
   
 

1 
 

RAPPPID: Towards Generalisable Protein Interaction Prediction with AWD-LSTM Twin Networks 1 

 2 

 3 

 4 

Joseph Szymborski1,2 and Amin Emad1,2,3,* 5 

 

1 Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada 

2 Mila, Quebec AI Institute, Montréal, QC, Canada 

3 The Rosalind and Morris Goodman Cancer Institute, Montréal, QC, Canada 

 

 

 

* Corresponding Author: 6 

Amin Emad 7 

755 McConnell Engineering Building 8 

3480 University Street 9 

Montréal, QC, Canada, H3A 0E9 10 

Email: amin.emad@mcgill.ca  11 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.13.456309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456309
http://creativecommons.org/licenses/by/4.0/


   
 

2 
 

ABSTRACT 12 

Motivation: Computational methods for the prediction of protein-protein interactions, while 13 

important tools for researchers, are plagued by challenges in generalising to unseen proteins. 14 

Datasets used for modelling protein-protein predictions are particularly predisposed to information 15 

leakage and sampling biases.  16 

Results: In this study, we introduce RAPPPID, a method for the Regularised Automatic Prediction 17 

of Protein-Protein Interactions using Deep Learning. RAPPPID is a twin AWD-LSTM network 18 

which employs multiple regularisation methods during training time to learn generalised weights. 19 

Testing on stringent interaction datasets composed of proteins not seen during training, RAPPPID 20 

outperforms state-of-the-art methods. Further experiments show that RAPPPID’s performance 21 

holds regardless of the particular proteins in the testing set and its performance is higher for 22 

biologically supported edges. This study serves to demonstrate that appropriate regularisation is 23 

an important component of overcoming the challenges of creating models for protein-protein 24 

interaction prediction that generalise to unseen proteins. 25 

Availability and Implementation: Code and datasets are freely available at 26 

https://github.com/jszym/rapppid. 27 

Contact: amin.emad@mcgill.ca 28 

Supplementary Information: Online-only supplementary data is available at the journal's 29 

website. 30 

 31 

  32 
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INTRODUCTION 33 

Interactions of proteins with other proteins and their surroundings are fundamental to the internal 34 

machinery of a cell. The interaction of proteins with other proteins is of particular interest, as it is 35 

essential for a bevy of diverse cellular functions: from organising cell structure to generating 36 

metabolic energy (Huttlin et al., 2017). These interactions are typically validated with a high 37 

degree of confidence by the many biological assays commonly employed today, each with their 38 

own specific advantages and challenges (Snider et al., 2015). Assays for validating protein 39 

interactions range from the venerable yeast two hybrid (Y2H) (Vidal and Fields, 2014) which 40 

researchers have relied on for the past decades, to more recent Biotin-related techniques such as 41 

BioID-MS (Roux et al., 2012). A characteristic of all these assays, however, is that they are costly 42 

in terms of time, labour, and materials. 43 

 44 

Computational approaches to predict protein-protein interactions (PPIs) are therefore useful to help 45 

towards reducing the number of costly experiments researchers are required to perform. 46 

Researchers have deployed many diverse approaches to solve the task of protein sequence-based 47 

interaction prediction. Most sequence-based methods rely on the understanding that coevolution 48 

and coexpression of proteins are both tied to protein interaction and sequence similarity (Cong et 49 

al., 2019; Jansen, 2003). Some methods rely on substitution matrices for sequence alignment such 50 

as BLOSUM or PAM in combination with machine learning methods to predict interactions 51 

(Henikoff and Henikoff, 1992; Ding et al., 2016). Other methods utilise Support Vector Machines 52 

(SVMs) with kernels specifically designed for use with protein sequences (Ben-Hur and Noble, 53 

2005). Other statistical methods including naïve bayes (NB) and k-nearest neighbors (kNN) have 54 

been used to predict protein interactions from protein sequences (Browne et al., 2007). Some of 55 
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the most successful PPI prediction methods belong to the family of methods that rely on novel 56 

substring search algorithms (Li and Ilie, 2017; Dick et al., 2020), operating similarly to sequence 57 

search tools like BLAST (Altschul et al., 1990). Deep learning models have also been designed 58 

for predicting protein interactions (Chen et al., 2019). These deep approaches commonly either 59 

learn wide networks or share weights in a twin design; the latter being shown to be both more 60 

efficient and effective (Richoux et al., 2019). 61 

 62 

Such methods, however, face many challenges due to the nature of the data on which they train. 63 

