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Abstract Some aspects of the neural mechanisms underlying mouse ultrasonic vocalizations (USVs) are a useful model for the9

neurobiology of human speech and speech-related disorders. Much of the research on vocalizations and USVs is limited to offline10

methods and supervised classification of USVs, hindering the discovery of new types of vocalizations and the study of real-time free11

behavior. To address these issues, we developed AMVOC (Analysis of Mouse VOcal Communication) as a free, open-source12

software to analyze and detect USVs in both online and offline modes. When compared to hand-annotated ground-truth USV data,13

AMVOC’s detection functionality (both offline and online) has high accuracy, and outperforms leading methods in noisy conditions,14

thus allowing for broader experimental use. AMVOC also includes the implementation of an unsupervised deep learning approach15

that facilitates discovery and analysis of USV data by clustering USVs using latent features extracted by a convolutional autoencoder16

and isimplemented in a graphical user interface (GUI), also enabling user’s evaluation. These results can be used to explore the vocal17

repertoire space of the analyzed vocalizations. In this way, AMVOC will facilitate vocal analyses in a broader range of experimental18

conditions and allow users to develop previously inaccessible experimental designs for the study of mouse vocal behavior.19

20

Introduction21

Over the past two decades there has been a growing interest in the usage and signaling of vocalizations in mice, with large efforts going22

into studying the underlying neurobiological mechanisms for auditory processing (Pomerantz et al., 1983; Liu et al., 2003; Neilans23

et al., 2014; Perrodin et al., 2020; Holy and Guo, 2005), and the production of vocalizations (Arriaga et al., 2012; Chabout et al.,24

2016; Okobi et al., 2019; Zimmer et al., 2019; Gao et al., 2019; Tschida et al., 2019;Michael et al., 2020). The tools available for25

experiments in mice provide a promising model for studying the neural basis of vocalizations, as well as the effects of genes on the26

origin and development of vocal and neural anatomy (Grimsley et al., 2011; Bowers et al., 2013; Chabout et al., 2016; Tabler et al.,27

2017).28

Mice produce ultrasonic vocalizations (USVs; 30-110kHz) relative to the human hearing range (2-20kHz). Both sexes of mice29

produce USVs from an early neonatal age through adulthood (Grimsley et al., 2011). Efforts have been made to better understand these30

USVs in terms of their structure, classifying their multi-syllabic structure, as well as the non-random sequencing of syllables (Holy31
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and Guo, 2005; Chabout et al., 2016; Calbick et al., 2017; Castellucci et al., 2018; Hertz et al., 2020). USVs exhibit considerable32

variation across inbred strains such that innate USV repertoires can be used as a phenotyping marker for different genotypes (Melotti33

et al., 2021), and as a behavioral readout for genetic modifications and speech related mutations (Scattoni et al., 2009; Chabout et al.,34

2016; Castellucci et al., 2016). USVs can also vary within individuals based on social environment and affective state. For example,35

adult male mice are known to modify the temporal organization and the rate of vocalizations for different social contexts (Chabout36

et al., 2015). While we have learned a lot from these behavioral and genetic studies, we still do not know very much about the ways37

in which the murine brain generates and processes the content and variation of conspecific USVs. For these reasons, in order to38

advance our understanding of the neurobiology of vocalizations, it is equally important to more precisely understand the vocalizations39

themselves as units of behavior.40

Historically, most vocal research was done by hand-annotating spectrograms. Successive technological improvements have led to41

many new automated methods that allow for unsupervised detection and classification of vocalizations.42

These advances in vocal detection include tools developed specifically for analyzing the USV repertoire of mice. Early tools used43

supervised classification methods that rely explicitly on the acoustic parameters of the recordings. One such tool is Mouse Song44

Analyzer (MSA) (Holy and Guo, 2005; Arriaga et al., 2012; Chabout et al., 2015). MSA first generates a spectrogram from the45

audio recording, that is subsequently thresholded to remove white noise. Frequencies outside of mouse USV range of 35-125 kHz are46

discarded. The spectrogram is used to compute frequency, amplitude, spectral purity, and discontinuity across the entire recording. A47

combination of user-defined thresholds for each of these features is used to detect USVs. Lastly a duration filter is applied to remove48

any detected sounds that fall below a predefined value, all remaining detections are considered USVs. The detected USVs are then49

classified based on the number of gaps, or "pitch jumps", that are present within the detected USVs (Chabout et al., 2015). USVSEG50

(Tachibana et al. (2020)) is also a MATLAB tool used for vocalization detection, emphasizing on noise removal of the spectrogram51

in the cepstral domain before thresholding to detect whether a segment contains a vocalization or not. Another tool is Ax (Neunuebel52

et al. (2015)), which seeks to detect vocal signals by keeping time-frequency points of the spectrogram that signifcantly exceed noise53

values.54

As new methods have arisen for the unsupervised assessment of USVs (Van Segbroeck et al., 2017), some have implemented55

machine learning and neural networks in their processes (Coffey et al., 2019; Fonseca et al., 2021). Machine learning methods have56

been used improving detection accuracy, but performance is limited by how well a network is trained, and it may not always generalize57

across experiments.58

This includes Mouse Ultrasonic Profile ExTraction (MUPET), a MATLAB open source tool, developed by Van Segbroeck et al.59

(2017) to detect syllables, analyze the vocalizations features and cluster the syllables depending on these features. MUPET first filters60

the signal to keep high frequencies (25-125 kHz). It then uses spectral subtraction to remove stationary noise, and at last it computes61

the power of the spectral energy in the ultrasonic range above a specific threshold. The vocalizations are converted to representations62

by using negative matrix factorization (NMF) and gammatone filters. The filtered spectrograms are then used to cluster vocalizations63

based on spectral shape similarities. The clustering is done by using K-Means, and user-defined number of "repertoire units" (clusters).64

The authors note that MUPET can also be used with many non-rodent species’ vocalizations.65

DeepSqueak is a software suite for USVs detection and analysis (Coffey et al. (2019)). It splits the recording into areas of interest,66

computes the corresponding sonograms and passes them to a Faster-RCNN (recurrent convolutional Neural Network) object detector,67

which consists of two networks. The first network is a region detection network, which proposes sections of the spectrogram that68

could contain actual vocalizations. These sections are then used as inputs to a second network, a convolutional neural network (CNN),69

and are classified depending on whether or not the sections contain vocalizations. This process has been recently updated to use a You70

Only Look Once (YOLO) network to improve detection quality. These networks can also be trained on new vocalizations. DeepSqueak71

can also be used for clustering the detected syllables, either with a supervised or unsupervised method. Their unsupervised approach72

gives the user the opportunity to define three weighted input features: shape, frequency and duration of the vocalization. An important73

difference from MUPET is that the clustering function of MUPET takes syllable amplitude into account, whereas DeepSqueak does74

not, which can be considered an advantage for DeepSqueak, given that the amplitude of a vocalization can depend on the recording75

setup itself, among other factors.76

VocalMat is a MATLAB tool (Fonseca et al. (2021)), which uses image processing techniques and differential geometry analysis77

on the spectrogram of a recording to detect vocalization candidates. It can then classify detected USVs into 12 predefined categories78

(including noise), by using a CNN. As with DeepSqueak, VocalMat’s networks can be retrained as well.79

A more recent tool is Deep Song Segmenter (DeepSS), which has been used for annotation of songs of mice, birds and flies80

