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Abstract:

The largest bottleneck to the development of convolutional neural network (CNN) models in the
computational pathology domain is the collection and cura�onof diverse training datasets. Training CNNs
requires large cohorts of image data, and model generalizability is dependent on training data
heterogeneity. Including data from mul�ple centers enhances the generalizability of CNN based models,
but this is hindered by the logistical challenges of sharing medical data. In this paper we explore the
feasibility of training our recently developed cloud-based segmenta�on tool (Histo-Cloud) using federated
learning. We show that a federated trained model to segment intersti�al fibrosis and tubular atrophy
(IFTA) using datasets from three ins�tutions is comparable to amodel trained by pooling the data on one
server when tested on a fourth (holdout) ins�tution’s data. Further, training amodel to segment glomeruli
for a federated dataset (split by staining) demonstrates similar performance.
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Introduc�on:

As the prac�ce of digi�zing histological slides has become common prac�ce1, the field of computational
pathology has exploded. Modern image analysis technologies (such as deep learning2) are increasingly
being applied to examine digi�zed whole slide images (WSIs). The matura�on of convolutional neural
networks (CNNs)3 (a specialized subset of deep learning) for the analysis and segmentation of natural
images has led to widespread adoption of this technology in the field of computa�onal pathology. CNNs
have shown promising results for state of the art computa�onal pathology image analysis tasks including
�ssue segmenta�on4-8, disease classifica�on9-13, and outcome prediction14,15. Training these networks is
enhanced by access to diverse WSI datasets, as greater data variability is known to enhance model
robustness16. For histological �ssue, stained and scanned digitally as WSIs, the ins�tu�on where data is
prepared often has a large effect on the quality and appearance of the �ssue17. Ins�tu�on specific factors
such as �ssue preparation and staining protocol, as well as any demographic biases can have a large effect
on the resul�ng WSIs. Prac�cally this means gathering training data from mul�ple ins�tutions. However
sharing medical data across ins�tu�ons can be complicated by regulatory challenges18, limi�ng the scope
of collabora�on and therefore the generalizability of computa�onal pathology tools.

Federated learning was recently proposed as an efficient solution for decentralized training of models
without sharing data19,20. Training a network on a federated dataset uses mul�ple rounds of local training
performed on hardware located at the data source, the learned network parameters are shared and
averaged between each round to avoid divergence between training sites. At the core of federated
learning is federated averaging (FedAvg)21, which is simply a weighted average of the network weights
across training sites, performed at pre-selected intervals (Fig. 1). FedAvg has been prac�cally shown to
achieve convergence with proper hyperparameter tuning22. Originally proposed for smartphone natural
language processing tasks where data sharing is limited by a limited network bandwidth and privacy
concerns, federated learning has recently gained the interest of computational researchers in the medical
field23. Computa�onal pathology datasets are a perfect candidate for federated learning where both file
sizes of WSIs (gigapixels) and regulatory limitations hinder data sharing.

To show the feasibility of federated learning on pathology data in the real world, we have created a
pipeline for federated segmenta�on on WSIs capable of deployment across mul�ple ins�tutions. This
pipeline is deployed in the cloud for easy access for data viewing and annotation by each site’s respective
cons�tuents. This is a companion work to our recently publishedHisto-Cloud segmenta�on tool8; it shows
the feasibility for training Histo-Cloud in a federated setup. Histo-Cloud is a cloud-based tool for
segmentation ofWSIs. It combines thedigital slide archive (DSA)24 for WSI datamanagement, HistomicsUI
for WSI viewing and annotation, and a modified version of the DeepLab V3+ network5 for WSI
segmentation.

