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Summary. 20 

Plant breeding strategies to optimize metabolite profiles are necessary to develop health-21 

promoting food crops. In oats (Avena sativa L.), seed metabolites are of interest for their 22 

antioxidant properties and their agronomic role in mitigating disease severity, yet have not been 23 

a direct target of selection in breeding. In a diverse oat germplasm panel spanning a century of 24 

breeding, we investigated the degree of variation of these specialized metabolites and how it has 25 

been molded by selection for other traits, like yield components. We also ask if these patterns of 26 

variation persist in modern breeding pools. Integrating genomic, transcriptomic, metabolomic 27 

and phenotypic analyses for three types of seed specialized metabolites – avenanthramides, 28 

avenacins, and avenacosides – we found reduced genetic variation in modern germplasm 29 

compared to diverse germplasm, in part due to increased seed size associated with more 30 

intensive breeding. Specifically, we found that abundance of avenanthramides increases with 31 

seed size, but additional variation is attributable to expression of biosynthetic enzymes, but 32 

avenacoside abundance decreases with seed size and plant breeding intensity. Overall, we show 33 

that increased seed size associated with plant breeding has uneven effects on the seed 34 

metabolome, and broadly contributes to understanding how selection shapes plant specialized 35 

metabolism. 36 

 37 

Keywords.  38 

Avena sativa, specialized metabolism, transcriptomics, eQTL, avenanthramide, avenacin, 39 

avenacoside, seed size, plant breeding 40 
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Introduction. 42 

 Plants produce diverse arrays of specialized metabolites, generating a classification of 43 

hundreds of thousands of metabolites (Sorokina et al., 2021), that are nonessential for plant 44 

survival and frequently only found in specific plant lineages (Mutwil, 2020). Plant specialized 45 

metabolites are of interest for their role in biotic and abiotic stress tolerance as well as their 46 

implications for human health as nutraceutical compounds (Afendi et al., 2012; Jacobowitz & 47 

Weng, 2020). Plant breeding efforts to enhance specialized metabolite abundance in crop plants, 48 

however, are constrained by resource-intensive metabolomic phenotyping, genotype by 49 

environment interactions, and limited understanding of the genetic drivers of phenotypic 50 

variation in cultivated germplasm (Soltis & Kliebenstein, 2015). While advances in the study of 51 

model organisms like Arabidopsis have contributed to our understanding of specialized 52 

metabolism (Wager & Li, 2018), large scale studies on metabolomic diversity in cultivated 53 

germplasm – like glycoalkaloids in tomato (Solanum lycopersicum L.) (Zhu et al., 2018) and 54 

benzoxazinoids in maize (Zea mays L.) (Zhou et al., 2019) – provide information about 55 

specialized metabolism limited to specific lineages and in contexts more directly applicable for 56 

plant breeding programs. Overall, characterization of genomic variation and strategies to 57 

translate this information into widely applicable plant breeding strategies are critical steps to 58 

making specialized metabolite composition an accessible goal for plant breeding. 59 

Studying specialized metabolites in cultivated plants in addition to wild progenitors or 60 

model organisms is important as specialized metabolite profiles may have also shifted in 61 

response to direct selection or indirect selection for other traits, or through genetic drift. While 62 

there is a longstanding prediction that cultivated plants would have reduced specialized 63 

metabolite concentration as compared to wild plants (as cultivated plants are more susceptible to 64 

biotic stress), there is not a consistent relationship between cultivation status and specialized 65 

metabolites across multiple species (Whitehead et al., 2017). Instead, differences in specialized 66 

metabolite abundance are frequently observed in distinct breeding pools and pedigrees. For 67 

instance, divergence in volatiles of roots has been noted in maize (Rasmann et al., 2005), and 68 

leaves in cranberry (Rodriguez-Saona et al., 2011) and there is variation in leaf glucosinolates in 69 

cultivated Brassicas (Poelman et al., 2008). For plant breeders, insight into how selection 70 

processes affected specialized metabolites can provide a basis for ongoing work and germplasm 71 

selection for breeding efforts. 72 
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We explored existing variation of specialized metabolites in oats (Avena sativa L.) and 73 

how the metabolomic profile has been shaped by plant breeding. Oats were domesticated from 74 

weedy progenitors (Loskutov, 2008) and, like other cereal crops, domesticated oats have 75 

increased seed size compared to wild species (Preece et al., 2017). Oats are used as livestock 76 

feed and have been an important part of human diet in some parts of Europe since before the 77 

Renaissance (Murphy & Hoffman, 1992). The nutraceutical benefits of fiber, skin soothing and 78 

general health promotion of oats were also noted in the first century CE by Dioscorides (Murphy 79 

& Hoffman, 1992). Today, oats are still known as a healthy whole grain (Singh et al., 2013; 80 

Stewart & McDougall, 2014), with high concentrations of unsaturated fats (Carlson et al., 2019) 81 

and heart health-promoting ß-glucans (Newell et al., 2012). Both have been the subject of plant 82 

breeding efforts, but yield and disease resistance are still predominant traits of interest for plant 83 

breeding (Haikka et al., 2020; González‐Barrios et al., 2021). In addition to these health-84 

promoting compounds, oat seeds contain multiple specialized metabolites (Sang & Chu, 2017) 85 

but, to the best of our knowledge, these metabolites have not been a direct target of selection. 86 

With this history, we predict that oat specialized metabolites may have been subject to genetic 87 

drift or indirect selection processes (e.g., for seed traits or disease resistance) leading to changes 88 

in patterns of variation. Characterizing the genetic bases of variation will provide a starting point 89 

for plant breeding. 90 

 We focused on three types of specialized metabolites in oat seed: avenanthramides, and 91 

the saponins avenacins and avenacosides. Avenanthramides are in highest concentration in the 92 

outer layers of the seed, most notably the aleurone layer (Liu & Wise, 2021), while the saponin 93 

avenacosides are concentrated in the endosperm (Önning et al., 1993). Avenanthramides have 94 

antioxidant properties (Meydani, 2009; Sang & Chu, 2017) that are retained through processing 95 

of oats into many consumer products (Pridal et al., 2018). The committed enzymes of 96 

avenanthramide biosynthesis have been characterized, and it is well-established that 97 

avenanthramides are the result of condensation between phenolic acids and anthranilic acid, 98 

products of different branches of aromatic amino acid biosynthesis (Collins, 2011; Wise, 2014; 99 

Li et al., 2019). Avenanthramides are associated with resistance to crown rust (pathogen 100 

Puccinia coronata f. sp. avenae), (Wise et al., 2008; Wise, 2014), and demonstrate variation in 101 

response to the environment (Emmons & Peterson, 2001; Peterson et al., 2005; Michels et al., 102 