2 of 24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456283doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456283
http://creativecommons.org/licenses/by-nc/4.0/


(Steinfath et al., 2021). DeepSS learns a representation of sounds features directly from raw audio recordings using temporal81

convolutional networks (TCNs), based on dilated convolutions. It is a comparatively fast, supervised annotation method, since the82

network is trained with manually annotated recordings. It can also be combined with unsupervised approaches to reduce the amount83

of manual annotation required.84

There are, however, limitations to each of these approaches. The supervised classification methods, like MSA (Holy and Guo,85

2005; Arriaga et al., 2012; Chabout et al., 2015), limits their utility in being able to analyze datasets for changes or novelty in the86

USV repertoire across individuals and genotypes. All methods thus far do not perform analyses in real time. To address these pitfalls,87

we sought to create a tool for mouse USVs that is both computationally efficient and accurate, and that can provide a less biased88

classification of USVs.89

In this work we present Analysis of Mouse Vocal Communication (AMVOC), a new open-source tool for mouse USV research.90

AMVOC’s purpose is twofold: (a) it uses dynamic spectral thresholding to detect the presence of USVs in audio recordings (both91

offline and online), and (b) similar to other machine learning approaches it analyzes and visualizes the detected USVs using feature92

representations extracted from deep convolutional autoencoders, and uses these feature representations for clustering and data93

exploration. AMVOC’s ability to detect USVs has been extensively evaluated using real recordings, and AMVOC’s accuracy has94

been shown to outperform most state-of-the-art tools in various acoustic environments, allowing for more flexible experimental set95

ups. In addition, while many of the other USV detection tools available are specifically developed for offline analysis of vocalizations,96

AMVOC is unique in that it can also be used to detect and measure USVs in real-time with an accuracy that rivals the accuracy of97

offline approaches and detection speeds at behaviorally relevant timescales. Lastly, the proposed deep feature extraction technique,98

using a convolutional autoencoder, produces unsupervised USV classifications that can be used as a basis to discover biologically99

relevant USV clusters. This provides an unparalleled usage that opens up new avenues to better understand mouse vocal behavior and100

its associated neurobiology.101

Results102

Experimental evaluation of the AMVOC detection method103

Our objective was to design and implement a robust (in terms of detection performance) but also computationally efficient USV104

detection method, as our vision was to build a real-time, online pipeline. Because of the online vision of the design, we wanted to105

ensure that our method could still perform with high accuracy despite the demands of online processing.106

We compared our proposed detection methodology with several popular USV detection tools, such as MUPET (Van Segbroeck107

et al., 2017), VocalMat (Fonseca et al., 2021), and DeepSqueak (Coffey et al., 2019). We also wanted to compare our new tool108

with MSA, which was developed in our lab. We rewrote MSA, from the original MATLAB implementation (MSA1) to a Python109

implementation (MSA2) with added filtering components to improve USV detection rates. We noted that MSA1 was cutting off parts110

of beginning of syllables, underrepresenting the full spectral duration of the USV syllables, as well as missrepresenting the timestamps111

of the detected USVs. MSA2 first bandpasses the raw audio (30-115 KHz) and then generates a spectrogram. The spectrogram is112

thresholded according to the signal-to-noise ratio at each frequency.113

Due to the vast range of possible parameters that could be tuned in each method we compared against, we used default settings,114

unless there were other documented settings that were used (Chabout et al., 2017). In order to evaluate and compare the aforementioned115

methods, we used Dataset D1, which consists of 9 audio segments of 5-10 seconds each, containing 245 annotated syllables in total116

from 14 mice (see Section ).117

To evaluate the range of experimental contexts recordings could be taken from, we split the recordings into two categories: normal118

and noisy. Normal parts of the recording are the ones where the vocalization detection is relatively straightforward, because the energy119

easily surpasses the background energy. Noisy parts contain background noise, such as cage bedding or physical interacitons between120

the mice, any of which makes the detection more difficult and ambiguous, even for the human eye observing the raw spectrograms.121

The evaluation metrics are calculated separately for the two categories.122

For evaluation and comparison we adopted two performance metrics, namely the temporal F1 and the event F1 score:123

• For the temporal F1 score, we interpret the vocalization detection as a classification task of each 1 ms time frame into two124

categories (vocalization or no vocalization). Then we calculate the precision and recall rates by comparing the detected125

vocalizations to the ground-truth vocalizations. Their harmonic mean is the temporal F1 score.126

• The event F1 score is the harmonic mean of the two following fractions: (a) the number of events a method detected that are127

annotated in the ground-truth data by the number of events detected by a method (i.e. precision), and (b) the number of events128
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AMVOC
F1 score offline online MSA1 MSA2 MUPET VocalMat DeepSqueak

Temporal
Normal 84 85 46 88 85 91 83
Noisy 67 68 23 71 53 57 76

Average 75.5 76.5 34.5 79.5 69 74 79.5

Event
Normal 97 97 66 94 93 90 93
Noisy 84 83 33 72 57 58 81

Average 90.5 90 49.5 83 75 74 87
Table 1. F1 scores of our proposed method and other methods.

annotated in ground-truth data that are detected with a method by the number of events of ground-truth annotations (i.e. recall).129

Methods Real-time Processing Ratio
MUPET 32.4
MSA2 29.9
MSA1 28.1

AMVOC 21.2
DeepSqueak 8.2
VocalMat 4.3

Table 2. Real-time Processing Ratio of all compared methods. Real-time processing ratio is defined as rt = duration of the recording
processing time and is shown for each

method. The processing time is calculated as the time needed to just detect the USVs. The experiments carried out to compute the real-time ratio were
executed for 5 different recordings, 3 times for each, and the average time for each method was calculated. Obviously, a high real-time processing ratio
means that a small processing time is required in order to detect the vocalizations of a certain signal (e.g. rt = 30 means that the respective method is
30 times faster than real-time, meaning it takes 1 minute to process 30 minutes of audio information).

Using Dataset D1, we found that AMVOC outperforms the other methods with respect to event F1 score, both in clean and noisy130

segments of the recordings, whereas MSA2 and DeepSqueak performed slightly better than the others with respect to temporal F1131

score (Table 1), largely due to the more successful detection in the noisy parts of the recordings.132

We also assessed the trade-off between processing speed and detection by determining the processing ratio for AMVOC and133

each method we compared to (Table 2). This metric provides an assessment of how quickly a method is able to process a batch134

of audio data, which is important for considering the feasibility of real-time processing. AMVOC had an intermediate real-time135

processing ratio to detect the vocalizations (Table 2). MUPET was the fastest method, whereas VocalMat and DeepSqueak were the136

slowest (Table 2). The reason for the latter two methods being slower is likely due to their image processing steps used to detect137

USVs. It is also meaningful that we take into account both of the two aforementioned metrics, since it may be important for particular138

experimental requirements that a certain method combines accurate and fast detection. We compared the average F1 score with the139

real-time Processing Ratio for both temporal and event F1 scores (Figure 1A and B). AMVOC and DeepSqueak achieved the highest140

temporal and event F1 score, but AMVOC had a considerably better time performance relative to DeepSqueak. While both AMVOC141

and DeepSqueak were the most accurate overall, AMVOC performed better in segments where noise energy was near that of the142

USVs (Figure 1C).143

To mitigate bias in our evaluation of AMVOC, we also compared AMVOC with the Dataset published alongside VocalMat144