Results:

Federated training was performed on data distributed across three discreate servers (workers). A fourth
server acted as the master server, performing parameter averaging, and training synchroniza�on, a
schema�c is available in Fig. 1. In each server, data is stored on an instance of the DSA24, and our Histo-
Cloud plugin8 is responsible for network training. This plugin is capable of u�lizing hardware accelera�on
for training, and uses two available GPUs in all three host machines for a total of 6GPUs. We demonstrate
the feasibility of federated segmentation of WSIs with two case studies:
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1 - Federated IFTA segmenta�on (divided by ins�tu�on):
For the first case study inters��al fibrosis and tubular atrophy (IFTA) was segmented from WSIs from
biopsies containing renal allogra�nephropathy stained using periodic acid schiff (PAS). Three pathologists
from different institu�ons each provided a minimum of 20 PAS stained WSIs. The WSIs per set were
uniformly chosen from four IFTA classes defined based on ci/ct scores (0, 1, 2, & 3); ci/ct scoring is a
method defined in Banff 2018 criteria25 for assessing transplant biopsies. A minimum of five slides per
class were used for each set. The caseswere reviewed to ensure the following selec�on criteria weremet:
(1) the amount of early or evolving IFTA with variable intermixed edema was minimized, (2) no ac�ve
inflamma�on, (3) no prior history of rejec�on, and (4) cases were selected to represent the full range of
IFTA severity. All types of IFTA, including classic, endocriniza�on, and thyroidization types, were included
in the analysis, without dis�nguishing between the types. In total the pathologists from ins�tutions 1-3
provided 20, 48, and 22 slides respectively. A holdout dataset was randomly selected by pooling 1/3rd of
the slides from each institu�on (29 slides total). We trained 5 models using this dataset: The first model
was trained across three federated servers, training data for this study was split by ins�tu�on of origin.
For a baseline performance, a second model was trained centrally by pooling all the training data on a
single server and using tradi�onal gradient decent. Finally, to compare the performance in a data
restricted se�ng, three addi�onal models were trained using data from a single ins�tu�on alone.

We note that IFTA boundaries are poorly defined, and subject to disagreement between pathologists26,
receiver opera�ng characteristic (ROC) curves were used to better capture the performance
characteris�cs of our trained models. These were generated by applying a varying threshold to the
network logits for the predic�on of IFTA regions. To measure performance, we calculate the area under
the curve (AUC) which is a common metric for measuring performancewhen a ROC curve is available.

Tes�ng these models on the holdout set, we observed that central training and federated training of the
IFTA model performed similarly both with AUC = 0.95. Performance fell when testing the models trained
using a single ins�tutions data, giving AUC = 0.92, 0.87, & 0.91 respectively. ROC plots of the performance
of the five models is highlighted in Fig. 2a. An example of IFTA segmenta�on on a holdout slide using the
federated model is shown in Fig. 2c. Here we use the network logits to display the predictions as a
probabilis�c heatmap which we believe is better for the display of structures with poorly defined
boundaries such as IFTA.

A fourth pathologist from a different institu�on provided an additional 17 slides to be used as an
independent tes�ng dataset. When we applied the trained IFTA models to this independent set we
observed a similar trend as the holdout set. Here the federated model performed best with AUC = 0.90
and the central model also performed well with AUC = 0.88. Like the holdout set, performance of the
models trained on a single ins�tu�on was lower than federated or central models, with AUC = 0.85, 0.81,
& 0.84 respec�vely. ROC plots of the performance of the five models is highlighted in Fig. 2b.

2 - Federated glomeruli segmenta�on (divided by stain):
As a further test of our method, we designed a second study focused on glomerular segmenta�on, with a
goal of studying the effects of �ssue staining on federated training. A training set of 75 human renal WSIs
from transplant biopsies, stained with 25 periodic acid schiff (PAS), 25 hematoxylin & eosin (H&E), and 25
Masson’s trichome (TRI). These slides were selected from a single ins�tution and ground truth glomeruli
annotation was performed by a single annotator. Slides were divided by stain and uploaded to the three
training servers (25 slides per server). Like the IFTA study, five models were trained: A federatedmodel, a
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central model using all the data, and three models using each stain individually. A holdout set of 30 slides
(10 from each stain) was selected from the same dataset as the training data.

Unlike IFTA, glomerular boundaries are well defined and are best displayed by directly using the network
predic�ons. We convert these predictions to contours for display on the slide. Fig. 3c shows an example
of glomerular boundaries predicted using the federated model on holdout slides of various stains. We
choose to use Matthews correla�on coefficient (MCC) to measure the performance of glomerular
segmentation, as it is commonly used for binary segmenta�on tasks. On the holdout data the federated
model and the central model had iden�cal performance, both achieving MCC = 0.91, outperforming all
the models trained using only one stain (MCC = 0.88 H&E, 0.56 PAS, and 0.85 TRI). A violin plot of the
holdout performance as a func�on of the model used is shown in Fig. 3a.