Arguably the most pervasive of which is the ability of models to generalise and predict the 64 

interactions of proteins previously unseen by the prediction method. To ensure such 65 

generalisability, careful cross-validation techniques must be used to avoid data leakage. While the 66 

necessity of appropriate cross-validation techniques is not unique to this area of research, the 67 

application of these networks (e.g., PPIs, transcriptional regulatory networks) to obtain biological 68 

insights makes it particularly important to address this challenge in the task of biological network 69 

reconstruction (Park and Marcotte, 2012; Tabe-Bordbar et al., 2018). 70 

 71 

For PPI reconstruction, developing generalizable models prove particularly difficult. The nature 72 

of PPI networks makes it easy to create datasets with testing/training splits which leak information, 73 

resulting in inflated performance metrics that cannot properly assess the generalisability of these 74 

methods. In particular, simply splitting interaction datasets into training and testing sets using 75 

random selection of edges results in the construction of testing datasets that are almost entirely 76 

comprised of interactions between proteins found in the training set. Indeed, Park and Marcotte in 77 

2012 found that all the PPI prediction models they surveyed were tested on such naïvely 78 
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constructed datasets (Park and Marcotte, 2012). The surveyed models, which had optimised their 79 

performance on these naïve datasets that suffered from a large degree of information leakage, were 80 

also found to incur precipitous falls in their prediction metrics when tested on datasets where no 81 

proteins in the testing set occurred in the training dataset. 82 

 83 

When faced with obstacles in the construction of generalisable models, strategic and targeted 84 

applications of regularisation at training time can significantly improve results. This is particularly 85 

relevant in the context of deep learning methods which pay for their expressiveness by learning an 86 

outsized number of parameters. Among the most common regularisation techniques used in the 87 

deep learning context is "dropout” (Srivastava et al., 2014). Applying dropout to a layer consists 88 

of randomly zeroing the activations of the previous network with some probability p. However, 89 

choice of regularisation techniques must be chosen with care and in accordance with the 90 

architecture. For example, applying dropout directly to the hidden state of Recurrent Neural 91 

Networks (RNNs) (Lipton et al., 2015), an architecture which lends itself naturally to sequential 92 

inputs such as amino acid chains, impairs its ability to retain its memory of previous inputs 93 

(Zaremba et al., 2015).  94 

 95 

Applying regularisation to RNNs requires additional considerations. Recent work by Merity et al. 96 

has demonstrated that randomly zeroing the weights of RNNs (“dropconnect”) (Wan et al., 2013) 97 

rather than their hidden state activation (“dropout”) effectively reduces testing error (Merity et al., 98 

2017). Merity et al. describe applying dropout to the embedding layer as well as using an averaged 99 

optimiser (NT-ASGD) as part of a series of regularisation techniques dubbed Averaged Weight-100 
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Dropped Long Short-Term memory (AWD-LSTM). The regularisation techniques used by AWD-101 

LSTM models are specifically selected for their suitability in the context of training RNNs. 102 

 103 

To meet the generalisation challenges posed by PPI prediction tasks, we developed a method called 104 

the Regularised Automatic Prediction of Protein-Protein Interactions using Deep Learning, or 105 

RAPPPID. RAPPPID addresses the challenges in creating generalised models for PPI prediction 106 

by adopting (with modification) the AWD-LSTM, a regularised recurrent neural network training 107 

routine (Merity et al., 2017). In this study, we show that RAPPPID outperforms state-of-the-art 108 

PPI prediction methods on strict validation datasets constructed in accordance with guidelines set 109 

out by Park & Marcotte (Park and Marcotte, 2012). 110 

 111 

METHODS 112 

PPI prediction using AWD-LSTM Twin Networks 113 

RAPPPID is first trained by considering pairs of amino acid sequences of proteins along with a 114 

label indicating whether they do or do not interact. The amino acid sequences are first tokenised 115 

using the Sentencepiece algorithm (Kudo and Richardson, 2018), which allows for better 116 

recognition of common groupings of amino acid residues that make up the secondary structure and 117 

motifs of proteins. Fixed-length latent vector representations of the token sequences of both 118 

proteins are then computed by twin neural networks (Bromley et al., 1993), forming the encoder 119 