(hereafter referred to as VM1) by Fonseca et al. (2021). VM1 consists of 7 different recordings from 7 mice (5-15 days old, of both145

sexes) (Fonseca et al., 2021). We did not change AMVOC’s pre-determined configuration (parameters t and f ) for this evaluation, in146

order to examine how robust the selection of t and f is for recordings produced in different conditions.147

The recordings of VM1 contain a constant noise artifact at 30 kHz, to remove unwanted distortions we used a high pass filter148

with a higher cut-off frequency than before (45 kHz). By implementing a 45 kHz cut-off, the new range we examined for detection149

in VM1 was between 45 and 110 kHz, instead of 30-110 kHz. Because the ground truth annotations by Fonseca et al. (2021) only150
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Figure 1. Accuracy of AMVOC and Other Methods A-B) Event and temporal accuracy of different USV detection methods compared against our
ground truth data in different qualities of recordings. C) Examples of the two highest performing methods, AMVOC and Deepsqueak, on clean (top)
and noisy (bottom) segments of USV recordings. Contrast modified to facilitate visualization in the noisy spectrogram.

declare the start time of each vocalization, we examined start times of the different methods compared to ground truth start times with151

20 ms tolerance, similar to what Fonseca et al. used in their assessment of VocalMat vs DeepSqueak. We also considered a ground152

truth vocalization as "found" when the ground truth start time was between the start and end time of a detected vocalization (in case153

some method merged successive vocalizations). Since we only have ground truth start times, we only used event and not temporal154

evaluation. We calculated precision, recall and F1-score of VM1 detection results as we had done with Dataset D1, for each of the155

seven recordings separately, and then their mean.156

The detected vocalizations of VocalMat are taken from Fonseca et al. (2021), whereas we ran the experiments with MUPET,157

DeepSqueak and, of course, AMVOC.158

Methods Event F1-score (%)
AMVOC offline 95.6 (+∕− 2.5)
AMVOC online 93.6 (+∕− 3.8)

VocalMat 98.5 (+∕−0.6)
MUPET 76.0 (+∕−10.2)

DeepSqueak 85.1 (+∕−3.8)
Table 3. Event F1-score of all methods. All measurments provided as mean and standard error of the mean (SEM) from n = 7 samples (recordings).
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Without tuning on this specific dataset, AMVOC (both offline and online) achieved the best results compared to the other methods159

except for VocalMat (Table 3). Notably, VocalMat’s detection method is trained on data similar to test data from Dataset VM1, so160

high detection quality by VocalMat on their own data is expected.161

Experimental evaluation of the AMVOC clustering method162

After evaluating the segmentation and detection performance of AMVOC we wanted to develop a way to assess the repertoire163

composition of the USVs. To do so, we developed an autoencoder approach (see Section ) whereby latent features are extracted from164

images of detected USVs, transformed, and then clustered for manual inspection and evaluation (Figure 2). Although others have165

shown autoencoders can extract relevant information about an individual mouse’s vocalizations (Goffinet et al., 2021), similarly, we166

wanted to ensure that the autoencoder we designed could capture features of USVs that may not be obviously calculated or discerned167

relative to what could be obtained from simple feature descriptions that are often used for comparing USVs of different mice.168

Figure 2. Overview of deep feature extraction procedure. A) Flow diagram of the general procedures used to take image data from USV spectrograms
into clusters. B) Cluster example using deep features with K-Means clustering and 6 clusters.

Our primary goal is to compare the deep feature extraction method (see Section ) to the baseline feature extraction method using169

hand-picked features (e.g. bandwidth, duration, frequency max, and frequency min) (described in methods Section ). We compared170

these two feature extraction approaches by evaluating the derived clustering of the two kinds of features. We evaluated how well171

the different clustering methods perform in grouping vocalizations with common features. To achieve these two goals, we used172

data from four different annotators, two of whom are domain experts, and the other two are not. By using the AMVOC GUI, each173

annotator evaluated the 4 recordings from Dataset D3, which were generated by selecting segments of 72 different recordings (). The174

annotators evaluated 3 different clustering configurations for each recording: Agglomerative clustering with 6 clusters, Gaussian175

Mixture clustering with 6 clusters and K-Means clustering with 6 clusters.176

In order to ensure impartiality and objectivity, the annotators evaluated the clustering derived from both feature extraction methods177

(named as Method 1 for deep features and Method 2 for hand-picked features), without prior knowledge of which Method refers to the178

deep features or the hand-picked (simple). Using a scale from 1 to 5, 5 being the best, the evaluation metrics used are the following:179
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1. Global annotations: The annotator defines a score to describe how successful the whole clustering is.180

2. Cluster annotations: The annotator defines a score to describe how successful each cluster is.181

3. Point annotations: The annotator selects points from different clusters and declares whether they should be approved or182

rejected in the specific cluster to which they have been assigned. Approximately 100 points were annotated by each user per183

configuration, for each method.184

Figure 3. Global and cluster annotation evaluations. A) Examples of two vocalizations with the autoencoder image generated from deep feature
extraction (left column) and the peak energy countour used for hand-picked feature extraction (right column). Mean and standard deviation (error bars)
of the scores assigned in each configuration for all files evaluated by the annotators for B) the global clustering scores and C) for each cluster in each
configuration. D) Mean percentage of approved vocalizations for point annotation evaluation. p-values in C and D determined by Student’s t-test.

First we evaluated the global annotations (Figure 3B). For each annotator i, we calculated the mean score � of each clustering185

configuration s (KMeans-6, GMM-6, Agg-6), using the scores from the 4 recordings:186

�i,s =
1
4

j=4
∑

j=1
Gi,s,j (1)

where counter j refers to the 4 recordings and Gi,s,j is the global score of each configuration s, in recording j, set by annotator i. Then,187

the mean m and standard deviation d of these mean scores of the 4 users is calculated (Figure 3B).188

ms =
1
Na

i=Na
∑

i=1
�i,s (2)

189

ds =

√

√

√

√
1
Na

i=Na
∑

i=1
(�i,s − ms)2 (3)

whereNa is the number of annotators (in our case, 4).190
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Based on the annotation results, deep feature extraction yields better clustering results than simple feature extraction, with the three191

configurations used in this test (Figure 3B). All pairs of annotation scores were statistically significant (Student’s t-test; K-Means, t=192

5.0, p= 1.7⋅10−4; GMM, t= 5.1, p= 1.3⋅10−4, Agg, t= 3.1, p= 7.2⋅10−3). The configuration does not seem to affect the performance193

of the clustering very much, as far as the mean values are concerned.194

Next we looked at the cluster annotations scores (Figure 3C). For each configuration and annotator, we calculated the mean scores195

�′ of all the 6 clusters in the 4 recordings:196

�′
i,s =

1
4 ⋅ cs

j=4
∑

j=1

k=cs
∑

k=1
Ci,s,j,k (4)

where counter j refers to the 4 recordings, k to the number of clusters of each configuration cs (in our case, 6 for all configurations)197

and Ci,s,j is the cluster specific score of cluster k of connfiguration s, in recording j, set by annotator i.198

These mean scores were then used to calculate the mean and standard deviation values (m′ and d′ respectively) for each199

configuration:200

m′
s =

1
Na

i=Na
∑

i=1
�′
i,s (5)