To further showthe generalizability of themodel, an independent tes�ng set of 58 slides was chosen from
a separate ins�tution, and annotated by a separate annotator. This data includedPAS, H&E,and TRI stains,
as well as Jones stain. As expected, the segmenta�on performance was reduced on the independent test
set. The federated model (MCC = 0.80) was outperformed by the central model (MCC = 0.83). However,
the federated model s�ll outperformed the models trained using a single stain alone (MCC = 0.69 H&E,
0.78 PAS, and 0.65 TRI). A violin plot of the holdout performance as a function of the model used is shown
in Fig. 3b.

Discussion:

Numerous examples of federated learning on medical data exist27-30, however at the �me of wri�ng
computational pathology research on federated learning using WSIs is limited to a paper by Lu et al.31. Lu
at al. trained a weakly supervised, mul� instance learning model for subtyping breast cancer and renal
cell carcinoma and predic�ng survival, while exploring the effects of differential privacy32 on model
performance. Se�ng aside the complexi�es of network hyperparameter tuning, we argue that at its core,
federated learning is a data organization and synchroniza�on problem. While current applications in the
literature describe the hyperparameters used for training, their data management and synchroniza�on
strategies lack details. O�en federated learning research is performed locally in one machine, relying on
simulated data sites19. For example, the details of the federated setup used by Lu et al.31 are not well
described, and it is unclear if the federated training was simulatedor actually performed across physically
dis�nct servers. While results of simulation are valid for method development, we argue that the
complexities of managing data and coordination across mul�ple training sites are a large logis�cal hurdle
for real world applications of federated learning.

Our experiments (IFTA & glomeruli segmentation) show that not only does federa�ng training for WSI
segmentation converge, but the resultant model outperforms training done with a single dataset
(ins�tu�on or stain). Furthermore, the federatedmodel performs on parwith a model trained traditionally
with mul�ple datasets gathered at a central loca�on. Most importantly, these experiments demonstrate
the feasibility of trainingand coordina�ng federated segmenta�onmodels,managing datasets distributed
across physically separate servers, and training in reasonable time.

We are not the first to propose federated segmentation, L. Yi et al. proposed SU-Net33 a federated network
for brain tumor segmentation, which performed similarly to DeepLab5 for non-federated training. The first
to train the DeepLabV3+5 architecture in a federated setupwas U.Michieli et al.34 who used the VOC2012
dataset35 and simulated federated training ona singlemachine. In contrast, our federatedapproach offers
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comparable performance (both in training �me and segmenta�on accuracy) to tradi�onal training of
DeepLab on gigapixel sized medical images (WSIs). Working efficiently with WSIs using CNNs requires a
substan�al amountof engineeringeffort, and the backboneof our codeused for training was custom built
to extract and process regions of interest from WSIs efficiently. We believe the ability to easily manage
and annotateWSI data at each federated site using the DSA24 greatly enhances the real world applications
of our method.

Throughout our training process, the newest segmenta�on model is available for tes�ng at each data site,
and could theore�cally be used in a human in the loop approach to aid in the annotation of new WSIs
similar to our previouslydescribed H-AI-L approach7. Newly addedWSIs will automa�cally be incorporated
into the training set at the beginning of each round of training.

Approaches such as peer-to-peer federated learning36 and swarm learning37 offer data synchronization
strategies that do not require a central coordina�ng (master) server. While the lack of centralized training
coordina�on may be beneficial for some tasks, we argue that for federatedmedical image segmenta�on,
it is likely that only one group will be responsible for model development. Therefore, the ability to control
and monitor training as well as adjust hyperparameters on one master server is ideal. The typical setup of
federated learning in a medical se�ng will involve orders of magnitude less training sites than a task such
as speech recognition, which has millions of poten�al training sites such asmobile phones. Mul�-ins�tute
federated studies using medical images will require careful central coordination with recruitment and opt
in by par�cipa�ng sites. The hardware for performing the training (at least for medical image analysis) is
specialized, requiring IT setup and support at each ins�tu�on. Our Histo-Cloud tool (which is used for
training) is easy to setup making it ideal for this use case.