of RAPPPID’s pipeline. These twin networks have shared architectures and weights and are 120 

trained jointly. An overview of the pipeline is provided in Figure 1. 121 

 122 

 123 
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 124 

Figure 1: Overview of the RAPPPID pipeline and architecture. (A) The pipeline of the 125 
RAPPPID begins with two protein sequences. Each sequence is first tokenised by the 126 
Sentencepiece tokeniser (yellow). Each sequence of tokens is then inputted separately into an 127 
AWD-LSTM encoder layer which results in a latent representation for each protein. The latent 128 
representations of each protein are inputted into a fully-connected classifier layer. The classifier 129 
layer outputs the predicted probability of the two proteins interacting. (B) Taking a closer look at 130 
the architecture of the RAPPPID, individual residues 𝑥! to 𝑥" for a protein comprised of 𝑚 131 
residues are tokenized into 𝑛 tokens 𝑡!, 𝑡#, … , 𝑡$. The embedding dropout layer randomly assigns 132 
random tokens from the total vocabulary to zero. The encoder layer is comprised of a multi-layer 133 
bidirectional LSTM whose last hidden state is fed to a fully connected layer before outputting a 134 
latent representation 𝑧%. 𝑧% is then concatenated with the latent representation of a second protein 135 
(𝑧&) before being inputted into the two-layer fully-connected classifier. The output of the classifier 136 
is activated by the sigmoid function to produce a probability of interaction. 137 

 138 

Each twin network consists of a two-layer bidirectional AWD-LSTM network (Merity et al., 139 

2017), which takes a tokenised amino acid sequence as its input and generates a fixed-length latent 140 

vector representation as its output. AWD-LSTMs are architecturally identical to the LSTMs 141 

(Hochreiter and Schmidhuber, 1997), however at inference time, several regularisation techniques 142 

are employed while training to promote learning generalised weights. Among these regularisation 143 

techniques are an averaged optimizer and dropout applied to embeddings and LSTM weights 144 

(Athiwaratkun et al., 2019; Wan et al., 2013). Using an AWD-LSTM encoder enables RAPPPID 145 
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to leverage the strong inductive biases of LSTMs, while ensuring that the learned weights are 146 

generalised. 147 

 148 

The final hidden state of the AWD-LSTM is passed to a single fully-connected layer whose output, 149 

once activated by the Mish function (Misra, 2020), is the latent representation of the amino acid 150 

sequences. The latent representations of both proteins are then concatenated and provided as inputs 151 

to the classifier network which generates an interaction probability for each protein pair. The 152 

classifier network is a two-layer fully-connected network that outputs a single logit whose sigmoid 153 

activation serves as the probability of the two proteins interacting. The activated logit is then used 154 

to calculate the mean binary cross-entropy loss. Relegating the pairwise comparison of proteins to 155 

the shallower classifier network allows RAPPPID to infer protein interactions in an efficient 156 

manner. Figure 1 provides an overview of RAPPPID’s pipeline.  157 

 158 

Sequence Segmentation and Tokenisation 159 

As mentioned earlier, RAPPPID utilises the Sentencepiece algorithm (Kudo and Richardson, 160 

2018) to tokenize amino acid sequences. While words form the basis of many natural languages 161 

and may break up sentences and phrases into discrete units, no such higher-order segmentation is 162 

as immediately apparent in amino acids. Motifs and protein domains possess many analogous 163 

qualities to words in natural languages; they appear repeatedly in amino acid sequences and their 164 

combination and relative position in these sequences play important roles in the protein structure 165 

and function (Anfinsen, 1973).  166 

 167 
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Much like words, however, motifs and protein domains present an “out-of-vocabulary” problem, 168 

where unseen examples are difficult to handle. Attempts to solve this problem in natural language 169 

processing tasks has resulted in “subword” segmentation algorithms, particularly in difficult-to-170 

segment languages such as Japanese which do not separate words by spaces (Schuster and 171 

Nakajima, 2012). Here, we employ the Sentencepiece algorithm (Kudo and Richardson, 2018) to 172 

sample tokens from “subword” vocabularies generated by the Unigram algorithm (Kudo, 2018). 173 

