shift in feasible flux range when using eBOF. The flux
ranges for mBOF is also presented, as well as the relative change in center point (CPr)
of the corresponding flux ranges. Abbreviations: MCOATA for malonyl-CoA-ACP
transacylase, UAGDP for UDP-N-acetylglucosamine diphosphorylase, POR5 for
pyruvate synthase, TMDS for thymidylate synthase.

Reaction Pathway mBOF eBOF CPr

MCOATA Membrane Lipid Metabolism 0.0287− 0.0289 0.0830− 0.0830 2.88
UAGDP Cell Envelope Biosynthesis 0.0628− 0.0629 0.1020− 0.1020 1.62
POR5 Pyruvate Metabolism 0.0938− 0.0946 0.0440− 0.0441 0.47
TMDS Nucleotide Salvage Pathway 0.0218− 0.0218 0.0098− 0.0098 0.45

Discussion 324

The BOF is a central pseudo-reaction in constraint-based metabolic models containing 325

the metabolic precursors required for cellular replication and growth [9, 15, 20, 21, 50, 51]. 326

Currently, most E. coli BOFs can trace their lineage back to data compiled by 327

Neidhardt in 1990 [38]; it should be noted that these data are not for a single E. coli 328

strain, and are partly based on measurements from a range of literature sources. The 329

biomass composition of an organism, however, can be highly dynamic and dependent on 330

the strain, growth conditions, growth rate, and growth phase [11,19]. Consequently, 331

exact and reliable quantification is key in order for the model to accurately predict 332

metabolic phenotypes. The pipeline presented here for the quantification of biomass 333

composition addresses this issue. 334

Using samples of E. coli K-12 MG1655 grown in a defined minimal glucose medium, 335

we obtained a total mass coverage of 91.6% under experimental conditions comparable 336

to those of Neidhardt [38]. This is a marked improvement on the mass recovery recently 337
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Fig 2. Adjustments of BOF stoichiometries impact attainable flux ranges.
(A) Rank-ordered, relative value of BOF coefficients, Sr (Eq. 2), of eBOF compared to
mBOF. (B) Histogram of fractional overlap of attainable flux ranges, ξ (Eq. 1), for all
model reactions using mBOF versus eBOF.

reported by Beck et al. [15] of 64.3%, simultaneously enhancing the molecular resolution. 338

Improving the overall coverage not only provides a more accurate picture of the 339

presence and distribution of biomass components, but also alleviates the unfavourable 340

effects of loss-adjustment by normalization needed to assemble a functional BOF. This 341

normalization step is necessary as the BOF quantitatively represents the conversion of 342

biomass precursors in mmol to gCDW of biomass, thus the molecular mass of the 343

biomass must be scaled to 1 g mmol−1 to allow for prediction of specific growth 344

rates [10]. Extensive loss-adjustment overestimates the relative proportion of biomass 345

components with a higher recovery. This is particularly evident for protocols with initial 346

extraction steps (e.g. for DNA), in contrast to those without (e.g. for carbohydrates). 347

Aiming at maximizing the mass coverage is therefore critical in order to obtain a 348

biomass composition of satisfactory quality for constraint-based metabolic modeling. 349

We obtain an overall comparable amino acid profile to that reported by Neidhardt, 350

although a few amino acids (e.g. glutamate/glutamine, glycine, tyrosine) were found to 351

deviate significantly (Table 1). The under-reported quantities of glutamate/glutamine is 352

presumably caused by their conversion to 5-oxoproline at prolonged exposure to high 353

temperatures [52], which is not measured in this experiment. The reason for the 354

observed inconsistency in the levels of glycine and tyrosine is less clear, although Long 355

and Antoniewicz [19] similarly reported noticeably lower levels of glycine relative to 356

Neidhardt. 357

Several experimental adjustments are available to correct for or avoid these losses. 358