2020). The avenacins and avenacosides are both saponins that have been implicated in reducing 103 
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plant fungal infections and in lowering cholesterol when consumed, but have received less 104 

attention for research and breeding (Sang & Chu, 2017). Core biosynthetic genes for avenacin 105 

biosynthesis have been identified in roots of the non-cultivated species, Avena strigosa (Kemen 106 

et al., 2014; Leveau et al., 2019), but whether variation in expression of these genes affects 107 

abundance in seed tissues of cultivated oat remains unknown. 108 

Knowledge of biochemical pathways is a crucial foundation but, for plant breeding, it is 109 

important to further investigate whether variants that affect enzyme activity, or regulation, or 110 

pathway flux, or metabolite transport contribute to the observed phenotypic variation (Soltis & 111 

Kliebenstein, 2015). While loss of function mutations in biosynthetic enzymes are observed and 112 

employed by breeders for specialized metabolites in some crops (e.g., Pun1 mutation prevents 113 

capsaicin production in pepper (Stewart et al., 2005)), mutations in regulatory elements are 114 

critical in others (e.g., transcription factor Bt mediates cucurbitacin accumulation in cucumber 115 

(Shang et al., 2014)). For oats, there is experimental evidence that avenanthramides increase in 116 

response to activation of systemic acquired resistance (salicylic acid mediated defense) (Wise, 117 

2011, 2017; Wise et al., 2016), and degree of induction varies between oat genotypes (Wise et 118 

al., 2016), suggesting that regulatory variants could be an important target for selection. While 119 

expression of key biosynthetic enzymes has been profiled (Dimberg & Peterson, 2009; Wise, 120 

2017), there has not been a genome-wide or transcriptome-wide association study to identify 121 

novel genes. We are not aware of comparable studies of saponins. In other crops, integrated 122 

genomic, transcriptomic and metabolomic analyses have been critical in understanding metabolic 123 

profiles. For instance, concomitant changes in fruit metabolome and fruit size have been 124 

characterized in tomatoes (Zhu et al., 2018). 125 

We sought to integrate oat seed metabolomic, transcriptomic and genomic data to 126 

characterize genetic variation contributing to specialized metabolite abundance in oat seed. We 127 

also measured oat seed size to evaluate if selection on that yield component has affected 128 

specialized metabolite profiles. Using a diverse germplasm panel that includes oat varieties 129 

developed beginning in 1920 and an elite germplasm panel, we measured whole seed 130 

metabolome phenotypes and seed size and weight traits. In the diverse germplasm panel, we also 131 

conducted transcriptome sequencing of developing seed. We hypothesized that variation is 132 

greater in the diversity than the elite panel, and examined the relationship between seed traits and 133 

specialized metabolites in both of these panels. We also investigated the relative roles of 134 
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variation in regulation and known biosynthetic enzyme pathway genes in mediating metabolite 135 

variance. To test these predictions, we conducted a genome-wide and a transcriptome-wide 136 

association study (GWAS, TWAS, respectively) and eQTL analysis for metabolites and seed 137 

traits. Overall, this work provides insight into breeding for oat specialized metabolites and more 138 

broadly adds to our foundation of how the relative contributions of genetic variation in regulation 139 

versus direct biosynthesis shapes phenotypic variation of specialized metabolites in crop plants. 140 

 141 

 142 

 143 

Materials and methods.  144 

Oat germplasm. We used two germplasm panels of inbred lines, a diversity panel intended to 145 

capture genetic diversity in cultivated oats and an elite panel consisting of lines selected from the 146 

North American uniform oat performance nursery. These germplasm panels have been 147 

previously described in Campbell et al. (2021) and Hu et al. (2021). In the diversity panel, there 148 

were 368 entry genotypes (inbred lines) and seven check genotypes planted in an augmented 149 

design at Ithaca, New York, US in 2018. Six genotypes that lacked both genotyping data and 150 

gene expression data were removed from our analysis. The elite panel consisted of inbred lines, 151 

and was evaluated in three northern US environments (Minnesota, “MN”; South Dakota, “SD”; 152 

Wisconsin, “WI”) in 2017 in an augmented design with 232 entries and three checks. Nineteen 153 

entries were included in both the diversity and elite panels, and were removed from the elite 154 

panel analyses to compare independent sets of germplasm. 155 

 156 

Oat seed secondary metabolite phenotypes. We profiled the seed metabolome in the oat diversity 157 

panel and elite panel. Detailed descriptions of extraction and processing of these samples has 158 

been previously (Campbell et al., 2021; Hu et al., 2021) and is provided here in Method S1. 159 

Briefly, extractions and measurements were conducted at the Bioanalysis and Omics Center of 160 

the Analytical Resources Core (“ARC-BIO”), at Colorado State University (Fort Collins, CO, 161 

USA). Briefly, 50 seeds were dehulled, homogenized and extracted using a biphasic extraction 162 

method to separate polar and non-polar compounds. Chromatography analysis of the polar 163 

compounds (aqueous layer) was was done using a Waters Acquity UPLC system with a Waters 164 

Acquity UPLC CSH Phenyl Hexyl column (1.7 μM, 1.0 x 100 mm) and a Waters Xevo G2 TOF-165 
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MS with an electrospray source in positive mode. Mass features were annotated by first 166 

searching against an in-house spectra and retention time database using RAMSearch (Broeckling 167 

et al., 2016) and then by using MSFinder (Tsugawa et al., 2016). Names and spectra of the 168 

specialized metabolites are given in Table S1. The mass spectra of the specialized metabolites 169 

were positively annotated by these methods in the diversity panel, which was analyzed in 2018. 170 

Many of the specialized metabolites were also annotated in the elite panel (measured in 2017), 171 

and missing annotations were completed by comparing spectra to the diversity panel and 172 

published mass spectra for avenanthramides (de Bruijn et al., 2019), avenacins (Leveau et al., 173 

2019) and avenacosides (Bahraminejad et al., 2008). The final phenotype reported was the 174 

relative signal intensity (relative concentration) of each metabolite. 175 

Best linear unbiased predictions (BLUPs) were calculated for each metabolite for the 176 

diversity panel, and separately for each environment of the elite panel. To account for skew, data 177 

were log2 transformed. Then, relative concentration of each metabolite was modeled with a 178 

linear mixed model in R (R Core Team, 2016) with lme4 (Bates et al., 2015). For each 179 

metabolite, there were fixed effects of whether the genotype was a replicated check and days to 180 

heading (“DTH”) as a numeric covariate, and random effects of experimental block, batch in 181 

which the sample was run on the LCMS, and genotype. Outliers were defined as having 182 

studentized residual >3, and were removed, and the model was recalculated. Effect significance 183 

of the DTH covariate is shown in (Table S2). The BLUPs were then deregressed (Garrick et al., 184 

2009). The deregressed BLUPs (drBLUPs) were used in all following analyses. Pearson’s 185 

correlations were estimated between phenotypes using the ‘cor.test’ function in R. 186 

  187 

Oat seed size and mass phenotypes. After dehulling, 50 seeds were used for evaluating seed 188 

length, width and height. The seeds were scanned with a two-dimensional scanner, where seed 189 

length and width were extracted with the software WinSeedle (Regent Instrument Canada Inc., 190 

version 2017). Seed height was measured separately using an electronic caliper manually with 191 

accuracy of 0.01mm. Seed length and width measurements are not available from the elite panel 192 

that was evaluated in South Dakota. Seed volume was estimated as an ellipsoid (Clohessy et al., 193 