The unigram and sentencepiece algorithms construct vocabularies of arbitrary size by modelling 174 

the probabilities of subwords and provides a principled manner for sampling from this distribution 175 

to reconstruct sequences. The multi-residue tokens that comprise the vocabulary subdivide low-176 

entropy areas and reduce the overall length of the sequences encoded. 177 

 178 

Generalising Protein Sequence Encoding with AWD-LSTM 179 

The task of protein-protein interaction prediction on unseen proteins is a difficult problem prone 180 

to overfitting, as demonstrated by the poor testing performance of various methods on unseen 181 

proteins (Park and Marcotte, 2012). For this reason, a training and optimisation methodology that 182 

allows efficient regularisation is desirable. AWD-LSTM was recently devised to enable efficient 183 

training of generalisable recurrent neural networks (RNNs) (Merity et al., 2017). This approach 184 

deploys several regularisation techniques during training to achieve this goal. RAPPPID adopts, 185 

with modification, the training methodology of AWD-LSTM.  186 

 187 

RAPPPID utilises Embedding Dropout, DropConnect (Wan et al., 2013), and Weight Decay 188 

(Loshchilov and Hutter, 2019) on the LSTM weights, as described by AWD-LSTM, in the encoder 189 

during training. Both AWD-LSTM and RAPPPID optimise over average weights, however the 190 
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optimisers are quite different. AWD-LSTM makes use of the non-monotonically triggered 191 

averaged stochastic gradient descent (NT-SGD) optimiser which switches between stochastic 192 

gradient descent (SGD) and the averaged variant (ASGD). RAPPPID uses the recent Stochastic 193 

Weight Averaging (SWA) strategy in combination with the Ranger21 optimiser (Athiwaratkun et 194 

al., 2019; Wright and Demeure, 2021).  195 

 196 

SWA has been shown to promote generalisable models in part by overcoming the challenges of 197 

finding best solutions within flat loss basins (Izmailov et al., 2019). Ranger21 is an optimiser that 198 

applies the “Lookahead mechanism” (Zhang et al., 2019) to the AdamW optimiser (Loshchilov 199 

and Hutter, 2019) and includes several optimisation techniques (Wright and Demeure, 2021). 200 

These techniques, which include gradient centralisation and adaptive gradient clipping, enable us 201 

to further improve our ability to learn generalised weights and smooth training trajectories (Brock 202 

et al., 2021; Yong et al., 2020). Finally, since RAPPPID does not rely on the timestep outputs of 203 

the LSTM network, the Temporal Regularisation (TAR) described by AWD-LSTM is not 204 

applicable. 205 

 206 

Details of RAPPPID’s architecture and hyperparameter tuning 207 

The dimensionality of the AWD-LSTM hidden state is made equal to the dimensionality of the 208 

embeddings (i.e.: 64). The output of the fully-connected layer is of equal dimensionality of the 209 

AWD-LSTM hidden state and activated by the Mish activation function (Misra, 2020). The output 210 

of the first fully-connected layer is half the size of the embedding dimension, activated by the Mish 211 

function, and regularised by a dropout layer (Srivastava et al., 2014). RAPPPID trains on a 212 
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vocabulary of 250 tokens that is generated by the Sentencepiece algorithm. New vocabularies are 213 

generated for each dataset before training. 214 

 215 

The number of LSTM layers, L2 coefficient, and various dropout rates are defined as hyper-216 

parameters that require tuning between different datasets. The final values selected for each of 217 

these hyper-parameters are selected using a validation set, randomly selected from the training set. 218 

The range of considered hyperparameters and their selected values are provided in the 219 

Supplementary Tables S1-S3 (in Supplementary File 1). 220 

 221 

Datasets 222 

We obtained protein-protein interactions (PPIs) and protein sequences from version 11 of the 223 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (Szklarczyk et al., 224 

2019), from the official STRING website. Edges were downloaded from https://stringdb-225 

static.org/download/protein.links.detailed.v11.0.txt.gz and sequences were downloaded from 226 

https://stringdb-static.org/download/protein.sequences.v11.0.fa.gz. In this dataset, the association 227 

between any two proteins is assigned a confidence score depending on the source of the 228 

information (called a “channel”). In our analysis, only associations with a combined STRING-229 

score above 95% (equivalent to a score above 950, obtained from combining different channels) 230 

were considered as positive edges. We also retained the channel-specific scores for further 231 

analysis.  232 

 233 

Due to the lack of an authoritative source of pairs of proteins which are known not to interact with 234 

one another, a methodology must be adopted for generating such “negative edges”. Negative edges 235 
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were randomly selected from the set of protein pairs not known to interact. While it is common for 236 