For instance, introducing correction factors by non-linear regression of serial hydrolysis 359

could aid in the quantification of amino acids that vary in their ease of peptide bond 360

cleavage or chemical resistance to acidic thermohydrolysis [53,54]. Including the 361

detection and measurement of 5-oxoproline could also assist in recovering a more 362

realistic estimate of glutamate/glutamine levels [52]. Alternatively, the use of other 363

acids and shorter hydrolysis times at higher temperatures has been shown to produce 364

good quantitative yields and with limited side effects in the undesirable degradation of 365

amino acids [55,56]. 366

Although quantified by our HPLC analysis, methionine was only detected in low 367

concentrations, with a lot of variation across repeated measurements. We believe this to 368

be caused by the propensity for thiol-containing amino acids to undergo oxidative 369

deterioration during acidic hydrolysis [57]. This is further substantiated by our inability 370

to detect cysteine, causing us to estimate the contents of both amino acids based on a 371

linear regression of measured amino acid mass fractions and relative amino acid levels of 372
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protein-coding genes. Ensuring complete oxidation of methionine and cysteine by the 373

addition of methanesulfonic acid or performic acid would allow for reliable quantification 374

of the more chemically stable products methionine sulphone and cysteic acid [20,57]. 375

The cellular amounts of DNA should be a fairly stable quantity at higher growth 376

rates [58]. The low levels might therefore hint at inadequate extraction during the DNA 377

quantification. While this can be counteracted by spiking the samples with DNA 378

standards or isotopically labeled DNA to account and correct for procedural sample loss, 379

there remains a high risk of unaccounted-for matrix effects due to the complexity and 380

heterogeneity of biomass. Analytical approaches which do not require initial extraction 381

steps could therefore be considered promising alternatives for quantification of cellular 382

DNA. For instance, Huang et al. proposed a method by which the nucleobase levels of 383

complex cellular material are measured using HPLC following vapor and liquid phase 384

hydrolysis to estimate the overall contents of DNA and RNA [59]. As well as providing 385

a unified platform for the simultaneous quantification of both macromolecules, this 386

approach has the added benefit of directly measuring the levels of individual nucleobases, 387

avoiding the need for biased estimates of their relative distribution from the genome. 388

No N-acetylglucosamine was detected during our measurements, a carbohydrate that 389

is expected to comprise a significant proportion of the peptidoglycan cell wall of 390

prokaryotes [60]. We hypothesize that this is caused by extensive de-N-acetylation of 391

N-acetylglucosamine to glucosamine during the preliminary hydrolysis step [61,62]. This 392

is further indicated by our measurements of excessive amounts of glucosamine. While it 393

is present in other Enterobacteriaceae strains, it is not supposed to be present in the 394

oligosaccharide core of LPS in strain K-12 [63]. The detection of galactose is also in 395

direct accordance with the same strain-specific characteristics, where a single protruding 396

galactose side chain is present in the outer region of the K-12 core type [63]. When 397

constructing eBOF for iML1515, we therefore assumed all detected glucosamine to 398

originate from N-acetylglucosamine, and treated the contents of N-acetylglucosamine 399

and galactose as proxies for peptidoglycan and LPS levels, respectively. Knowing the 400

monomeric stoichiometry of these complex biopolymers, this allowed for seamless 401

integration with the existing BOF of iML1515 by scaling their stoichiometric coefficients 402

based on our experimental measurements (for calculation details, see Supplementary 403

materials S2 File). This approach has the added benefit of implicitly quantifying 404

N-acetylmuramic acid in peptidoglycan, and 2-keto-3-deoxy-octonate (KDO) and 405

heptose in LPS, which were not directly measured in our analysis. Accounting for these 406

additional contributions, we end up with an overall carbohydrate content of 7.3%. Our 407

approach therefore entails an improvement in both coverage and molecular resolution, 408

the latter of which is commonly lacking in carbohydrate quantification for the analysis 409

of biomass compositions [15,19,20]. Whereas other work assumed all carbohydrates to 410

be glucose (thus overestimating its contribution) when implementing a BOF based on 411

their experimental measurements [15], our analysis allows for more precise and nuanced 412

differentiation of carbohydrates into individually quantified sugar compounds. 413