2018), and surface area of an ellipsoid was estimated by S≈ 4π *((lw)1.6+(lh)1.6+(wh)1.6)) / 3)^ 194 

(1/1.6). Separately, 100 hand dehulled seeds (hundred kernel weight, “HKW”) and their 195 

respective hulls (“HHW”) were weighed and the percent groat (kernel) was calculated as the 196 
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percent of total weight (kernel plus hull weight). Deregressed BLUPs were then calculated from 197 

untransformed values in the same manner as the metabolites (above), and used in all further 198 

analysis. The relationship between drBLUPs of seed traits and metabolites was modeled with a 199 

linear model and effect significance was tested by ANOVA. 200 

  201 

Oat variety release year. We conducted an extensive literature search to determine the year of 202 

variety release for as many varieties in the diversity panel as possible. Most varieties were 203 

identified from information on USDA GRIN (https://npgsweb.ars-grin.gov), some in Triticeae 204 

Toolbox (https://triticeaetoolbox.org/POOL), others in US (https://apps.ams.usda.gov/), Canada 205 

(https://www.inspection.gc.ca/english/plaveg/pbrpov/cropreport/oat) or Europe 206 

(https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/207 

) plant registrations, and finally as published variety releases. In sum, we identified the year of 208 

variety release for 155 varieties (Table S3). 209 

  210 

Genotyping and genome-wide association study. Genotyping-by-sequencing data was retrieved 211 

from T3/Oat (https://oat.triticeaetoolbox.org/), filtered to remove markers with more than 60% 212 

missingness and markers with a minor allele frequency of less than 0.02, and then imputed using 213 

the glmnet function (Friedman et al., 2010) in R. Overall, there were 73,527 markers, of which 214 

54,284 could be anchored to the genome (PepsiCO OT3098v1; 215 

https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico). All 54,284 SNPs 216 

were used for the diversity panel, and 54,219 SNPs were used for the elite panel after these 217 

imputed SNPs were again filtered by minor allele frequency. Kinship matrices were calculated 218 

for the diversity and elite panels with their SNPs using the A.mat function, and genomic 219 

heritability (de los Campos et al., 2015) was calculated using the kin.blup function in rrBLUP 220 

(Endelman, 2011). Genetic correlations were calculated in sommer using the mmer and cov2cor 221 

functions (Covarrubias-Pazaran, 2016). Principal components to use as covariates to account for 222 

population structure were calculated using the prcomp function in R. The first 25 PCs were 223 

calculated, and the scree plot was visually examined to determine the number of PCs to use in 224 

future analyses (Figure S1). Five PCs were chosen for the diversity panel and 4 PCs were 225 

chosen for the elite panel. Genome-wide association study (GWAS) was conducted for each 226 

phenotype (drBLUP) in statgenGWAS (Rossum & Kruijer, 2020) using the PCs as covariates 227 
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and the kinship matrix. For GWAS results, P-values were adjusted with a bonferroni correction 228 

on a per-trait basis and SNPs with a  pBonf < 0.05 were considered significant. To determine if 229 

any results colocalized with known QTL for crown rust, crown rust QTL were recorded from 230 

recent publications and mapped to the latest genome version (Table S4) (Lin et al., 2014; 231 

Babiker et al., 2015; McNish et al., 2020; Zhao et al., 2020). 232 

  233 

Transcriptome analyses of oat diversity panel. Developing oat seed tissue was dissected, and 234 

RNA was extracted using a hot borate protocol at 23 DAA as this time point showed slightly 235 

higher correlation between transcript and relative concentration of metabolites than other 236 

sampled developmental time points (Hu et al., 2020). RNAseq reads were aligned to the oat 237 

transcriptome using Salmon v0.12 (Patro et al., 2017) and transformed using variance stabilizing 238 

transformation in DESeq2 (Love et al., 2014) as described by Hu et al., (2020). For these 239 

analyses, we removed all transcripts expressed in fewer than 50% of samples as these are not 240 

useful for TWAS, leaving 54% of the original set (29,385). We examined the  median absolute 241 

deviance of these transcripts to look for outliers and none exceeded a cutoff of MAD>10. 242 

Deregressed BLUPs were then calculated in sommer (Covarrubias-Pazaran, 2016) using the 243 

‘mmer’ function. For each transcript, there were fixed effects of whether the genotype was a 244 

replicated check, the plate in which RNA was extracted from, and days to heading (“DTH”) as a 245 

numeric covariate, and random effects of experimental block and genotype. In all, 22,638 246 

transcripts had converged drBLUPs (non-zero heritability). To remove any additional factors 247 

associated with experimental design, we ran probabilistic estimation of expression residuals 248 

(PEER) and found that k=5 factors (determined by visual examination of scree plot) was 249 

sufficient (Figure S2). 250 

We then conducted a transcriptome wide association study (TWAS) and enrichment 251 

analyses. We used the transcript PEER residuals and a kinship matrix, as well as five genomic 252 

PCs as covariates for TWAS on the metabolite and seed trait drBLUPs. We implemented TWAS 253 

using the ‘createGData’ and ‘runSingleTraitGwas’ functions in the statgenGWAS package 254 

(Rossum & Kruijer, 2020). P-values were adjusted per trait using a false discovery rate 255 

adjustment, and transcripts with pFDR < 0.05 were considered significant. The adjusted p-values 256 

for all transcripts were used in gene ontology (GO) enrichment analysis for each of the 257 

phenotypes for biological processes GO terms. Enrichment analysis was implemented in the R 258 
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package topGO, where significance was determined based on the default “weight01” algorithm 259 

followed by a Fisher test (Alexa & Rahnenfuhrer, 2016). Finally, transcripts had previously been 260 

assigned to temporally covarying groups (Hu et al., 2020) and these annotations were used to 261 

assign transcripts by date (8, 13, or 18  DAA) and direction (up or down) that expression pattern 262 

shifted. Those that changed on multiple dates were split into the two respective days. We tested 263 

for enrichment of any temporal and direction class using a hypergeometric test with the ‘phyper’ 264 

function in R. 265 

We also identified transcripts associated with the avenanthramide biosynthetic pathway 266 

(beginning at PAL) and the preceding shikimate pathway using Ensemble Enzyme Prediction 267 

Pipeline (E2P2) annotations (Chae et al., 2014) of transcripts (Table S5). 268 

  269 

eQTL analysis. We implemented eQTL analysis in Matrix eQTL (Shabalin, 2012) in R using the 270 

PEER residuals for transcript counts and with five genomic PCs as covariates. SNPs were 271 

defined as significant eQTL at a threshold of pFDR < 0.05 per transcript. As only half of the 272 

transcripts are mapped, we did not differentiate between cis and trans eQTL, although future 273 

genome and transcriptome assemblies will facilitate this analysis. 274 

 275 

 276 

 277 

Results. 278 

Heritability and correlations of specialized metabolites in oat seed. Specialized metabolites 279 