methods to generate negative examples by pairing proteins which are associated with distinct 237 

subcellular compartments from one another, evidence has shown that the naïve approach adopted 238 

here results in less bias (Ben-Hur and Noble, 2005).  239 

 240 

Training, Validation and Testing Set Construction 241 

As identified by Park and Marcotte (Park and Marcotte, 2012), methods which consider the 242 

interaction of proteins in a pairwise fashion must (and have historically failed to) take additional 243 

care to avoid information leakage when constructing training and testing datasets. Following their 244 

suggestion, here we use three different classes of testing and training sets to evaluate the 245 

performance of RAPPPID and other algorithms (Figure 2). 246 

 247 

1) “C1” refers to the evaluation scheme in which edges (pairs of proteins) are randomly selected 248 

to form the training or testing sets. Since the selection criterion is based on edges, both proteins in 249 

the pair may be present in both the testing and training sets (due to the presence of other edges 250 

adjacent to each protein). 251 

2) “C2” refers to the evaluation scheme in which proteins are randomly selected to form the 252 

training or testing sets. In this scheme, only one protein in a pair may be present in both testing 253 

and training sets (but never both). This evaluation scheme mimics the scenario in which a model 254 

trained on the interactome is used to predict the interaction of known proteins with a newly 255 

discovered protein (that was not used to train the model).  256 
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3) “C3” refers to the evaluation scheme in which proteins are randomly selected to form the 257 

training or testing sets. However, unlike C2, proteins which appear in the training set never appear 258 

in the testing set. This is the most strict evaluation scheme.  259 

 260 

 261 

Figure 2: Illustration of differences in edges between C1, C2, and C3 datasets. Differences 262 
between C1, C2, and C3 datasets are most visible by first dividing the population of all proteins in 263 
the dataset into training (orange, left) and testing (blue, right). In the case of the strict C3 dataset 264 
(bottom row), edges known at training time (orange, solid) only occur between training proteins. 265 
Similarly, C3 datasets are evaluated on testing edges (blue, dotted) that only occur between testing 266 
proteins. The C2 dataset has all the edges present in the C3 dataset, but also includes testing edges 267 
between testing proteins and training proteins. Finally, the pervasive C1 datasets allows all 268 
possible training and testing edges that are not identical. 269 

 270 

While most methods have typically reported on models validated with datasets in the C1 class, 271 

they often perform much worse on similar datasets in the more conservative C2 and C3 class. This 272 

is likely due to the information leakage between training and testing sets present in the C1 class 273 

and, to a lesser extent, in the C2 class. In our evaluations, we report the performance of different 274 
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methods using all three evaluation schemes above, but we are most interested in the results of C3 275 

due to a lack of information leakage. 276 

 277 

Implementation 278 

RAPPPID was implemented in the Python computer language using the PyTorch and PyTorch 279 

Lightning deep learning framework (Paszke et al., 2019; Falcon et al., 2020). Embedding Dropout 280 

and DropConnect implementation were obtained from the AWD-LSTM code base (Merity et al., 281 

2017). The source code for RAPPPID can be found by visiting https://github.com/jszym/rapppid. 282 

 283 

Protein Similarity Experiments 284 

In the analysis of the sequence similarity between testing and training proteins, “Percent Identity” 285 

was measured between proteins using NCBI’s PSI-BLAST tool running locally as part of version 286 

2.12.0 of NCBI’s BLAST+ software suite (Altschul et al., 1997). In addition to the Percent 287 

Identity, for two proteins to be considered similar, an E-value cut-off of at most 5 and an alignment 288 

length of more than 30% of the query sequence were considered necessary. The 64-bit Linux 289 

binaries of the BLAST+ suite were obtained from the link 290 

ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.12.0/. 291 

 292 

Results 293 

Performance evaluation of RAPPPID and other algorithms 294 

To establish the ability of RAPPPID to correctly predict protein-protein interactions within the 295 

current landscape of PPI prediction methods, we compared it against three recent methods (Figure 296 

3). The first of these is the Scoring Protein INTeractions (SPRINT) method, which belongs to the 297 
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family of methods that predict interactions according to measures of sequence similarity (Li and 298 

Ilie, 2017).  SPRINT was shown to outperform support-vector machine (SVM), random-forest 299 

