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Abstract 

The essential role of gut microbiota in health and disease is well-recognized, but the biochemical 

details underling beneficial impact remain largely undefined. Dysbiosis of gut bacteria results in the 

alteration of certain microbial and host metabolites, and identifying these markers could enhance the 

early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling to 

demonstrate a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized 

that gut microbiota influences the overall biochemistry of the host metabolome and this effect is 

tissue-specific. Thirteen different tissues from germ-free and conventional mice were selected and 

their metabolic differences were analyzed. Our study demonstrated a large effect of the microbiome 

on mammalian biochemistry at different tissue levels and resulted in significant modulation of 

metabolites from multiple metabolic pathway (p ≤ 0.05). A vast metabolic response of host to 

metabolites generated by the microbiota was observed, Hundreds of molecular features were detected 

exclusively in one mouse group, with the majority of these being unique to specific tissue, suggesting 

direct impact gut microbiota on host metabolism.  

Key words: Gut microbiota, Metabolomics, Metabolic pathways, Germ-free and conventional mice, 

Murine tissues.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456100


 

1. Introduction 1 

Microbiota (microbial community) or microbiome (collective genome of microbial community) 2 

is defined as the commensal, symbiotic, and pathogenic microbial community including bacteria, 3 

fungi, archaea, algae, and small protists which reside inside and on the host body [2-4]. Human 4 

microbiota comprises trillions of microorganisms and can encode significantly more individual genes 5 

than the human genome [5-7]. Some of our tissues, such as those with a mucosal membrane, contain 6 

highly adapted and evolved microbial consortia [1], with the vast majority of the microbiota within 7 

our gastrointestinal (GI) tract because of its nutrient-rich environment. Gut microbiota has a complex 8 

influence on human physiology and nutritional status [8, 9] by influencing the absorption, 9 

metabolism, and storage of ingested nutrients and by producing a diverse array of metabolites. 10 

Examples include digestion and bioconversion of food components such as hydrolysis and 11 

fermentation of indigestible plant nutrients (e.g., oligo- and polysaccharides known as microbiota-12 

accessible carbohydrate or in short MAC) to make them bioavailable to the host [10-12] and 13 

subsequently, production of metabolites involved in energy homeostasis, namely short-chain fatty 14 

acids (SCFAs) [13, 14]; biosynthesis of indoles, aromatic amino acid metabolites, vitamins, and 15 

sphingolipids [15-17]; cholesterol synthesis inhibition and bile acid biotransformation by regulating 16 

their composition, abundance, and signaling [18-20]; stimulation and regulation of the immune 17 

system as well as inhibition of pathogens (e.g., production of antimicrobial compounds, regulating of 18 

intestinal pH, and competition for ecological niche) which in the end leads to support of intestinal 19 

function [21-23]; removal of toxins, drug residues and carcinogens from the body [24, 25]; and even 20 

potential regulation of host central nervous system [26-28]. 21 

Despite the fact that the mature microbiota is very resilient, high inter-individual variability in the 22 

composition of human gut microbiota can be explained by internal and external stimulants such as 23 

age, genotype, mode of delivery, antibiotic use, diet, demography, lifestyle, social interactions, stress, 24 

and environmental exposure to various xenobiotics [29-31]. Among the mentioned factors, diet alone 25 
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is one of the most important modifiable lifestyle factors contributing to variation in gut microbiota 26 

composition, and indeed, the impact of diet on gut microbiota is found to be higher as compared 27 

to e.g., genotype [32]. Furthermore, the inter-individual variation might explain why the impact of 28 

nutritional interventions varies among individuals, even though the same food was consumed [33]. 29 

Given that the differences in commensal microbiota and even reduced microbial diversity may impact 30 

human health and disease, changes in the composition of gut microbiota are linked to the 31 

development of many disorders such as type 2 diabetes, cardiovascular dyslipidemia, and cirrhosis, 32 

cancer, allergies, inflammatory bowel disease (IBD), neurodevelopmental disorders (e.g. , autism), 33 

aging, and many more [34-36]. Therefore, manipulation of gut microbiota in preventing and treating 34 

chronic diseases can lead us to a deeper systematic understanding of the microbiota-host interface, as 35 

well as take us to a closer step towards customizing dietary schemes for personalized dietary treatment 36 

by expanding to a nutrient-microbiota-host approach [37]. 37 

It has been proven difficult to establish microbe-related biomarkers for health and disease due 38 

to the current lack of knowledge on the impact of diet and other environmental factors on 39 

microbiota and its variation and function across different populations [38]. To understand this 40 

massively complex factor in human health, there is a need to model it effectively. The study of 41 

microbiota-host interactions is challenging because of the high degree of crosstalk between these 42 