201

d′
s =

√

√

√

√
1
Na

i=Na
∑

i=1
(�′

i,s − m′
s)2 (6)

where Na is the number of annotators (in our case, 4). The results of the cluster-level annotation scores were consistent with202

the ones from the global annotation scores (Figure 3). As with global scores, all cluster annotation comparisons showed significant203

differences between deep and simple feature annotations (Student’s t-test; K-Means, t= 6.7, p= 1.3⋅10−9; GMM, t= 6.5, p= 3.4⋅10−9,204

Agg, t= 5.3, p= 8.3⋅10−7).205

We then assessed the percentage of vocalizations each user approved for each cluster based on their unsupervised assignment206

for both deep and simple methods (Figure 3D). If we denote the approved vocalizations of user i as ai, and the total vocalization207

annotations they have made as ti, then the mean percentage of approved vocalizations is calculated as:208

M = 1
Na

Na
∑

i=1

ai
ti

(7)
It is clear that users more frequently approved vocalizations clustered by the deep feature extraction method (Figure 3D).209

Overall, the deep feature extraction method outperforms the simple method in all terms:210

• Global clustering evaluation was 37% higher than the simple approach (Figure 3B)211

• Cluster-specific evaluation was on average 30% higher than the simple approach(Figure 3C)212

• Average point-level evaluation was 10% higher than the simple approach (Figure 3D)213

This suggests that the encoder has indeed retrieved useful information of each image, resulting in feature vectors that enable a214

better clustering of the vocalizations based on visually discernible features.215

Further, this indicates that there are much more complex similarities and differences between vocalizations carried by the216

representations extracted from the encoder than what is available from hand-picked features.217

Discussion218

In this paper we have presented Analysis of Mouse Vocal Communication (AMVOC), an open-source tool for detecting and analyzing219

mice ultrasonic vocalizations. A robust USV detection methodology has been presented and evaluated against a real dataset and220

results have demonstrated that it is as accurate (and in some cases more accurate) as state-of-the-art tools, while still being fast enough221

to feasibly function in real-time conditions.222

Apart from accurately detecting USVs, AMVOC includes a novel unsupervised approach for representing and grouping the223

USVs’ content using convolutional autoencoders. We have presented a human annotation procedure for evaluating the ability of the224

proposed representation technique to discriminate between different types of USVs. Results show that the proposed deep feature225

extraction method outperforms simple hand-picked features in clustering USVs that are more similar to one another(>30% in global-226

and cluster-level annotations), leading to possibly meaningful and homogeneous clusters.227
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This methodology sets a new context for automatic content characterization of mouse vocalizations, according to which clusters of228

similar vocalizations can be automatically "learnt" through deep neural network architectures. While others have used autoencoders to229

analyze mouse USVs (Goffinet et al., 2021), these methods were not designed to allow users to explore the deep feature clustering230

and evaluate the results themselves.231

In addition to the functionalities and usage modes mentioned, the Dash app in which AMVOC runs provides the user with the232

ability to save the current clustering configuration, along with other user-friendly functionalities. For example, the user can save the233

feature vectors and the corresponding clusters of every vocalization, and then use them as ground truth data to train a classifier. By234

using the automatically extracted vocalization clusters (from the proposed unsupervised pipeline) as classes to train a supervised235

model, users can then load the model in a real-time and online behavioral context to classify discovered syllables immediately after236

the vocalizations are detected. This workflow provides a previously inaccessible way to evaluate mouse USV behavior, and opens237

the door for many real-time, closed-loop behavioral assessments by uniquely utilizing the proposed semisupervised approach. A238

future direction of the present work is the application of semisupervised methodologies in USVs clustering. The goal would be to239

integrate human interventions in the classifier used for detection (either offline or online). This could include alternative clusters with240

reassigned labels for missclustered USVs or comparing pairs of vocalizations, which can be used as pairwise constraints to retrain the241

encoder part of the model, thus improving subsequent clustering outcomes. These retrained models and new classifications could242

provide many new opportunities for approaches such as operant behavior, or new types of experiments in mouse vocal research that243

were previously inaccessible with current methodologies.244

While much of the work discussed here and by others focuses on descriptions and characterizations of single USVs, applying245

these techniques to sequences of USVs could yield a more detailed understanding of rodent vocal behavior. Further development of246

methods like AMVOC at a sequence-level could provide ways to examine the temporal relationship between syllables across bouts of247

vocal behavior. It has been known since mouse USVs were first identified as "songs" (Holy and Guo, 2005) that across the timescale248

of a recording session mice will use similar sequences of vocalizations. There have been some attempts to describe the extent to which249

USV sequencing can be considered patterned (Chabout et al., 2015, 2016), but these analyses have focused on pairwise changes in250

sequencing (i.e. how one syllable type follows or precedes another). We propose that future analyses would be best approached at251

varying timescales and syllable sequence dimensions. By doing so, sequences of vocalizations could be processed and studied, so252

they can be connected and correlated with various behaviors in mice with a broader appreciation of vocal behavior.253

Improvements in, and increased access to high-capacity computing resources that are user friendly and scalable has led to an254

explosion of resources being developed to measure as many features of animal behavior as is possible (Datta et al., 2019; von Ziegler255

et al., 2021; Hausmann et al., 2021). These resources have become invaluable as neuroscientists push to understand behaviors in256

more naturalistic contexts. Such unrestrained behaviors can allow for more flexible experimentation and a deeper understanding257

of ethologically relevant brain function, or clinically relevant behavioral changes (Jones et al., 2020). One way that this has been258

approached in most behavioral experiments is to use markerless animal tracking or pose estimation of single or multi-animal contexts259

(Kabra et al., 2013;Mathis et al., 2018; Gal et al., 2020;Marshall et al., 2021;Hsu and Yttri, 2021). As with mouse USV analyses,260

many of these methods remain offline, with some notable exceptions providing low-latency feedback for behavioral experimentation261

(Kane et al., 2020). Following in the footsteps of increased data capture and processes that facilitate real-time event detection in262

animal behavior, AMVOC sets a new standard for vocally-driven analysis of mice behavior.263

Materials and Methods264

Laboratory setup and dataset265

We used recordings from two sources: recordings used to develop AMVOC were taken from Chabout et al. (2015), recorded at Duke266

University. The recordings are publicly available on mouseTube((Torquet et al., 2016)). These recordings were captured at 250 kHz.267

Other recordings used in this study are derived from behavioral experiments detailed below.268

Animals269

Adult C57BL/6J mice were purchased from Jackson Laboratory and a colony was bred and maintained at The Rockefeller University.270

Before recording experiments, all mice were group housed (2–5 per cage) and kept on a 12-h light/dark cycle, and received ad-libitum271

food and water. All procedures were approved by the Institutional Animal Care and Use Committee of The Rockefeller University.272
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Behavioral Recordings273

Adult male and female mice were used in this study. We used procedures similar to those previously described by Chabout et al.274