(RF), and sequence similarity-based methods across C1, C2, and C3-like datasets.  300 

 301 

 302 

Figure 3. Receiver-Operator curves across methods and datasets. The receiver-operator curves 303 
(ROCs) for all four methods tested across C1 (A), C2 (B), and C3 (C) datasets. 304 

 305 

The two other methods, PIPR and DeepPPI, are deep learning methods that similar to RAPPPID 306 

utilize twin networks (Chen et al., 2019; Richoux et al., 2019). PIPR uses a residual recurrent 307 

convolutional neural network (RCNN) for its encoder with the goal of more effectively 308 

summarising both local and global features. We compared RAPPPID against the best performing 309 

iteration of DeepPPI, whose encoder comprises of a convolutional neural network feature extractor 310 

followed by an LSTM network. 311 

 312 

Across C1, C2, and C3 testing datasets, RAPPPID achieved higher area under the receiver-313 

operator curve (AUROC) than all other methods tested (Table 1). The margin between RAPPPID 314 

and the second highest performing method (SPRINT in all cases) was highest when performed on 315 

the stricter C3 dataset, resulting in approximately a 24.3% improvement. The improvement 316 
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obtained by RAPPPID compared to SPRINT was lower on the C2 dataset (approximately 3.4%), 317 

and finally nearly equivalent on the least strict C1 dataset. 318 

 319 

Table 1: Comparison of PPI prediction performance on C1, C2, and C3 datasets. The testing 320 
AUROC and AUPR of four different PPI prediction methods is reported across the three different 321 
dataset types described by Park & Marcotte (Park and Marcotte, 2012). 322 

Dataset Method Testing AUROC Testing AUPR 

C1 

RAPPPID 0.978 0.974 

SPRINT 0.977 0.983 
DeepPPI 0.874 0.881 

PIPR 0.501 0.405 

C2 

RAPPPID 0.859 0.868 

SPRINT 0.830 0.868 

DeepPPI 0.760 0.787 

PIPR 0.507 0.508 

C3 

RAPPPID 0.803 0.810 
SPRINT 0.646 0.716 

DeepPPI 0.574 0.590 
PIPR 0.505 0.509 

 323 

With regards to the area under the precision-recall curve (AUPR), this trend across dataset types 324 

persisted. RAPPPID’s AUPR was higher than all other methods for the C3 dataset, with a margin 325 

to the second highest method of 0.094 (equivalent to an approximately 14.6% improvement). 326 

RAPPPID’s AUPR score was matched by SPRINT in experiments conducted on the C2 dataset, 327 

but outperformed DeepPPI and PIPR. SPRINT achieved the highest AUPR of all the methods in 328 

the C1 dataset, outperforming RAPPPID with a margin of 0.009 (equivalent to an approximately 329 

0.9% improvement). 330 

 331 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.13.456309doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456309
http://creativecommons.org/licenses/by/4.0/


   
 

17 
 

While we were able to replicate results of the PIPR model on the S. cerevisiae dataset published 332 

as part of the original PIPR publication (Chen et al., 2019), PIPR suffered from convergence issues 333 

during training on our H. sapiens STRING datasets. We suspect this is due to a variety of factors, 334 

with the large differences in dataset characteristics being the most likely cause. The number of 335 

proteins and interactions in the S. cerevisiae dataset is far smaller than our STRING datasets. 336 

Furthermore, the S. cerevisiae dataset selected pairs of proteins which occupy different subcellular 337 

compartments in order to construct negative samples; an approach found to lead to biased 338 

estimations of prediction accuracy (Ben-Hur and Noble, 2006). 339 

 340 

Taken together, these results suggest that RAPPPID outperforms alternative methods in the 341 

majority of evaluations on C1, C2, and C3 schemes and is particularly effective in the stricter and 342 

more difficult C3 evaluation.  343 

 344 

Channel-specific performance of RAPPPID 345 

The STRING database, integrates and annotates protein association data from a wide range of 346 

sources. The “database”, “text-mining”, “experiments”, and “coexpression” channels make-up the 347 

majority of the edges in our datasets (e.g., 98.4% of all the edges in the C3 dataset).  348 

 349 

The “database” channel is comprised of several curated databases of interactions such as KEGG 350 

and Reactome (Kanehisa, 2000; Jassal et al., 2019). Edges in the “text-mining” channel are the 351 

result of a statistical analysis of proteins whose names and/or identifiers co-occur in publications. 352 