(avenanthramides, “AVNs”; avenacins, “AECs”; avenacosides, “AOSs”) were measured in seeds 280 

of a diverse germplasm panel evaluated in one environment and an elite set of oat germplasm 281 

evaluated in three environments. Genomic heritability was low to moderate for most metabolites, 282 

and some metabolites had heritability less than 0.05 (Figure 1). In general, there was a strong 283 

degree of phenotypic and genetic correlation within metabolite groups (e.g., within AVNs) 284 

across populations and environments, with the exception of avenacoside B (AOS_B) (Figure 1). 285 

In the diversity panel, the phenolic AVNs tended to have negative phenotypic and genetic 286 

correlations with both saponins (AEC and AOS), while AECs and AOSs were positively 287 

correlated (Figure 1a). This trend was less pronounced in the elite population phenotypes in 288 
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most environments (Figure 1b-d). While there was still strong within-group correlation, there 289 

were no significant negative phenotypic correlations between phenolics and saponins.  290 

 291 

Relationship between seed traits and specialized metabolites. We examined seed size traits in 292 

dehulled seeds (volume, surface area and surface area to volume ratio), as well as kernel and hull 293 

weight and percent groat (kernel). In general, heritability of the seed traits was greater than those 294 

of the specialized metabolites (Table S6) and seed volume was used for further analyses 295 

(diversity panel h2=0.72; elite panel Minnesota h2=0.50; elite panel Wisconsin h2=0.33). There 296 

were significant relationships between some metabolites and seed size (Figure 2; Table S7) and 297 

seed weight and composition (Table S8). In both the diversity and elite panel, relative 298 

concentration of AVNs (present in outer seed layers) increased with seed size, despite the 299 

decreased surface area to volume ratio. There was no relationship between avenacins and seed 300 

size except as measured in the elite panel in WI. Finally, relative concentration of AOSs 301 

(concentrated in the inner endosperm) decreased with seed size in the diversity panel but had no 302 

relationship to seed size in the elite panel. This relationship was further confirmed by examining 303 

the genetic correlation between seed traits and the specialized metabolites. In the diversity panel, 304 

there was strong positive genetic correlation between seed volume, seed surface area and 305 

hundred kernel weight and AVNs (>0.70), negative correlation with AOSs (< -0.23) and 306 

essentially no correlation with AECs (between 0 and -0.12). This relationship was less consistent 307 

when examined in the elite panel, and there were not consistent patterns between percent groat 308 

and metabolite traits in any panel or location (Table S9).  309 

 310 

Effect of breeding intensity on metabolites and seed traits. Using year of variety release as a 311 

proxy for plant breeding intensity (where later years indicate more intensive breeding efforts), 312 

we tested if breeding intensity affected seed size or metabolites in the individuals in the diversity 313 

panel for which these data are available (phenotypes and year information is available for 138 to 314 

146 individuals per trait; Table S10). Seed volume increased over time and, correspondingly, 315 

seed surface area increased and the surface area to volume ratio decreased (Figure 3a-c). 316 

Hundred kernel weight and hundred hull weight both also increased over time, but groat percent 317 

remained constant (Figure 3d-f). Of the specialized metabolites, the relative concentration of 318 

avenacosides decreased over time, but avenanthramides and avenacins were unaffected (Figure 319 
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3g-i). Using multiple regression with year and seed volume as predictors for groat percentage 320 

and the specialized metabolites, the regression coefficient for year was not significantly different 321 

from zero for any metabolite (Table S11). These results indicate that while seed size was likely a 322 

target of selection as a yield component that had indirect effects on the seed metabolome 323 

composition, factors independent of size and breeding intensity also contributed to the observed 324 

metabolome variation.  325 

 326 

Genome wide association study. Single-trait GWAS was conducted for each of the specialized 327 

metabolites and seed traits in the diversity panel and each environment of the elite panel. Few 328 

metabolite traits had SNPs above a significance threshold of pBonferroni < 0.05 (Table 1; Figure 329 

S3). No seed size traits had a significant GWAS result, but percent groat did in one environment 330 

of the elite panel (Table 1; Figure S3). None of these eleven significant SNPs were within genes 331 

(all genes within +/- 100kb of the SNPs are presented in Table S12). The significant GWAS 332 

results for AVN_A in the diversity panel on Chromosome 3A did not colocalize with known 333 

QTL for resistance to crown rust (McNish et al., 2020) (Table S2), despite the previously 334 

reported relationships between AVN concentration and crown rust resistance.  335 

To visualize genomic regions relevant for metabolite and seed traits and determine if 336 

there is shared genetic control between traits, populations or environments, we examined all 337 

SNPs that met a reduced significance threshold of pFDR < 0.20 and plotted them in 10Mb bins 338 

(Figure 4). Within population and environment (e.g., elite panel in Minnesota), there were no 339 

shared SNPs between any two or more traits (e.g., between AVNs and seed size), indicating that 340 

the metabolite and seed traits do not have common large effect loci. Within AVNs, only results 341 

from the diversity panel met this threshold (Figure 4a). There were multiple points of overlap 342 

between environments and panels for AECs, with the highest count of shared SNPs on 5A (elite-343 

MN, diversity panel) and 5C (elite-MN, elite-WI, diversity panel) (Figure 4b), and there were 344 

consistent SNPs identified for AOSs between the elite panel evaluated in MN and SD on 345 

chromosomes 1C and 4A (Figure 4c). However, the regions identified for seed size traits in the 346 

elite panel and the diversity panel were not shared (Figure 4d). As different genomic regions 347 

were implicated between panels and environments for the same trait, these results indicate 348 

genetic heterogeneity between panels and genotype-by-environment interactions. 349 

 350 
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Transcriptome analyses. A transcriptome-wide association analysis (TWAS) was conducted for 351 

each of the specialized metabolites in the diversity panel to assess the relationship between gene 352 

expression and metabolite relative concentration. Of these, both AVNs had significant (pFDR < 353 

0.05) TWAS results (72 for each AVN_A and AVN_B), with 51 shared and expression of most 354 

of these shared transcripts (50) positively correlated with increased AVNs (Table 2, Table S13). 355 

Of these, phenylalanine ammonia-lyase (“PAL”, TRINITY_DN26560_c0_g2_i1), the first 356 

committed enzyme of phenylpropanoid biosynthesis and phosphoenolpyruvate/phosphate 357 

translocator 1 (TRINITY_DN1581_c0_g1_i3), an enzyme in the pentose-phosphate pathway, a 358 

pathway that precedes the shikimate pathway could be connected to biosynthesis. The other 359 

specialized metabolites had few significant TWAS results (Table 3): the two AECs shared four 360 

significant transcripts and only AOS_B had a significant result. No significant transcripts were 361 

detected for any seed traits, even at a less stringent cutoff (pFDR<0.25).  362 

To better understand the biological relevance of the rest of the transcripts, GO enrichment 363 

analysis was conducted on the false-discovery rate adjusted p-values. While only AVN_B had a 364 

significantly enriched term after multiple test correction (pentose-phosphate shunt, 365 