In addition to the carbohydrates listed in Table 1 we measured 5.1% ribose. While 414

this quantity in theory could be employed to verify the levels of RNA [19], the poor 415

stability of ribose at higher temperatures, particularly in strongly acidic conditions [64], 416

hinders its use as a reliable estimate of cellular RNA. The susceptibility of particular 417

carbohydrate monomers to acid-catalyzed thermohydrolysis is therefore an issue that 418

needs to be addressed in future renditions of the pipeline. Whether this can best be 419

counteracted by changing the acid (type and concentration), by varying physical 420

parameters (e.g. time, temperature), by shielding using chemical modifications, or by 421

quantification of degradation products, remains to be determined. 422

Cells contain a plethora of chemically diverse compounds and biopolymers that are 423

distinct from the major biomass classes measured in this study. For instance, many 424
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genera of both Gram-positive and Gram-negative bacteria have been found to 425

synthesize and accumulate protein- or phospholipid-encapsulated intracellular inclusions 426

of polyhydroxyalkanoates (PHAs) [65]. The biomass contents of PHAs vary strongly 427

with environmental conditions such as nitrogen availability [65], and some Pseudomonas 428

strains may even contain up to 67% PHA when engineered for its production [66]. Many 429

BOFs also contain metabolites not covered by the major biomass components, such as 430

soluble metabolites, energy equivalents (e.g. ATP), reducing power (e.g. NAD(P)H), 431

and other coenzymes [24]. While their contribution to the overall biomass is minor, 432

often not reaching levels above 5% [51], they are key factors necessary for cellular 433

proliferation and growth. Not only does this group of intracellular metabolites adhere to 434

organism and cell line-specific distributions [67], it also dynamically adjusts itself in 435

response to changing growth and environmental conditions [68]. The integration of 436

these molecules should therefore greatly enhance the quality of GEMs, as well as aid in 437

the discovery of differences in the metabolic phenotype due to alterations in the 438

intracellular pool of soluble metabolites. It is therefore necessary to broaden the range 439

of detected compounds in our pipeline to account for such organism-, condition- and 440

strain-specific characteristics, while simultaneously maintaining high generality to 441

enable the capture of subtle differences in the macro- and micromolecular biomass 442

compositions of physiologically diverse microorganisms. 443

After adjusting the coefficients according to the experimental measurements, we 444

arrived at a final mass redistribution of ∼ 14.8%. This suggests that the current BOF 445

for E. coli, based on older measurements and adapted throughout the years, is well 446

suited for simulating exponential aerobic growth on glucose minimal medium. While 447

interesting in their own right, the changes in BOF coefficients provide minimal 448

information on the effects of the resulting predictions of genome-scale metabolic fluxes. 449

By being the penultimate end-point of biochemical transformations in GEMs, 450

alterations in the stoichiometric coefficients of these biomass precursors should 451

propagate throughout the metabolic network and affect the attainable fluxes of the 452

model reactions. We therefore performed FVA for mBOF and eBOF using the default 453

iML1515 uptake parameters to look at the consequences for the metabolism of this 454

redistribution in mass. We observe that the altered BOF stoichiometries considerably 455

impact the range of feasible fluxes in the model. This is evident from the fractional 456

overlap of reaction flux ranges ξ (Fig 2), as well as the relative change in center point of 457

flux ranges (Supplementary Figure S3 Fig). The latter shows that ∼ 46% of the high 458

flux-carrying reactions have changed their center point by more than 10% when using 459

eBOF compared to mBOF. As the biomass compositions of mBOF and eBOF originate 460

from similar experimental conditions, this difference is rather considerable. Additionally, 461

as biomass compositions significantly vary with growth conditions [12], one would 462

expect the impact on model predictions to be even greater when simulating the 463

metabolic phenotype in different environments. This has profound implications for the 464

application of GEMs and emphasizes the importance of condition-specific biomass 465

measurements when attempting to model a particular scenario. 466

Conclusion 467

A detailed and condition-specific BOF is a key element in making accurate predictions 468

of metabolic phenotypes using GEMs. This necessitates high-quality quantification of 469

the biomass composition of the organism in question, and for the experimental 470

condition being modelled. Here, we present a comprehensive analytical pipeline for 471

absolute quantification of the macromolecular biomass composition of E. coli K-12 472