The “experiments” channel is populated by interactions evidenced by high-throughput 353 

experiments curated by members of the International Molecular Exchange (IMEx) consortium 354 
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(Orchard et al., 2012). This includes datasets such as IntAct, DIP, the BioGRID, and many others 355 

(Orchard et al., 2014; Salwinski et al., 2004; Oughtred et al., 2020). Finally, the “coexpression” 356 

channel arises from proteomic and transcriptomic assays which quantify gene-by-gene 357 

correlations. STRING additionally assigns calibrated confidence scores to each of the edges which 358 

summarise the evidence supporting an edge. Scores are assigned to each edge by channel, and 359 

finally harmonised into a final “combined confidence score” which represents the evidence across 360 

all channels present in STRING.” 361 

 362 

To better characterise the results of our protein-protein prediction tests, we sought to identify the 363 

source of the testing edges RAPPPID correctly and incorrectly identified. Figure 4A and 364 

Supplementary Figure S1 show that RAPPPID can accurately predict the testing set edges that 365 

have a high confidence score in biologically supported channels of co-expression, experiments, 366 

and database. However, the accuracy for the edges that have a high confidence score in the text-367 

mining channel is inferior to the other channels. Since edges that are only supported by text-mining 368 

(but not by the other channels) are arguably the ones most prone to error, we expected RAPPPID 369 

to have an inferior performance on such edges (since the edges themselves may not be reliable). 370 

To test whether the inferior performance of RAPPPID in the text-mining channel in Figure 4A are 371 

indeed due to such edges, for a fixed threshold k (50 ≤ k ≤ 95), we divided the testing edges with 372 

a text-mining confidence score at least equal to k into two groups: a group with "experiments" 373 

confidence score at least equal to 80% and a group with "experiments" confidence score smaller 374 

than 80% (Figure 4B). Evaluating the testing edges in C1, C2, and C3 showed that for this channel, 375 

the accuracy on the former group is higher than the latter group (sometimes as large as ~22% 376 

higher, Supplementary Figure S2). Repeating the analysis for co-expression and database channels 377 
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also confirmed this trend (Figure 4B, Supplementary Figure S2). Taken together, these results 378 

suggest that the inferior performance of RAPPPID on the text-mining channel in Figure 4A is 379 

indeed due to the edges that are supported only by text-mining and not by other biologically 380 

identified channels. 381 

 382 

 383 

Figure 4: Accuracy of positive edges across edge confidence stratified by STRING channels. 384 
(A) The percentage of correctly labelled positive edges are plotted for each major STRING 385 
channel. The x-axis denotes the channel edge confidence cut-off score for each curve’s respective 386 
channel. (B) Here, we see a similar chart but rather than using each channel’s respective score as 387 
a confidence cut-off, edges are excluded according to their text-mining confidence (x-axis). The 388 
solid curves include edges which have a channel confidence ≥ 80% for the channel indicated by 389 
the curve’s colour. Dashed curves conversely include edges whose channel confidence is < 80% 390 
for the channel indicated by the curve’s colour.  In both (A) and (B) data shown reflects the C2 391 
model/dataset. 392 

 393 

Role of Protein Similarity on RAPPPID Performance 394 

The procedures for C2 and C3 datasets were devised to reduce the information leakage by avoiding 395 

testing on edges which contain proteins which are known to an algorithm during its training. This 396 

safeguard against information leakage, however, does not account for proteins which are known 397 

by different identifiers but share near identical protein sequences. Further complicating the matter, 398 
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sequence similarity is a valid PPI prediction feature and is often used by methods as a proxy 399 

measure of co-evolution and conserved functional domains (Cong et al., 2019; Jansen, 2003). 400 

Indeed, this strategy is leveraged by the SPRINT algorithm against which RAPPPID was 401 

compared. 402 

 403 
Figure 5: Accuracy of positive edges as a function of similarity between testing and training 404 
proteins in C2. The similarity between testing and training proteins was measured using their 405 
percent identity as computed by NCBI’s PSI-BLAST software. The highest percent identity 406 
between any training protein and a testing protein in a testing edge was considered to be that testing 407 
edge’s “maximum percent identity”. The percentage of accurately labelled positive edges (black 408 
curve, left y-axis) is reported for edges with maximum percent identities lower than the threshold 409 
reported on the x-axis. The proportion of testing edges for each threshold values is reported by the 410 
dashed blue curve and the right y-axis. 411 
 412 