GO:0006098), GO terms related to the shikimate (chorismate biosynthetic process, GO:0009423) 366 

and L-phenylalanine catabolic processes (GO:0006559) were top GO terms for all 367 

avenanthramides (Table 4). There was no significant enrichment of GO terms for either the 368 

avenacins (Table S14) or avenacosides (Table S15). 369 

We also examined how expression of the significant TWAS transcripts changed over 370 

seed development for AVNs. Developing oat seed transcripts were categorized into temporally 371 

covarying groups (Hu et al., 2020) and we found that significant transcripts from AVN TWAS 372 

analysis were enriched for transcripts that had a trajectory of increased expression beginning at 373 

eight days after anthesis when compared to all transcripts (hypergeometric test, AVN_A: 374 

p=2.39e-13, AVN_B: p=2.82e-10). In contrast, there was weak evidence for enrichment of any 375 

transcript class in known avenanthramide biosynthetic enzymes (hypergeometric test, decrease in 376 

expression at 8DAA,  p= 0.049) or Shikimate pathway enzymes (hypergeometric test, decrease 377 

in expression at 13DAA,  p= 0.062) (Figure 5). 378 

 Finally, we tested if seed volume corresponded to expression of AVN TWAS results to 379 

determine if there was expression variation independent of seed volume that could be a target of 380 

selection. Seed size was less predictive of TWAS gene expression than the phenotype (AVN_B) 381 
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as measured by coefficient of determination (Table S16). For instance, PAL and 382 

Phosphoenolpyruvate/Phosphate Translocator 1 were not strongly associated with seed volume 383 

(Figure 6). These results indicate that while relative concentration of AVN tracks with seed 384 

volume and gene expression, gene expression is not strongly linked to seed volume, and thus 385 

gene expression is an independent contributor to patterns of variation in AVN abundance. 386 

 387 

eQTL analysis. Because we predicted that expression variation is important for oat specialized 388 

metabolites, especially AVNs, we conducted eQTL analysis on genes detected in TWAS and on 389 

known pathway genes and examined if those eQTL colocalized with our GWAS results. Two 390 

avenanthramide TWAS results had eQTL at a pFDR<0.05 threshold, 391 

TRINITY_DN1008_c0_g2_i2 a serine hydroxymethyltransferase 4, and 392 

TRINITY_DN13684_c0_g1_i1 a mitochondrial aconitate hydratase 3. These two genes neither 393 

co-localized with the avenanthramide GWAS result nor were definitively annotated to a single 394 

position in the oat genome. Relaxing the significance threshold to pFDR<0.2 revealed eQTL of 395 

four additional genes (Figure S4), but the eQTLs detected on chromosome 3A were not in LD 396 

with the GWAS result (r2  < 0.02 for all).  397 

Of the pathway genes (Table S5), only TRINITY_DN2726_c0_g1_i2, a bifunctional 3-398 

dehydroquinate dehydratase/shikimate dehydrogenase, had a significant eQTL (pFDR = 0.002; 399 

Chr 3A, position 15737366, avgbs_cluster_12707.1.49). We also examined eQTL from pathway 400 

genes at a pFDR<0.2 threshold and identified eQTL of five additional genes (Figure S4). We 401 

found that eQTL of TRINITY_DN1661_c0_g1_i1, an anthranilate synthase (avenanthramides 402 

are a condensation between phenolic acids and anthranilic acid), was in LD with the 403 

avenanthramide GWAS result on chromosome 3A with the strongest association being the SNP 404 

avgbs_cluster_34200.1.64 (pFDR = 0.16, r2  = 0.44).   405 

 406 

 407 

 408 

Discussion. 409 

Oat (Avena sativa L.) is a cereal crop with known health benefits from consuming the grain or 410 

through topical skincare application. These benefits are derived from a diverse suite of 411 

metabolites, including unsaturated fatty acids and ß-glucans as well as the specialized 412 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.454785doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.454785
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

avenanthramides, avencins and avenacosides. We characterized the genomic and transcriptomic 413 

bases of specialized metabolite variation in diverse and elite oat germplasm in the context of 414 

seed size and selection over a century of oat breeding. We found that variation is diminished in 415 

elite germplasm, but selection for larger seeds only accounts for part of that reduction. For 416 

avenanthramides in particular, we found in addition to increased abundance in larger seeds, there 417 

was also variation in biosynthetic enzymes upstream of the committed pathway enzymes that 418 

contributed to phenotypic variation. Broadly, this work addresses longstanding questions about 419 

how crop breeding has shaped specialized metabolome profiles, and prospects for continued 420 

plant breeding. 421 

 422 

Historical dimensions of oat specialized metabolism and change in seed size.  423 

Specialized metabolites serve multiple purposes in plants, with one prominent use being plant 424 

defense against biotic stresses (Mithöfer & Boland, 2012; Kessler & Kalske, 2018; Jacobowitz & 425 

Weng, 2020). The relationship between plant domestication and breeding, resistance to biotic 426 

stress, and specialized metabolites has been widely examined to understand how plant selection 427 

has shaped agro-ecological interactions. Most work has been conducted comparing wild and 428 

domesticated plants, and has found that cultivated plants are more susceptible to biotic stress 429 

than their wild progenitors (Turcotte et al., 2014; Whitehead et al., 2017; Fernandez et al., 2021). 430 

A concomitant decrease in secondary metabolites, however, has not been consistently observed 431 

(Whitehead et al., 2017). Instead, tradeoffs between plant growth and defense (Whitehead & 432 

Poveda, 2019) or plant nutrition (Fernandez et al., 2021) may be important factors. The studies 433 

that interrogate a spectrum of plant breeding intensity from domestication to landraces to modern 434 

varieties have used less than 25 accessions each, and have produced mixed results where some 435 

find a decrease in resistance with breeding intensity (Rosenthal & Dirzo, 1997; Lindig-Cisneros 436 

et al., 2002) but others do not (Ferrero et al., 2020). Intriguingly, Lindig-Cisneros et al., (2002) 437 

associated reduced biotic stress resistance with reduced metabolite diversity, but not absolute 438 

metabolite concentrations. Overall, these findings indicate that there are nuanced crop-specific 439 

patterns in how breeding has shaped specialized metabolites (and plant defense), but there is a 440 

need for work that includes a greater number of plant accessions and a finer-scale gradient of 441 

plant breeding intensity. 442 
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 In our work, we surveyed oats spanning almost a century of plant breeding - beginning 443 

with the rediscovery of Mendel in the early 20th century to genomics-enabled breeding in the 444 