(2015, 2016, 2017). Briefly, before being used for recordings, adult male mice (>8 weeks old) were sexually socialized overnight275

with a sexually mature female mouse. The next morning, the female mouse was removed and returned to her home cage. For276

subsequent exposures, when eliciting female-directed ultrasonic vocalizations, different females were used than the one used for277

sexual socialization. Prior to the vocal recording experiments, the experimental male was removed from their home cages and278

acclimated in a clean cage inside the recording chamber for 10 minutes. After this acclimation period, either an adult female mouse279

was introduced into the cage with the male (recordings referred to as FemaleLiveDirected), or urine from a female mouse was placed280

in the cage (recordings referred to as FemaleUrineDirected). After the female or urine stimulus was introduced, the recording was281

started. Recording sessions lasted up to 5 minutes. After the recording period was completed, the animals were returned to their282

home cages. The recording chamber is a 15” × 24” × 12” beach cooler which acts as an acoustically insulated environment. No283

lighting was provided inside the cooler, as mice are nocturnal and vocalize more in the dark. A microphone was hung from the top of284

the chamber, placed ∼15cm from the bottom of the cage. Some recordings were intentionally noisy in order to increase the spectral285

energy in lower frequencies, thus challenging the detection capacity of AMVOC and other methods. For these "noisy recordings",286

we used clean cages containing a bedding of Corn Cob (Lab Supply, Fort Worth, TX) or Cellu-nest™ (Shepherd Specialty Papers,287

Watertown, TN). For real-time detection, we used an Ultramik 384K BLE (Dodotronics, Italy), sampling at 384kHz, connected to288

a Raspberry Pi 4 Model B (8GB RAM), and monitored vocalizations via live sonograms using the UltraSoundGate CM16/CMPA289

recording system (Avisoft Bioacoustics®, Berlin, Germany).290

Datasets291

In the course of our experimental and evaluation procedures, we created three datasets (D1, D2 and D3).292

Dataset D1 was created to evaluate and compare vocalization detection methods. Specifically, we compiled a ground-truth dataset293

of 9 audio segments of 5-10 seconds each, containing 245 syllables in total from 14 different mice. The ground-truth annotation was294

performed by a domain expert by simply declaring the frames that correspond to actual vocalizations, with a time resolution of 1 ms.295

The recordings used, along with the annotations and instructions on how to reproduce the results, is openly available and can be found296

in the AMVOC repository https://github.com/tyiannak/amvoc/tree/master.297

Dataset D2 consists of 26 different recordings from 9 different mice, used as the training set of our convolutional autoencoder,298

explained in Section . These recordings can be found under https://drive.google.com/drive/folders/14l-zJmXcjSR9cucnq8lwmU299

lcsSlRPxe5 and https://drive.google.com/drive/folders/1M976oaxiMpEffN9dfm5Kd5kHeGIiNhbw.300

Dataset D3 was created for the experimental evaluation of the clustering configurations (explained in Section )). We used a dataset301

of 72 behavioral recordings, explained in , 36 in the category FemaleUrineDirected and 36 in the category FemaleLiveDirected.302

These recordings come from 12 different mice. We have randomly selected 20 s from each recording, where the vocalization rate303

should be at least 2.5 vocalizations/sec. We then concatenated the 20 seconds interval from each recording to a new recording. We304

generated 4 recordings, 2 from the FemaleUrineDirected category and 2 from the FemaleLiveDirected category. These recordings305

can be found under https://drive.google.com/drive/folders/1l7qUw0SVvd1dzNr35FT7XOxbhxDp7Kqn.306

Detection of mouse vocalizations307

The first step of AMVOC’s processing pipeline is to detect mice USVs. Given an input recording, we want to determine the parts of308

the signal that contain a USV. Below are methods for offline and online detection.309

Offline USV Detection310

In order to detect the mice USVs, we first compute the spectrogram of the whole recording. This is done by splitting the signal311

to non-overlapping short-term windows (frames) of duration w = 2 ms (time resolution) and calculating the Short-Term Fourier312

Transform (STFT) for each time frame. Frequency resolution fr is calculated as:313

fr =
1
w

(8)
This means that in our case, if w = 2 ms, fr = 0.5 kHz. In simple terms, the ability of the 2-dimensional (time & frequency)314

spectrogram representation to discriminate between different frequency coefficients is 0.5 KHz (i.e. frequency resolution). This is315

less fine-scaled than is typical for human speech analytics methods, but because mice vocalizations usually range in the frequencies316

30-110 KHz, this resolution is more than sufficient.317
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As soon as the spectrogram is extracted, the USVs are detected on a time frame-basis, using two separate criteria, time-based318

thresholding (TT) and frequency-based thresholding (FT), that take into account the values of the distribution of the signal’s energy at319

the different frequencies (Figure 4A). Both of these criteria are based on the spectral energies, however they differ in the way the320

thresholding criteria are calculated and applied. The details of the two criteria are as follows:321

• Time-based thresholding (TT): This involves a simple temporal thresholding of the spectral energy values. To do this, for each322

time frame, we calculate the spectral energy by summing the energy value at each frequency. We do this procedure for the323

frequency range of interest, which is, as mentioned above, from 30 kHz to 110 kHz. If we denote the spectrogram value at time324

frame i and frequency j as Eij , spectral energy Si is calculated as:325

Si =
110kHz
∑

j=30kHz
Eij (9)

where the step of j is equal to 0.5 kHz. We then compute a dynamic sequence of thresholds for the spectral energy. In particular,326

for each frame i, for which we have extracted the spectral energy Si, we compute the dynamic threshold:327

Ti =
1
2

∑N−1
j=0 Sj
N

+ 1
2

∑K−1
j=0 Si−j
K

(10)
whereN is the number of time frames, so the first term refers to the mean spectral energy. In the second term, K is the size328

of a moving average filter in seconds. Here we use K = 2 seconds, which is convolved with the sequence of spectral energy329

values. In other words, the dynamic threshold Ti is defined at each frame i as the average of the current spectral energy (Si) and330

the moving average of the spectral energies of the last K frames.

Figure 4. Examples of detection criteria. A) Demonstration of the twofold thresholding application. The green bars of the first two lines show the
detected vocalizations by each criterion, whereas the third-line green bars are their intersection. Segments were spliced for purposes of visualization.
B and C) Examples of two different segments of the spectrogram, from 30-110 kHz. Here, an actual vocalization (B) and a noisy, hihg-energy segment
(C) are displayed. In the noisy segment each time frame surpasses the spectral energy threshold (criterion 1), but not the second applied threshold
(criterion 2).

331

• Frequency-based thresholding (FT): This second criterion is associated to applying a thresholding rule, based on the per-frame332

distribution of energies on the different frequencies. A simple dynamic threshold at each time frame of the spectrogram (as333

described above) is not enough, because there are also time frames where high spectral energy occurs due to noise. The spectral334

energy value in these high-noise time frames may surpass the threshold, but this does not correspond to any vocalization (Figure335

4B and C). Our goal is to filter out these false positive vocalizations. It is easy to observe that in the vast majority of cases,336

noise appears as high energy values, spread across a large frequency range in each time frame (Figure 4C), compared to the337

time frame energy distribution in vocalizations, which is concentrated in a small frequency range in each time frame (Figure338

4B). Our filtering criterion was to keep only time frames where the peak energy value Pi is larger than the mean spectral energy339