In spite of the challenges above, we sought to determine whether the superior performance of 413 

RAPPPID (particularly in the strict datasets of C2 and C3) is due to sequence similarity between 414 

testing and training proteins or not. For this purpose, we used PSI-BLAST algorithm (Altschul et 415 

al., 1997) to evaluate sequence similarities between each pair of testing/training proteins. Figure 416 
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5 shows the accuracy of RAPPPID on the C2 dataset when different degrees of restriction on 417 

sequence similarity are imposed. More specifically, a threshold t (x-axis in Figure 5) determined 418 

the maximum allowable Percent Identity score between a testing protein and any of the training 419 

proteins that were candidates to be similar to it (see Methods for details). Any testing protein that 420 

did not satisfy this condition for the threshold t was excluded from the calculation of accuracy. As 421 

one moves towards larger values of t, the sequence similarity constraint loosens and t=100% is 422 

equivalent to the complete C2 dataset. Our analysis on C2 (Figure 5) and C3 (Supplementary 423 

Figure S3) revealed that RAPPPID’s accuracy is largely independent of the sequence similarities 424 

between testing and training proteins and in fact removing testing proteins that have a highly 425 

similar training protein (slightly) improves the accuracy of RAPPPID.  426 

 427 

Effect of stochastic components on RAPPPID’s performance 428 

Since RAPPPID utilizes random initialisation, mini-batch sampling, and token sampling, there is 429 

some stochasticity present in its performance. To test the effect of these components and to ensure 430 

that the specific choice of training and test sets were not responsible for the superior performance 431 

of RAPPPID, we ran RAPPPID on three additional C3 datasets whose training, validation, and 432 

testing proteins were chosen at random. In each of these runs, different seeds were used to assess 433 

the effect of stochastic components of RAPPPID (mentioned above). Table 2 provides the 434 

performance metrics on the testing set as well as the validation set (which was used for selecting 435 

the hyperparameters in Supplementary Table S3). Overall, the average testing AUROC across 436 

models trained on these additional three datasets was 0.797 (±0.011). Results from these 437 

repeatability experiments illustrate that RAPPPIDs strong performance on C3 datasets is not tied 438 

to a specific set of testing or validation proteins, nor certain weight initialisation states. 439 
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Table 2: Repeatability of results across randomly generated C3 datasets.  440 

Dataset # Validation 
Loss 

Validation 
AUROC 

Validation 
AUPR 

Testing 
AUROC 

Testing  
AUPR 

1 0.555 0.804 0.803 0.804 0.809 

2 0.560 0.804 0.807 0.806 0.803 

3 0.559 0.780 0.776 0.782 0.789 

 441 

Discussion and Conclusion 442 

This study introduced RAPPPID, a deep learning method that addresses the challenges of creating 443 

generalisable PPI prediction models posed by inherent characteristics of PPI datasets. By adopting 444 

a modified AWD-LSTM training routine, RAPPPID was able to surpass state-of-the-art models 445 

under testing conditions that carefully controlled for information leakage and other sources of 446 

prediction accuracy inflation. Further experiments were conducted to confirm the results were 447 

independent of the specific proteins present in the training and testing splits. RAPPPIDs ability to 448 

PPIs in the STRING database was shown to increase with strong biological evidence for the 449 

interaction. This relationship between PPI evidence and RAPPPID predictive ability illustrates that 450 

RAPPPID accurately reflects our confidence in interactions, and testing performance is not 451 

disproportionately inflated by spurious, low-confidence interactions. Moreover, assessment of the 452 

sequence similarity between testing and training proteins revealed that the superior performance 453 

of RAPPPID is not due to the presence of highly similar protein pairs in testing and training, and 454 

the accuracy of RAPPPID was largely stable with a small improvement when highly similar testing 455 

proteins were excluded.   456 

 457 

RAPPPID’s ability to predict interactions warrants further study into relevant tasks that might 458 

benefit from a similar approach. The RAPPPID architecture might be modified for the tasks of 459 
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binding site and protein function prediction. These tasks are related to PPI prediction and as a 460 

result are exposed to similar challenges to which RAPPPID is well suited. However, in all these 461 

cases, it is crucial to consider strict rules for cross-validation and data splitting to ensure data 462 

leakage is avoided.  463 
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