21st century. Yield has consistently been a trait of plant breeding interest, with yield gains 445 

throughout the 20th century (Rodgers et al., 1983) and is still a focus of current breeding 446 

programs (Haikka et al., 2020; González‐Barrios et al., 2021).We examined the relationship 447 

between breeding intensity (by year of variety release), seed size, and defensive metabolites in 448 

more than 138 individuals. We found that more intensive breeding led to larger oat seeds, but not 449 

a greater proportion of edible tissue (groat) and, while relative concentrations of specialized 450 

metabolites were tied to seed size, they were not a direct target of plant breeding. We found that 451 

larger seeds had high avenanthramide abundance, despite decreased surface area to volume ratio 452 

inherent to larger seeds, but there was no relationship with breeding intensity. In contrast, 453 

avenacoside abundance decreased with increasing seed size associated with breeding intensity, 454 

despite larger endosperm volume. These results indicate that there are not consistent tradeoffs 455 

between growth (seed size) and defense (avenanthramides, avenacosides). Further, we found that 456 

ongoing plant breeding did not uniformly reduce or increase plant specialized metabolites, but 457 

may have affected size of and concentration of metabolites in specific seed tissues (like the 458 

aleurone layer). 459 

 460 

Breeding for oat avenanthramides. 461 

Of the oat seed specialized metabolites, avenanthramides have garnered the most research 462 

interest. Avenanthramides are antioxidants (Bratt et al., 2003) and have been implicated in 463 

resistance to the oat crown rust (Wise et al., 2008; Wise, 2014). The avenanthramide 464 

biosynthetic pathway has been defined (Collins, 2011; Wise, 2014; Li et al., 2019), yet this work 465 

has not been translated into tools for oat breeders, like molecular markers. Critically, it remains 466 

unknown whether functional or regulatory mutations in the committed biosynthetic pathway 467 

enzymes (enzymes specific to avenanthramide biosynthesis) or upstream biosynthetic pathway 468 

enzymes (not specific to avenanthramide biosynthesis) are the most significant contributors to 469 

heritable variation in cultivated oat germplasm. Neither our GWAS nor TWAS results implicated 470 

committed pathway genes. Instead, TWAS revealed that biosynthetically upstream enzymes 471 

expressed early in seed development contributed to avenanthramide abundance. In addition, we 472 

found that an eQTL of a biosynthetically upstream enzyme co-localized with our avenanthramide 473 
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GWAS result. While our interpretation and enrichment analyses were limited by availability of 474 

transcript annotations (which, likely, are more complete for highly conserved, rather than oat-475 

specific, genes) these results nonetheless suggest that regulation of or flux through the pathway 476 

may be a promising avenue for plant breeding. 477 

Dimberg & Peterson (2009) examined the relationship between avenanthramides and 478 

compounds that are precursors or derived from other branches of related biosynthetic pathways. 479 

Their results did not offer a straightforward indication of which biosynthetic step moderates 480 

pathway flux; instead, PAL expression did not depend upon the amount of its substrate 481 

(phenylalanine) nor did PAL expression affect expression of HHT (the terminal enzyme in 482 

avenanthramide biosynthesis). Our results implicate PAL expression as important for 483 

avenanthramide abundance, as well as a phosphoenolpyruvate translocator in the pentose 484 

phosphate pathway, and other transcripts of unknown function. These results add to the widely 485 

recognized importance of PAL expression as a regulator of flux in phenylpropanoid biosynthesis 486 

(Huang et al., 2010; Kim & Hwang, 2014; Barros & Dixon, 2020). In addition, a broader 487 

examination of precursor metabolites, including those in the pentose phosphate pathway may 488 

produce interesting results as diversification of enzymes from primary metabolism is important 489 

for contributing to specialized metabolism diversity (Moghe & Last, 2015; Maeda, 2019). 490 

Overall, our results should prompt future work on avenanthramides to focus on upstream 491 

biosynthetic processes, as most variation affecting avenanthramides appears to be in enzymes 492 

preceding committed biosynthetic steps.  493 

Our results also contribute to an understanding of when avenanthramide biosynthesis 494 

occurs in oat seeds. Avenanthramides are detected as early as eight days after anthesis (DAA), 495 

and while Hu et al. (2020) found that HHT is expressed at 8 DAA, Peterson & Dimberg, (2008) 496 

did not observe expression until 20 DAA. By sampling gene expression at only 23 DAA, we 497 

likely sampled at a time where it would be possible to detect differences in HHT expression, but 498 

we may have missed peak differential expression of upstream enzymes that contributed pathway 499 

flux. Our avenanthramide TWAS results were enriched for genes that were expressed early in 500 

seed development (8 DAA), and Hu et al., (2020) found that two other pathway enzymes, 4-501 

coumaroyl-CoA3-hydroxylase (CCoA3H), caffeoyl-CoA3-O-methyltransferase (CCoAOMT) 502 

increase in expression early in development before dropping beginning at 18 DAA. Together, 503 

these results indicate that the precursors of avenanthramides may be biosynthesized early in seed 504 
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development. Our understanding will improve with further use of oat genomic resources, as well 505 

as transcriptomic analysis paired with metabolomic profiling over seed development. 506 

Finally, despite the connection between avenanthramides and the disease, crown rust, no 507 

results from our GWAS or TWAS results colocalized with previously reported crown rust QTL 508 

(McNish et al., 2020). One explanation for this finding is that we did not inoculate oats with 509 

crown rust, nor trigger systemic acquired resistance (SAR). Both crown rust infection and 510 

treating oats with analogs of hormones that activate SAR increase avenanthramide concentration 511 

(Wise et al., 2008, 2016; Wise, 2011, 2017). We predict that, if SAR was activated, there would 512 

be more extreme variation in avenanthramide concentrations and we would implicate more 513 

genetic loci, some of which would colocalize with crown rust QTL due to shared regulation. 514 

Overall, these results suggest that genetic variation in regulation exists, but regulatory elements 515 

may need to be activated to effectively map or select upon this variation. 516 

 517 

Prospects for oat saponins – avenacins and avenacosides. 518 

The saponins of oats are of interest from a human health perspective as they are associated with 519 

reduction of cholesterol (Sang & Chu, 2017). Our results did not implicate promising candidate 520 

genes by GWAS nor TWAS that could be applied to develop tools for plant breeders. Like 521 

avenanthramides, our TWAS results are limited by only sampling at one time point. We also 522 

found that the saponins, especially the avenacosides, were more sporadically detected in the elite 523 

germplasm and within compound class correlations were weaker, potentially indicating a 524 

decrease in abundance in moving from diverse to elite germplasm. This may be due to taste: high 525 

concentrations of avenacosides in oat seed can contribute to an undesirable bitter off taste 526 

(Günther-Jordanland et al., 2016, 2020). Selection for organoleptic quality has been implicated 527 

in reducing saponin concentration in cultivated legumes (Ku et al., 2020), and our results 528 

indicate there has been a similar historical trajectory in oat. However, to the best of our 529 

knowledge, current oat breeding efforts do not regularly incorporate sensory evaluations. 530 