(Mi) of a 60kHz range around the frequency of the peak energy (truncated if the range goes below 30kHz or above 110kHz). If340
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we denote the energy value at time frame i and frequency j as Eij , the equations describing the two quantities above, are the341

following:342

Pi = max
j=30,...,110kHz

Eij (11)
343

Mi =
1
Nf

min(pi+30kHz,110kHz)
∑

j=max(pi−30kHz,30kHz)
Eij (12)

where the step of j is equal to 0.5 kHz and, as a result,Nf = 2 ⋅ (min(pi + 30kHz, 110kHz) − max(pi − 30kHz, 30kHz)),344

and pi is the frequency of the peak energy at time frame i, i.e. pi = argmax
j

(Eij).345

Both criteria TT and FT are applied on each short-term frame i as follows: the threshold conditions require that the spectral energy is346

higher than 50 percent of the dynamic threshold computed in step 1 and that the maximum energy is larger than the mean spectral347

energy by a factor of 3.5. Let V be a sequence of frame-level vocalization decisions, i.e. Vi = 1 if time frame i is part of a vocalization348

and Vi = 0 if not (Figure 5A). Then the above rule can be expressed as follows:349

Vi =

{

1 if (Si > t ⋅ Ti) AND (Pi > f ⋅Mi), where t = 0.5 and f = 3.5
0 else (13)

Both factors t and f have been selected after experimentation and can be considered as configurable (see Section ).350

After the twofold thresholding rule has been applied as described above, we apply a smoothing step. Specifically, after the351

sequence V of 1s and 0s occurs (Figure 5A), this sequence is smoothed using a moving average filter with a duration of 20 ms (Figure352

5B), so that the neighborhood of the possible vocalization is taken into account:353

Fi =

∑L−1
j=0 Vi−j
L

(14)
where L is the size of the filter. As a final step, if successive positive frames found in F are separated by <11 ms, they are concatenated354

to form segments of mice vocalizations (Figure 5C). Vocalizations of duration <5 msec, are filtered out, since practical evaluation355

showed that in most cases these are false positive detections.356

Figure 5. Detection by spectral energy threshold and smoothing. A) When spectral energy (blue) crosses a particular threshold the start and end of a
vocalization is determined (orange). B) Threshold crossing is smoothed to determine final event and temporal detection (bottom). C) Representative
spectrogram indicating where the USVs were detected based on threshold crossings. Dotted white line denotes 30-110kHz boundary used for
detection.
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Online USV Detection357

In addition to the offline detection that is standard for most USV analyses, we also developed an online version of AMVOC (i.e. using358

streaming sound recorded from the computer’s soundcard). This is achieved by following the aforementioned analysis steps, though359

these cannot be applied to the whole signal at once, since, in a real-time setup, the signal is recorded simultaneously with the detection360

procedure. For this process, we wanted the processing interval to be as small as possible, in order to detect the vocalizations fast. On361

the other hand, if we process the signal more often, the probability of cutting a vocalization in the border between two successive362

blocks is increased. Additionally, the signal statistics that need to be calculated for the detection steps described in the preceding363

section will become less robust if they are computed on smaller segments. We therefore chose to process the signal in blocks of a364

fixed duration, which for our case has been set equal to 750 ms. We estimated the number of USVs that could occur per processing365

window by running 20 recordings from live female and 20 recordings from female urine social contexts by processing the files with366

the online computations of AMVOC in an offline format. A 750ms window provides a long enough period for high accuracy detection367

and minimally interrupting the number of individual syllables that would be processed (Figure S1A and B). AMVOC requires about368

5ms to process a 750 ms window (Figure S1C). This processing time is independent of the number of USVs per window, and appears369

constant across tested files (Figure S1D and E). Since this processing time is less time than any inter-syllable interval (Figure S1F),370

this means that no USVs are lost to drop-out due to computational load or processing time.371

The main algorithmic difference between the online and the offline detection is the calculation of the dynamic threshold. If we372

denote k as the current block, the dynamic threshold is the same for all frames belonging to that block and it is computed as follows:373

Tk = 0.3

∑k
j=1 Bj
k

+ 0.7 ⋅ Bk (15)
where Bk is the mean spectral energy of block k in the 30-110 KHz frequency range (as described in Section ). In simple terms,374

the block’s threshold is computed as the weighted average of the mean of the spectral energies of the blocks recorded up to that375

point and the current block’s spectral energy. The weights (0.3, 0.7) were chosen after extensive experimentation (Figure S2). The376

sequence of thresholds that occurs is then multiplied by the threshold percentage t, exactly as in the offline method (Section ). Another377

difference between the offline and the online methodologies is that for the online approach, we have selected to use an overlapping378

block. In particular, we always process the newest 750 ms recorded segment plus the last 100 ms of the previous block. In this way379

we add a minor computational delay (as we repeat the process for 13% of the data), and we manage to eliminate the errors caused by380

USVs being split between two successive blocks, and therefore lost by the detection method. The rest of the procedure is the same as381

the offline method and it is applied every 750 ms.382

Vocalization Detection Configuration383

As mentioned earlier, the two parameters which determine the vocalization detection procedure is the threshold percentage t and a384

factor f ; this would mean that energy of a 60 kHz areaMi around the frequency of peak energy pi must surpass peak energy Pi by the385

factor f . The user can change these values according to the expected recording conditions and application requirements. Parameters386

used in our current study were optimized to include small events while minimizing false positives. To select these parameters, we used387

Dataset D1 (Figure 6). As expected, increasing either of these parameters results in a more strict thresholding, which means that the388

precision increases, and recall decreases. The opposite is observed when either of the parameters is reduced. From a more qualitative389

point of view, increasing the threshold might result in splitting a vocalization with relatively low peak energy in intermediate time390

frames. On the other hand, a very low threshold can merge successive vocalizations.391

Deep unsupervised learning for mouse vocalization clustering392

We next developed a method for unsupervised clustering of the detected vocalizations, by using a convolutional autoencoder, from393

which features are derived.394

Convolutional autoencoders395

Autoencoders396

Autoencoders are neural networks that are trained to attempt to copy their input to their output. An autoencoder consists of 3397

components: encoder, code and decoder. The encoder compresses the input and produces the code, the decoder then reconstructs the398

input only using this code. The encoder is described by a function ℎ = f (x), where x is the input and ℎ is the code and the decoder399

produces a reconstruction r = g(ℎ).400
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Figure 6. Effect of changing parameters on precision and recall. A and B) Changes in precision and recall during offline detection when thresholds t
and factors f are changed. C and D) Changes in precision and recall during online detection when thresholds and factors are changed. Optimal
threshold and factor were determined to be the same, 0.5 and 3.5, respectively, in both detection modes.

The encoder maps the input into a code that is assumed to contain the most important information (features) of the input, and then401

decoder constructs the output from this representation. The intermediate representation of the input, is also called the latent-space402

representation.403

By training the autoencoder to perform the input copying task we hope that the code ℎ will be an efficient representation of the404

input and will contain important information from it. One way to obtain useful features from the autoencoder is to constrain ℎ to405

have a smaller dimension than x. An autoencoder whose code dimension is less than the input dimension is called undercomplete.406

Learning an undercomplete representation forces the autoencoder to capture the most salient features of the training data. The learning407

process is described simply as minimizing a loss function L(x, g(f (x))), where L is a loss function penalizing g(f (x)) for being408

dissimilar from x.409

Commonly, the encoder and the decoder are feedforward neural networks, whose task is to learn the function f and g respectively.410

In our case, where the inputs are images, the encoder and the decoder are convolutional neural networks.411

Convolutional neural networks412

CNNs are a kind of network that process data with a known grid-like topology, like image data. They are named after the mathematical413

operation convolution, which they employ. Their fundamental characteristics, which we make use of, are:414