two domains. Nowadays, next-generation-sequencing platforms are used to annotate bacterial 43 

species associated with the gut in higher organisms. However, profiling of complex microbial 44 

communities via 16S sequencing lacks the information on the fingerprint of the microbiome 45 

functional status and the actual activities of the microbes mediated via the metabolites they 46 

produce [39]. The identity and function of gut microbiota have a direct impact on the metabolites 47 

that are produced, many of which are still structurally uncharacterized. Many of these metabolites 48 

are taken up into host circulation and eventually into various tissues to participate in endogenous 49 

metabolism. Notably, the effect of microbial compounds within the mammalian host environment 50 
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varies from one tissue to another based on the type and metabolic status of affected tissues [40-51 

42]. Metabolomics is a well-established and powerful tool that can be applied to identify microbiome-52 

derived or microbiome-modified metabolites and to better understand the modulation of microbiota 53 

and how it affects the metabolism in a host [43, 44]. Metabolomics can help to define the metabolic 54 

interactions among the host, diet, and gut microbiota [45].  55 

We herein hypothesized that gut microbiota influences the overall biochemistry of the host 56 

metabolome and its effect is tissue-specific (variable for each tissue). Thus, the aim of the study was 57 

to establish a comparative metabolite-level overview of 13 different tissues from germ-free [8] and 58 

conventional mice (murine-pathogen-free, MPF) affected by the intestinal microbial community 59 

using non-targeted metabolite profiling approach. We chose to analyze multiple tissues because it 60 

provides an excellent opportunity to assess the extent of the interplay between bacterial metabolic 61 

and systemic human pathways. The metabolite composition of plasma, heart, liver, pancreas, muscle, 62 

duodenum, jejunum, ileum, cecum, colon, visceral adipose tissue (VAT), subcutaneous adipose tissue 63 

(SAT), and brown adipose tissue (BAT) were analyzed, and demonstrated a massive metabolic impact 64 

across all the tissues studied. We observed significantly large number of chemical species in the 65 

tissues because of the presence of the microbiota, and a range of 29-74% of all detectable metabolites 66 

varied in concentration by at least 50% between the 2 mouse lines.  67 

2. Materials and Methods 68 

2.1. Tissue sample collection and preparation  69 

Blood, heart, liver, pancreas, muscle, duodenum, jejunum, ileum, cecum, colon, VAT, SAT, and 70 

BAT tissues from five GF and five MPF male C57BL/6NTac mice age 10 weeks were obtained from 71 

Taconic Biosciences (www.taconic.com/mouse-model/black-6-b6ntac). The sterile natural ingredient 72 

NIH #31M Rodent Diet (www.taconic.com/quality/animal-diet) was used as the standard diet. To 73 

assure the germ-free status of the mice used in the study, trimethylamine N-oxide (TMAO), a 74 
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metabolite with microbial origin [46], was used as a reference compound. Blood was collected (K2-75 

EDTA Microtainer Tubes) and centrifuged at 3,000 g for 10 min at room temperature. Other tissues 76 

were rinsed with phosphate-buffered saline thoroughly. Furthermore, all the tissues were snap-frozen 77 

in liquid nitrogen and shipped on dry ice. Upon arrival, samples were immediately transferred and 78 

kept at −80 °C until further processing for metabolomics. 79 

All frozen samples were cryo-ground and then 100 ±2 mg of powdered sample was cryo-weighted 80 

into 1.5 mL Eppendorf tubes. The tissues (except plasma) were treated with 80% ice-cold methanol 81 

in a ratio of 300 µL solvent per 100 mg tissue. Then the samples were briefly vortexed and incubated 82 

on a shaker (Heidolph Multi Reax) at 2,000 rpm for 15 min at room temperature. For plasma samples, 83 

acetonitrile (ACN) was used as a solvent with the ratio of 1:4 vol:vol (plasma to solvent) and vortexed. 84 

All the samples were centrifuged for 10 min at 4°C (18,000 g), and the supernatant fractions were 85 

filtered using 0.2-µm Acrodisc® Syringe Filters with a PTFE membrane (PALL Corporation) and 86 

stored at −20°C until further analysis with LC-MS. The order of the samples was randomized before 87 

the analysis. 88 

2.2. Instrumentation 89 

We used ultra-high-performance liquid chromatography (1290 LC system, Agilent Technologies, 90 

Santa Clara, CA) with high-resolution mass spectrometry (6540 Q-TOF-MS, Agilent Technologies, 91 