  531 

Selection for an optimized oat seed specialized metabolome.  532 

In breeding for nutrition, flavor, or aesthetics (color), plant breeders have changed crop 533 

metabolomic profiles. However, working with specialized metabolites versus major nutritional 534 

metabolites presents different challenges and thus may require different plant breeding 535 
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approaches. As an example, fatty acid methyl esters (FAMEs) are healthful fats in oat seed that 536 

comprise 3-11% of oat seed composition, compared to 0.2% for avenanthramides. Also, while 537 

fatty acid biosynthetic enzymes have some degree of cross-species conservation, this is not true 538 

for avenanthramides that are only present in a few (non-model) plant species (Ponchet et al., 539 

1988; Wise, 2014) and a caterpillar (Blaakmeer et al., 1994). In addition, the specialized 540 

metabolites we measured in oats are negatively correlated and do not have shared genetic 541 

control, presenting a challenge for selecting for both traits simultaneously but promising for 542 

efforts to select for a single trait. Finally, and perhaps most importantly, the specialized 543 

metabolite heritability (AVNs: h2 < 0.26, AECs: h2 < 0.61, AOSs: h2 < 0.52) we report here is 544 

lower than that of FAMEs (h2 > 0.61) (Carlson et al., 2019). Overall, these results suggest that 545 

work to increase specialized metabolite concentrations will benefit from strategies that reduce 546 

environmental variation to improve trait heritability, or increase replication in plant breeding 547 

trials, and incorporate seed size into phenotyping efforts. 548 

 549 

Conclusions.  550 

An understanding of patterns of variation in the plant specialized metabolome is relevant for 551 

developing health-promoting functional food crops that may also withstand biotic stress. Due to 552 

the low concentrations and lineage specificity of specialized metabolites, they are infrequent 553 

direct targets of plant breeding, but may have been inadvertently shaped through processes like 554 

selection on other traits or genetic drift. In a diverse panel of cultivated oats, we measured seed 555 

size and specialized metabolites and conducted genomic and transcriptomic analyses to 556 

characterize existing variation and the processes that contributed to it. Overall, we show that the 557 

increased seed size associated with modern plant breeding has uneven effects on the oat seed 558 

metabolome, and variation also exists independently of seed size. Broadly, despite the multitudes 559 

of phenotypic changes in crops from plant breeding, variation for some specialized metabolites 560 

persists in cultivated plants and could be targeted by future plant breeding efforts. 561 

  562 
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Figure 1.  Phenotypic and genetic correlation of specialized metabolites in oat seed 775 

(avenanthramides , “AVN”;  avenacins, “AEC”;  avenacosides, “AOS”) in the (a) diverse panel 776 

evaluated only in New York, and elite panel evaluated in (b) Minnesota (“MN”), (c) South 777 

Dakota (“SD”), (d) Wisconsin (“WI”), USA. The specific type of metabolite is described in 778 

Table S1. The values in the top diagonal are Pearson’s phenotypic correlations, where bold 779 

indicates significance at the Bonferroni cutoff (p<0.001), the values in the bottom diagonal are 780 

genetic correlations with no associated statistical values, and h2 is the genomic heritability. 781 

 782 

 783 

  784 
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Figure 2. Relationship between specialized metabolites and seed size in the diversity panel 785 

(evaluated only in New York) and elite panel evaluated in Minnesota (“MN”) and Wisconsin 786 

(“WI”); data not available for the elite panel evaluated in South Dakota. For each metabolite 787 

class, an example was chosen where ‘Avenanthramide’ refers to avenanthramide B, ‘Avenacin’ 788 

refers to avenacin A1.1, and ‘Avenacoside’ refers to avenacoside A (Table S1). Model results 789 

for all metabolites are in presented Table S7. The *** indicates p<1e-6, ** p<1e-3, and ‘ns’ 790 

indicates p>0.05.  791 
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Figure 3. Relationship between year of variety release and deregressed BLUPs of (a) seed 794 

volume, (b) seed surface area, (c) seed surface area to volume ratio, (d) hundred kernel weight, 795 

(e) hundred hull weight, (f) groat percent, (g) avenanthramide, (h) an avenacin, and (i) an 796 

avenacoside in the diversity panel. For each metabolite class, an example was chosen where 797 

‘Avenanthramide’ refers to avenanthramide B, ‘Avenacin’ refers to avenacin A1.1, and 798 

‘Avenacoside’ refers to avenacoside A (Table S1). Model results for all traits are in presented 799 

Table S10. The *** indicates p<1e-6, ** p<1e-3, * p<0.05,and ‘ns’ indicates p>0.05. 800 

 801 
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Figure 4. Number of SNPs from within 10Mb bins meeting a pFDR < 0.20 significance threshold 803 

from GWAS analysis by germplasm panel and environment. The panels show specific trait types 804 

(avenanthramides, avenacins, avenacosides and seed traits) where color indicates environment 805 

and specific trait.  806 
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Figure 5. Oat seed transcripts classified by temporal variant category and direction as described 809 

in (Hu et al., 2020). The percent of transcripts in each category is shown for all transcripts in the 810 

dataset (“all”), transcripts annotated to be part of the preceding shikimate pathway 811 

(“Shik_Pwy”), transcripts annotated in avenanthramide biosynthesis (“Avn_Pwy”), and each of 812 

the avenanthramides (A, B and C). The numbers at the top indicate the number of transcripts that 813 

were annotated by temporal group.  814 

 815 
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Figure 6. The relationship and coefficient of determination between expression of (a) 818 

phenylalanine ammonia-lyase, “PAL” and (c) phosphoenolpyruvate/phosphate translocator 1, 819 

“PEPT” and avenanthramide B (“Avn_B”) concentration and the relationship between seed 820 

volume and (b) PAL and (d) PEPT expression. The relationship between avenanthramide B and 821 

all TWAS results are given in Table S16. 822 

 823 
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Table 1. Significant SNPs from GWAS of metabolites and seed traits by panel and environment. 826 

The diversity panel was evaluated in only one environment (NY, USA). The P-value is adjusted 827 

with a Bonferroni correction. 828 

 829 

Trait1, panel, environment SNP Chr, Position p-value Effect 

AVN_A, diversity, NY avgbs_cluster_30159.1.28 3A, 406909563 0.035 0.34 

AEC_A1.1, diversity, NY avgbs_32431.1.14 5A, 456500997 0.031 -0.36 

AEC_A1.2, elite, SD avgbs_cluster_3322.1.38 6C, 2212093 0.005 -0.20 

AEC_A1.1, elite, WI avgbs_21467.1.45 5D, 387376916 0.033 0.29 

AOS_dA, diversity, NY avgbs_1891.1.28 4D, 266095186 0.038 -0.25 

     

HKW, diversity, NY avgbs_cluster_39333.1.13 2D, 518487763 0.002 -0.41 

GP, elite, SD avgbs_cluster_42433.1.28 3C, 3654644 0.007 -3.24 

GP, elite, SD avgbs_96083.1.13 3C, 3657557 0.015 3.36 

GP, elite, SD avgbs_221727.1.25 3C, 6201470 0.008 3.23 

GP, elite, SD avgbs_cluster_11404.1.64 3C, 7293210 0.013 -3.18 

GP, elite SD avgbs_cluster_11404.1.57 3C, 7293217 0.015 -2.99 

 830 

 1Trait names are defined as follows: avenanthramide A , “AVN_A”; avenanthramide B , 831 