Methods:

An open source version of our code will be released with the publication of this work in a peer reviewed
journal.

Segmenta�on plugin: This work is heavily based upon our previously published Histo-Cloud tool8, where
we modified the DeepLab V3+ architecture5 to work na�vely on WSIs and developed a series of plugins
for running segmentation training and predic�on in the cloud. This work was based on the Digital Slide
Archive (DSA)24 an open source slide viewer and repository developed by Kitware Inc. Specifically these
plugins were developed for accessibility in HistomicsUI, theslide viewing componentof theDSA. Func�ons
of the DSA can be controlled using a REST web API38, this includes the ability to trigger jobs by running the
installed plugins as well as upload and download data stored in the DSA. Achieving federated learning
using this system was straigh�orward. We use the requests python library39 to send REST calls to the
federated workers, which all have the DSA and Histo-Cloud installed and are hos�ng the respec�ve
training datasets.

Server coordina�on: In this pipeline, each site / ins�tution has a worker node server with the DSA installed
where training data is uploaded and annotated. Using the DSA data permissions can be set so that only
eligible users from the institu�on have access to this data. A central (master) server manages the training
cycle, uploading the globalmodel parameters to eachworker via the DSAREST API before reques�ng each
run local training. Training Jobs are submitted to each worker (training site) using the Histo-Cloud training
plugin8. The training job scheduling is handled by the DSA internally using slicer_cli_web, which uses
Celery40 for task queue management, and RabbitMQ41 as a message broker. The job status is monitored
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by the master server un�l comple�on. Upon job comple�on the master server requests and downloads
the resultant saved local model parameters from each worker node. These parameters are averaged by
themaster server and the globalmodel is updated accordingly. The next round of training is then ini�ated:
the global model is uploaded to each worker and is trained further before being downloaded and
averaged. If training fails on one of the par�cipa�ng workers, then it is excluded from the rest of the
training round, but par�cipates in future training rounds.

Data management: The training WSI data is uploaded to theDSA worker servers, where it was annotated
by expert pathologists. Training data is placed in a folder created on each worker for easy access by the
Histo-Cloud training plugin. A separate folder was created for the models produced by training and
uploaded after federated averaging. The ID of these folders is known by the master server so it can submit
training jobs specifying the data and models to be used for training.

Training process: Training rounds involve parameter upload, training, parameter download, and
federated parameter averaging across the worker andmaster nodes. The following pseudocode describes
the training process:

INIT global model to ImageNet parameters
WHILE global training steps is less than total steps

FOR each client, in parallel do
UPLOAD global model parameters to clients
CALLTrainNetwork plugin involving

INIT network parameters with global model parameters
TRAIN for number of steps in round

UPDATE global training steps
DOWNLOAD trained local model

END FOR
COMPUTE average model parameters (FedAvg)
SET global model to FedAvg parameters

ENDWHILE

Training setup: For training we used three physically dis�nct Linux servers running Ubuntu 18.04.5 LTS,
with the DSA installed. The three servers had different hardware configurations, notably the graphics
processing units (GPUs) were different across the servers. All computers had 2 GPUs that were produced
by the Nvidia corpora�on and included:

1) Titan X Pascale (12GB VRAM) & GeForce GTX 1080 (8GB VRAM) – batch size 4
2) GeForce RTX 2080 Ti (11GB VRAM) & GeForce GTX 1080 (8GB VRAM) – batch size 4
3) 2X Quadro RTX 5000 (16 GB VRAM) – batch size 12

For training we used both available GPUs on each server and adjusted the batch size for each server to
accommodate the individual VRAM (GPU memory) capacity of each.