• 2D convolution: The goal of a 2D convolution is to produce the activation map. More specifically, we have the input image and415

a specific number of filters, which are kernels of fixed dimensions, e.g 3x3. Every filter corresponds to a unit of the network,416

which is connected to a certain e.g. 3x3 area of the image (receptive field) and learns its features and properties. So, the 2D417

convolution is responsible for learning the local characteristics of the image. Each kernel is convolved with the whole image418

and produces a convolutional activation map. After the convolution, we will have activation maps of depth equal to the number419

of the filters applied.420

• Pooling: It is performed after each convolution and reduces the size of the activation maps. This procedure is important,421
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because the computational load of the next layers of the network is reduced, since the width and height of the convolutional422

activation maps is downsampled. This enables us to obtain a representation of the image which is scale-independent. By423

reducing the size of the image after every convolution, we ensure that the intermediate representation will indeed have lower424

dimensions compared to the initial image.425

Applications426

Autoencoders are powerful tools for dimensionality reduction or feature learning. Applications of undercomplete autoencoders427

include compression, recommendation systems as well as outlier detection. Convolutional autoencoders are frequently used in image428

compression and denoising. They may also be used in image search applications, since the hidden representation often carries429

semantic meaning. Recently, theoretical connections between autoencoders and latent variable models have brought autoencoders to430

the forefront of generative modeling. More specifically, the variational autoencoder is a generative model which can be trained and431

used to generate images (Goodfellow et al., 2016).432

In our case, the purpose of adopting a convolutional autoencoder is to create meaningful feature exctractors for the spectrograms433

that correspond to the detected mice vocalizations. The input of the autoencoder are the images (spectrogram parts) that contain a434

vocalization and our goal is to obtain an intermediate representation (code ℎ), in order to use it as a feature vector that will uniquely435

describe each image. From this representation, the image will be reconstructed in the decoder and the output will be compared to the436

input in each step, in order to calculate the loss function. The structure and the training of our autoencoder is described below.437

Proposed autoencoder architecture and training438

To train the autoencoder, we used Dataset D2 (see Section ) and we calculated the spectrogram for each of its recordings. This439

dataset contains 22,409 detected syllables. Each vocalization is represented by a spectrogram in the detected time interval and defined440

frequency range. Therefore, these spectrograms vary in width, which corresponds to the respective syllable duration. So, we have to441

specify the width of the images that we are going to feed to the autoencoder, since the frequency y axis is the same for all spectrograms:442

80 kHz range (from 30-110 kHz) and 0.5 kHz frequency resolution, resulting in a dimension of 160. Selecting a fix sized time443

dimension for our spectrograms requires taking into consideration a tradeoff between losing important information from the larger444

spectrograms (if we crop them) and reducing the importance of the shape and details of the smaller spectrograms (if we zero-pad445

them), which are more numerous than large spectrograms (Figure 7).446

In order to decide the final fixed size of the spectrograms to feed the autoencoder, we plotted a histogram of the initial durations of447

all the detected syllables in the training set (Figure 7). To ensure uniform sizing, we zero padded small spectrograms, and cropped448

larger spectrograms keeping the central part of the image. Based on the histogram we selected a fix-sized duration of 64 windows since449

it is larger than both the mean and the median of the durations (Figure 7). Using this size, we noted that it balanced the information450

tradeoff mentioned above. It is also a power of 2, which is convenient for the pooling operations in the autoencoder. This length of451

64 frames corresponds to 64 time frames x 0.002 sec/time frame = 0.128 sec = 128 ms. The aforementioned process of cropping452

or expanding spectrograms to a fix-sized width of 64 windows leads to spectrograms of a final resolution of 64 time frames x 160453

frequency bins.454

Figure 7. Histogram of the duration of the vocalizations in time frames Each time frame corresponds to a 2 ms duration.
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The training set consists of 22,409 images, each one with size 64x160. We fed the images to the encoder, which is a convolutional455

neural network with 3 convolutional layers, each followed by a max pooling layer (Figure 8A). The first convolutional layer uses 64456

filters, with dimensions 3x3 each.457

After that, a max pooling layer decreases the spatial dimensions of the images by a factor of 2. This means that the output of458

the max pooling layer is a 32x80x64 representation. The next convolutional layer consists of 32 filters, with a max pooling layer459

generating an output with dimensions 16x40x32. The third and final layer includes 8 filters, and a max pooling layer, resulting in a460

convolutional activation map for each image with dimensions 8x20x8. This flattened intermediate representation is the feature vector461

that uniquely describes the input image (i.e. the code).462

In order for the convolutional encoder to be trained, and because the task is unsupervised, the second part of the autoencoder (the463

decoder) is responsible for reconstructing the image we fed to the encoder from the intermediate representation (Figure 8A). The464

decoder reverts the steps of the encoder, using 32, 64 and 1 filter in the last layer. In each decoder layer, we use filters of size 2x2 and465

a stride of 2, so that after each layer the size of the representation increases by 2 and the final output of the autoencoder is an image466

with the same size as the original input.467

After each convolutional layer, the ReLU activation function is used, since we want the activation maps to consist of positive468

values. An exception is the last deconvolution of the decoder, where the Sigmoid activation function is necessary for the reconstruction469

of the image and the calculation of the Binary Cross Entropy Loss function, as it outputs a value between zero and one.470

R(z) = max(0, z) (16)

�(z) = 1
1 + e−z

(17)
The loss function is calculated based on the differences between the reconstructed and the original image. This loss function471

indicates the quality of the autoencoder’s performance, and can be improved with increased training epochs. If we denote the output472

of the decoder at a specific pixel as ŷ and the actual value of the input image as y, then Binary Cross Entropy Loss is calculated as:473

L(y, ŷ) = −y ⋅ log(ŷ) − (1 − y) ⋅ log(1 − ŷ) (18)

Parameter tuning474

As described above, the basic parameters for configuring our proposed autoencoder procedure are the following:475

• Number of layers of the encoder. We tested a range of different numbers of layers (2-4 layers). Using 2 layers appeared476

problematic, since the autoencoder couldn’t clearly reconstruct input images. Four layers or more result in too many parameters,477

which slowed down the training, resulting in a bigger loss, while the final reconstruction wasn’t better than the one obtained478

from a 3-layer autoencoder (Figure S3A).479

• Number of filters per layer We used the most filters in the first layers (as is typical for classical neural networks), and reduced480

the number of filters as we went deeper in the network. We tested the autoencoder with varying numbers of layers. Fewer filters481

resulted in losing information from the images, while more resulted in too many parameters to be trained. The critical choice482

we had to make was the number of filters in the last encoder layer, the output of which we use as the representation for the483

specific image in the clustering task. We tested 2, 4 and 8 filters. Using 8 filters resulted in smaller loss, as expected, although484

using 4 filters were enough for the reconstruction of the images (Figure 8C), meaning enough features for the reconstruction485

were extracted with fewer filters. We selected 8 filters in our final design in order to ensure that all the details of the various486

shapes of the vocalizations are properly extracted.487

• Filter sizeWe experimented with 3x3, 5x5 and 3x5 kernels. A 3x5 kernel appeared reasonable because of the non-square shape488

of the images, but gave similar results to 3x3 kernels, so we selected the latter, since symmetric kernels are more commonly489

used (Figure S3B).490

• Size of max pooling kernels We experimented with reducing the image size by 2 in both dimensions, or by 2 in time dimension491

and by 4 in frequency dimension due to the non-square image. A 2x symmetrical reduction provided better results (Figure S3C).492

As far as other hyperparameters are concerned, we used the Adam optimizer, with learning rate equal to 0.001 and batch size493

equal to 32.494
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Figure 8. AMVOC convolutional autoencoder A) Architecture used for the autoencoder in AMVOC. B) Effect of the number of training epochs on
measured training loss. C) Examples of image reconstruction with AMVOC’s autoencoder after training, using 2, 4 and 8 filters in the encoder output
layer. Data is extracted from the input image (left) and used to reconstruct the three images (right).