MG1655 for the construction of strain- and condition-specific BOFs. While rather 473

simple and chiefly relying on well-established protocols for measuring the individual 474
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macromolecular classes, we achieved marked improvements in coverage and resolution 475

compared to recently published pipelines. The resulting BOF is made available in the 476

GEM iML1515a. 477

We applied the experimental pipeline to generate eBOF. The comparison with 478

mBOF revealed a largely similar metabolic phenotype for key attributes like growth and 479

uptake rates, yet the FVA showed a shift in the feasible range of many high-throughput 480

reaction fluxes. Our results therefore highlight the importance of the exact formulation 481

of the BOF, and the need for exact experimental determination for more accurate 482

predictions, even for well-studied organisms such as E. coli under the most standard of 483

conditions. For less-studied organisms, and under more esoteric conditions, one would 484

reasonably expect the impact of a specifically determined BOF to be dramatically 485

higher. 486

With this work, we address what we regard to be one of the more pressing subjects 487

in the constraint-based metabolic modeling community: the unfortunate tradition of not 488

allocating resources into experimental determination of biomass composition. We have 489

shown that while it remains time-consuming, it is indeed both important and possible 490

to make these measurements. Additionally, such a biomass determination pipeline opens 491

the possibility to generate multiple biomass compositions under different growth 492

conditions for a given organism. It is our hope that the presented protocols and 493

techniques will be further adapted and improved, and that the measurement of biomass 494

composition will become routine. 495
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Supporting information

S1 Fig Similarity of the BOFs. The difference between the iML1515 WT BOF
(mBOF) and the BOF determined in the manuscript (eBOF), in terms of the mass
redistribution [mg g−1] resulting from the change in each biomass coefficient. Negative
values indicate that the relative amount of the given component was reduced in eBOF
compared to mBOF, while positive values indicate that the relative amount of the given
component was increased.
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S2 Fig Relative similarity of the BOFs. The difference between mBOF and
eBOF in terms of the ratio of each biomass coefficient. Values smaller than unity
indicate that the relative amount of the given component was reduced in eBOF
compared to mBOF, while values greater than unity indicate that the relative amount
of the given component was increased.
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S3 Fig Relative change in center point (CPr). Relative change in center point
(CPr) of the flux ranges in the high-flux carrying reactions (absolute flux
> 0.001 mmol gCDW−1 h−1) when using eBOF versus mBOF. The corresponding flux
ranges were calculated by performing a flux variability analysis (FVA) for all reactions
in iML1515 at optimal growth phenotype using the default uptake parameters of the
model.
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S4 Fig Time-course fermentation profile from time zero. Fermentation
profile of E. coli K-12 MG1655 growing in a minimal glucose medium showing the
OD600 [unitless], glucose, formate, acetate, and succinate concentrations [mM], as well
as CO2 in the off-gas [mmol h−1], dissolved oxygen (DO) [%] and respiratory quotient
(RQ) [unitless]. Unity is highlighted on the same axis as the RQ for reference. Data
used for plotting can be found in S4 File. This is essentially the same plot as Fig 1,
except plotted from t = 0.
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S1 File. The genome-scale metabolic model iML1515a. Revised iML1515
model (named iML1515a) with a corrected reaction GALT1, and with the
experimentally determined eBOF included.

S2 File. Descriptions of eBOF construction. Here, we provide a detailed
description on how eBOF was constructed using our experimental measurements.

S3 File. Experimental measurements and eBOF calculations. Experimental
measurements of the macromolecular biomass composition, as well as the calculations
used to construct eBOF for iML1515a.

S4 File. Fermentor and sampling data used for generating the plots in 1
and S4 Fig Here we provide the data for fermentor measurements such as off-gas and
DO, as well as sampling data of OD and different compound concentrations in the
fermentor.
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