Training hyperparameters: The goal of federated averaging is to speed up training by removing the
overhead of frequent communication between training sites. This is done by training locally for mul�ple
steps before upda�ng the central model parameters using FedAvg. Practically when optimizing the
hyperparameters of our training loop, we found that using 1000 training steps between FedAvg achieved
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repeatable convergence. We trained for a total of 40 rounds (40,000 steps), using the momentum
optimizer42 with an ini�al learning rate of 7e-3, using polynomial decay with a learning power of 0.9 and
final learning rate of 0. To achieve stability at the start of training, we set the learning rate to 1e-4 for the
first 750 steps. Finally, the gradients on the last layers of the network were scaled up by a factor of 10 to
achieve faster convergence. These layers included the ASPP pooling layers and the layers in the decoder
as defined by the DeepLab network architecture5.

All the models were trained using transfer learning with parameters inherited from a model pre-trained
on the ImageNet dataset. Due to the low maximum batch size of 4 on two of the training servers, we did
not train the batch normaliza�on parameters. Training patches with a size of 512x512 pixels were
extracted from the training WSIs with various downsampled resolutions. Here we followed the training
protocol in the Histo-Cloud work8 using training patches randomly downsampled to 1, 2, 3, & 4 �mes
smaller with respect to the na�ve WSI resolution.
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Figures:

Fig. 1 | The federated learning schema�c.
A schema�c example of federated learning. Multiple worker nodes store data and model parameters locally at the ins�tu�on of
origin. The data stored on these worker nodes is never shared, and the nodes perform local training using this data upon the
request of the master server. The local models are then shared with the master server whoperforms parameter averaging, before
sending the updated global model back to the worker nodes for further local training. This process is repeated itera�vely
throughout the training process, un�l model convergence.
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Fig. 2 | Mul� ins�tute IFTA segmentation performance, data split by ins�tution.
The segmenta�on performance of the trained IFTA models. This data was split by ins�tu�on across three servers for federated
training. Dueto thesubjective natureof IFTAboundaries, we useROC curvesand AUC to measure the segmenta�onperformance.
[a] ROC curves showing each models performance on a dataset of 29 holdoutWSIs which were randomly selected from the same
data as the training set. We observed that central training and federated training of the IFTA model performed similarly both
with AUC = 0.95. Performance fell when testing the models trained using a single ins�tu�ons data, giving AUC = 0.92, 0.87, & 0.91
respectively. [b] ROC curves showing each models performance on an independent test set of data containing 17 WSIs. This
dataset was from an ins�tution which did not provide any training data, and was annotated by an independent pathologist.
Similar to the holdout set, the central and federated models outperformed the models trained on a single ins�tu�on’s data.
Interes�ngly the federated model performed best with AUC = 0.90 and the central model also performed well with AUC = 0.88.
The ins�tu�ons 1, 2, & 3 had AUC = 0.85, 0.81, & 0.84 respectively. [c] an example of IFTA segmentation using the federated
model on a slide from the holdout dataset. The prediction of IFTA is shown here using a heatmap, which reflects the network
confidence in IFTA segmenta�on.
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Fig. 3 | Glomeruli segmenta�on performance, data split by stain.
The segmentationperformance of the models trained for glomeruli segmenta�on. This data was split by stain across threeservers
for federated training. Because glomeruli havewell defined boundaries we use MCC to calculate the segmentation performance,
without varying the network prediction thresholds. [a] a violin plot showing the performance of each model on a dataset of 30
holdout WSIs which were randomly selected from the same data as the training set. We observed that central training and
federated training of the models performed similarly both with MCC = 0.91. Performance fell when testing the models trained
using a single stain, giving MCC = 0.85, 0.88, & 0.56 for TRI, H&E, & PAS stains respectively. [b] a violin plot showing the
performance of each model on a dataset of 58 holdout WSIs which were selected from an independent institution. This dataset
also included WSIs stained with Jones, which was not used for training. The federated model (MCC = 0.80) was outperformed by
the central model (MCC = 0.83). However, the federated model still outperformed the models trained using a single stain alone
(MCC =0.65 TRI, 0.69 H&E, & 0.78 PAS). [c] examples of glomeruli segmentation using the federated model on three slides from
the holdout dataset. From le� to right the slides are stained with trichrome, H&E, and PAS.
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