Training epochs were determined experimentally. We found that 2 or 3 epochs was enough for a good reconstruction of the495

images, as loss did not decrease much after 3 epochs (Figure 8B). We also did not want to overfit to the training data. Thus, we elected496

to train the model for just 2 epochs.497

An example of the input and output of the autoencoder is shown in Figure 8C. The input comes from a recording that was not498

used in the training Dataset D2. The reconstruction is lossy, due to our use of an undercomplete autoencoder.499

Feature extraction and clustering500

After the model has been trained in the unsupervised manner described above, it is ready to be used in the feature extraction procedure501

(Figure 2A). An audio file is selected and its spectrogram is calculated, and individual USVs are detected. The raw spectrograms of502

the USVs are fed to the autoencoder in batches of 32 and the intermediate representations are derived. These are the feature vectors.503

Each flattened feature vector has a dimension of 1,280 (8x20x8) after a dimensionality reduction from a dimension of 10,240 in the504

initial flattened vector, since each image started with a shape of 64x160.505

After the features are extracted, we further reduced the dimensions by excluding features that have the smallest variance and will506

likely be less impactful for the discrimination of USVs. After extensive qualitative experimentation, assuming we haveN-dimensional507

feature vectors, we selected a threshold equal to:508

vt = 1.2 ⋅ 1
N

N
∑

j=1
�2
j (19)

where �2
j is the variance of feature j. In this case, vt is the mean of the features’ variances; features with variance less than vt will509
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be excluded, resulting in feature vectors undergoing a dimensionality reduction of a factor approximately equal to 4.510

Next, we normalize the features using a Standard Scaler. Each feature is scaled according to the following equation:511

Xtransformed =
X −Xmean

Xstd
(20)

where Xmean is the mean of the feature values for all samples and Xstd is the standard deviation of the feature values for all samples.512

In the last preprocessing step, we used PCA to further reduce the dimensionality of the feature vectors. Since we do not know513

the number of components beforehand, we choose the smallest number of components which maintains 95% of the variance of the514

features before the PCA. Overall, our goal was to both extract many features from the images using the encoder, so that details of515

the images are taken into account, and simultaneously reduce them as much as possible by ignoring the non-significant features.516

This final reduced feature representation is then used for clustering. The final visualized cluster is plotted as a 2-dimensional tSNE517

reduction of the data (Figure 2B).518

Each cluster should consist of vocalizations that share some common features that allow them to belong in the same group.519

Since we wanted the user to be able to choose the number of clusters, we chose clustering algorithms that can have this parameter520

predefined. Users can choose between the following clustering methods: Agglomerative, Birch, Gaussian Mixture Models, K-Means521

and Mini-Batch K-Means. In the implemented GUI (see Section ), the user can choose one of these clustering methods and the522

number of clusters, in a range from 2 to 10.523

Baseline feature extraction524

To evaluate the quality of AMVOC’s deep feature extraction and clustering, we compared clustering on deep features against clusters525

derived from hand-picked acoustic parameters (Figure 3A). The hand-picked features were measured as follows:526

1. We first calculate the spectrogram in the specific time segment that corresponds to the vocalization and in the defined frequency527

range (30-110 kHz).528

2. We then perform frequency contour detection:529

• Detect the position and the value of the peak energy in each time frame. If we denote the spectrogram value at time frame530

i and frequency j as Eij , the equations describing the two quantities above, are the following:531

pi = argmax
j=30,...,110kHz

Eij (21)
532

Pi = max
j=30,...,110kHz

Eij (22)
• Use a thresholding condition to keep only the points i where the peak energy is higher than 20 % of the highest energy533

value in the specific time interval:534

if Pi > t ⋅max
i
Pi, where t = 0.2, keep point (i, pi) (23)

• Train a regression SVM to map time coordinates to frequency values, using the chosen points (i, pi) as training data.535

• Predict the frequencies for the same time range. After that, for each vocalization, a frequency contour c is created, along536

with a corresponding time vector v, which matches every frame i to its actual time of occurrence. This estimated sequence537

c captures the "most dominant" frequency in each time frame, so we can think of it as a spectral shape sequence of each538

mice vocalization.539

3. After the frequency contour c is produced, we proceed to the feature extraction step. We selected 4 different features, all based540

on the frequency contour:541

• Duration of the vocalization d. If we denote the number of frames of which the vocalization consists asN :542

f1 = d = v[N − 1] − v[0] (24)
• Time position of the minimum frequency (of the predicted frequencies), normalized by the duration of the vocalization:543

f2 =
v[argmini=0,...,N−1 ci] − v[0]

d
(25)
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• Time position of the maximum frequency (of the predicted frequencies), normalized by the duration of the vocalization:544

f3 =
v[argmaxi=0,...,N−1 ci] − v[0]

d
(26)

• Bandwidth is calculated as the difference between the first and the last predicted frequency value, normalized by the mean545

frequency of the vocalization mf :546

f4 =
cN−1 − c0
mf

, where mf =
∑N−1

i=0 (ci)
N

(27)

If we interpret the frequency contour as a 2-dimensional graph, where the x-axis corresponds to time and the y-axis to frequency, the547

2nd feature is the x-position of the minimum of the curve, the 3rd feature is the x-position of the maximum of the curve and the 4th548

feature is the normalized difference between y-positions of first and last point. For example, the last feature can discriminate contours549

with different slopes. After the features are extracted, we scale them using a Standard Scaler (see Equation 20).550

Implementation and library description551

The functionalities described throughout the paper were implemented in Python 3.8. The code can be found in the repository552

https://github.com/tyiannak/amvoc/tree/master/data/vocalizations_evaluation. For the implementation of the autoencoder553

we used the Pytorch deep learning framework, and we used the clustering algorithms implementations from Scikit-Learn. The554

visualization of the data in the offline mode, including the clustering, specific vocalizations, and the evaluation choices are all displayed555

and accessible in the Dash GUI.556
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Supplementary Material644

Figure S1. Frequency histograms from real-time processing windows. A) Number of USVs per 750ms non-overlapping segment from 20 recordings
of male mice in a live female context. B) Number of USVs per 750ms non-overlapping segment from 20 recordings of male mice in a female urine
context. C) Processing time required for each 750ms segment, mean and median are less than 250µs. Inset represents bins from 0-10ms of processing
latency. Dashed line indicates median processing time. D) processing latency per number of USVs in a 750ms window. Symbols represent windows
within a file. E) Median processing latency of all windows in tested files. F) Distribution of inter syllable intervals among USVs detected in test files.
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Figure S2. Effect of different weight combinations on Temporal and Event F1 Scores) Temporal (red) and event (blue) accuracy of USVs from our
ground truth dataset using different combinations of weights.
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Figure S3. Effect of parameter tuning on the convolutional autoencoder reconstructions. Effect of changing A) different numbers of convolutional
layers, B) kernel sizes, and C) pooling kernel sizes
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