“AVN_B”;  avenacin A1, “AEC_A1.1” and “AEC_A1.2”;  avenacoside A, “AOS_A”;  26-832 

Desglucoavenacoside A, “AOS_dA”;  avenacoside B, “AOS_B”833 
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Table 2. Significant transcripts (pFDR < 0.05) from TWAS of avenanthramides that have gene annotations. A full list of all significant 834 

transcripts is in Table S13. Rank refers to overall transcript significance in TWAS analysis, and effect refers to the direction of 835 

correlation between expression and relative concentration of avenanthramide. 836 

 837 
Transcript id   AVN_A rank AVN_A  pFDR AVN_B rank AVN_B pFDR Effect Annotation 

TRINITY_DN1008_c0_g2_i2 AB 15 0.002 19 0.004 positive Serine hydroxymethyltransferase 4 

TRINITY_DN15878_c0_g1_i6 AB 17 0.002 34 0.008 positive Germacrene A  hydroxylase 

TRINITY_DN14541_c0_g1_i1 AB 18 0.002 31 0.008 positive Berberine bridge enzyme-like 18 

TRINITY_DN26560_c0_g2_i1 AB 21 0.003 21 0.005 positive Phenylalanine ammonia-lyase 

TRINITY_DN1103_c0_g1_i1 AB 22 0.003 32 0.008 positive 
Succinate-semialdehyde dehydrogenase, 

mitochondrial 

TRINITY_DN2744_c0_g1_i4 AB 23 0.004 53 0.020 positive Fructose-bisphosphate aldolase 3, chloroplastic 

TRINITY_DN29096_c0_g1_i9 AB 26 0.006 26 0.006 positive Probable purine permease 11 

TRINITY_DN2577_c0_g1_i1 AB 31 0.008 33 0.008 positive Putative 12-oxophytodienoate reductase 11 

TRINITY_DN3411_c0_g1_i4 AB 38 0.015 57 0.024 positive Transketolase,  chloroplastic 

TRINITY_DN16295_c0_g1_i1 AB 41 0.015 30 0.007 positive Mixed-linked glucan  synthase 2 

TRINITY_DN3916_c0_g1_i1 AB 47 0.023 36 0.010 positive ALA-interacting  subunit 1 

TRINITY_DN1581_c0_g1_i3 AB 48 0.023 22 0.005 positive 
Phosphoenolpyruvate/phosphate 

  translocator 1, chloroplastic 

TRINITY_DN784_c0_g1_i3 AB 55 0.027 13 0.002 positive Probable methylenetetrahydrofolate reductase 

TRINITY_DN2924_c0_g1_i2 AB 66 0.039 15 0.004 positive 
Glucose-6-phosphate 1-dehydrogenase, 

cytoplasmic isoform 

TRINITY_DN13684_c0_g1_i1 AB 70 0.047 56 0.023 positive Aconitate hydratase 3, mitochondrial 
TRINITY_DN512_c0_g2_i1 A 30 0.008 160 0.171 positive Phosphoenolpyruvate carboxylase 2 

TRINITY_DN13998_c0_g1_i1 A 39 0.015 122 0.123 positive Xylanase inhibitor  protein 1  

TRINITY_DN1272_c0_g1_i3 A 45 0.021 217 0.218 positive Sucrose transport protein SUT1; N 

TRINITY_DN3267_c0_g1_i1 A 53 0.027 NS NS negative 
Pentatricopeptide repeat-containing protein 

At2g15690, mitochondrial 

TRINITY_DN14356_c1_g1_i10 A 54 0.027 151 0.169 positive Isoflavone 2'-hydroxylase 

TRINITY_DN11233_c0_g1_i7 A 58 0.030 260 0.231 positive Cytochrome P450 81D11 

TRINITY_DN20857_c0_g1_i4 A 62 0.035 99 0.090 positive 
S-adenosylmethionine decarboxylase 

proenzyme 

TRINITY_DN9961_c0_g1_i7 A 71 0.047 74 0.053 positive Endo-1,4-beta-xylanase5 

TRINITY_DN7337_c0_g3_i1 A 72 0.050 172 0.180 positive 
Probable metal-nicotianamine transporter 

YSL12 

TRINITY_DN19061_c0_g1_i1 B 86 0.073 38 0.010 positive aldehyde dehydrogenase family 2 member C4 
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TRINITY_DN2385_c0_g1_i1 B 115 0.103 61 0.031 positive Transketolase,chloroplastic 

TRINITY_DN2667_c0_g1_i1 B 155 0.150 66 0.041 positive Probable nitronate monooxygenase 

TRINITY_DN1363_c0_g1_i2 B 163 0.169 67 0.044 negative Serine/threonine-protein kinase rio2 

TRINITY_DN4266_c0_g1_i6 B 211 0.233 43 0.013 positive Probable inositol oxygenase 

TRINITY_DN28530_c0_g1_i4 B NS NS 35 0.008 positive Threonine synthase 1,  chloroplastic 

TRINITY_DN2212_c0_g1_i2 B NS NS 68 0.044 negative 
Eukaryotic translation initiation factor 2 

subunit 3 

 838 

 839 
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Table 3. Significant transcripts (pFDR < 0.05) from TWAS of avenacins (AEC) and avenacosides (AOS) where rank refers to overall 840 

transcript significance in TWAS analysis, and effect refers to the direction of correlation between expression and relative metabolite 841 

concentration. Annotations are provided when available. 842 

 843 

Transcript name AEC_A1.1 AEC_A1.2 AOS_B Direction Annotation 

rank pFDR rank pFDR rank pFDR 

TRINITY_DN36363_c0_g2_i1 1 4.1E-05 1 8.E-05 - - positive  

TRINITY_DN6771_c0_g1_i1 2 2.4E-04 2 0.006 - - positive Phosphoethanolamine N-

methyltransferase 1 

TRINITY_DN97809_c0_g1_i1 3 0.03 4 0.04 - - positive  

TRINITY_DN7675_c0_g1_i7 5 0.09 3 0.02 - - positive  

TRINITY_DN1526_c0_g1_i12 - - - - 1 0.050 negative  

844 
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Table 4. GO enrichment of biological process terms for avenanthramide TWAS results where the top three GO terms from each 845 

avenanthramide (AVN) are presented along with the rank for the other avenanthramides. The p-values are unadjusted and the * 846 

indicates that it is significant when adjusted for a false discovery rate. 847 

 848 

GO ID Term AVN_A AVN_B 

rank p rank p 

GO:0006098 pentose-phosphate shunt 1 6.1E-05 1 7.7E-06* 

GO:0006559 L-phenylalanine catabolic process 2 2.8E-04 - - 

GO:0009423 chorismate biosynthetic process 3 7.1E-04 2 1.7E-03 

GO:0090630 activation of GTPase activity - - 3 2.5E-03 

849 
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