Santa Clara, CA) for non-targeted metabolite profiling [47-49]. We used two chromatographic 92 

separation techniques, which were hydrophilic interaction chromatography (HILIC) and reversed-93 

phase (RP), and further acquired data in both positive and negative electrospray ionization (ESI) 94 

modes, optimized for as wide metabolite coverage as possible. Aliquots of 2 μL from all the specific 95 

sample matrices were generated as a pooled quality control sample (QC) and were injected in the 96 

beginning of the analysis as well as between sample types (every 10th injection). For RP analysis, the 97 

mobile phase flow rate was 500 μl/min with Zorbax RRHD Eclipse XDB-C18 column (100 × 2.1 98 

mm, 1.8 μm; Agilent Technologies). The column temperature was maintained at 50°C. Mobile phase 99 
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was 0.1% v/v formic acid in water (A) and 0.1% (v/v) formic acid in methanol (B). We used gradient 100 

elution which was as follows: 0–10 min: 2% → 100% solution B; 10–14.5 min: 100% solution B; 101 

14.5–14.51 min: 100% → 2% solution B; and 14.51–16.5 min: 2% solution B. For HILIC analysis, 102 

mobile phase flow rate was 600 µL/min with Acquity UPLC® BEH Amide column (100 mm × 2.1 103 

mm, 1.7 μm; Waters Corporation, Milford, MA). The column temperature was maintained at 45°C.  104 

Mobile phase was 50% v:v acetonitrile (A) and 90% v:v acetonitrile (B). Both solvents contained 20 105 

mmol/L ammonium formate, pH 3. The following gradient elution was used: 0–2.5 min, 100% B; 106 

2.5–10 min, 100% B→0% B; 10–10.1 min, 0% B→100% B; 10.1–14 min, 100% B. The sample 107 

injection volume was 3 μL and the sample tray temperature was kept at 4°C during the analysis.  108 

The mass spectrometry (MS) conditions were: drying gas temperature of 325°C with a flow of 10 109 

L/min, a sheath gas temperature of 350°C and a flow of 11 L/min, a nebulizer pressure of 45 psi (310 110 

kPa), capillary voltage of 3,500 V, nozzle voltage of 1,000 V, fragmentor voltage of 100 V, and a 111 

skimmer voltage of 45 V. Data acquisition was performed using extended dynamic range mode (2 112 

GHz), and the instrument was set to acquire ions over the mass range m/z 50–1,600. Data were 113 

collected in the centroid mode at an acquisition rate of 2.5 spectra/s (i.e., 400 ms/spectrum) with an 114 

abundance threshold of 150. For automatic data-dependent MS/MS analyses, the precursor isolation 115 

width was 1.3 Da, and from every precursor scan cycle, the 4 ions with the highest abundance were 116 

selected for fragmentation with the collision energies of 10, 20, and 40V. These ions were excluded 117 

after 2 product ion spectra and released again for fragmentation after a 0.25 min hold. The precursor 118 

scan time was based on ion intensity, ending at 20,000 counts or after 300 ms. The product ion scan 119 

time was 300 ms. Continuous mass axis calibration was applied throughout the analysis using two 120 

reference ions m/z 121.050873 and m/z 922.009798 in the positive mode and m/z 112.985587 and m/z 121 

966.000725 in the negative mode.  122 

2.3. Data extraction and compound identification 123 
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Raw data was processed through MS-DIAL software (version 3.00) for baseline filtering, baseline 124 

calibration, peak picking, identification, peak alignment,  and peak height integration [50]. Centroid 125 

spectra peaks higher than 400 counts were restricted to ion species [M-H]- and [M+Cl]- in negative 126 

and [M+H]+ and [M+Na]+ in positive modes. The mass tolerance for compound mass was ±15 mDa, 127 

retention time ±0.2 min, and symmetric expansion value ±10 mDa for chromatograms. Compounds 128 

were identified by comparison to library entries of purified standards and compared against METLIN 129 

(https://metlin.scripps.edu), MassBank of North America (MoNA,            130 

https://mona.fiehnlab.ucdavis.edu), Human Metabolome Database (HMDB, www.hmdb.ca), and 131 

LIPID MAPS (www.lipidmaps.org) metabolomics databases. The MS/MS fragmentation of the 132 

metabolites was compared with candidate molecules found in databases and verified with earlier 133 

literature on the same or similar compounds. Metabolomics Center of Biocenter Kuopio maintains an 134 

in-house library of over 600 authenticated standards that contains the retention time, mass to charge 135 

ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules present in 136 

the library. 137 

2.4. Statistical analysis 138 

The combined data matrix, i.e., HILIC (positive and negative ionization modes) and RP (positive 139 

and negative ionization modes) comprised 24,294 molecular features from 13 tissues from the GF 140 

and MPF mice, which underwent statistical analysis. There was a total of 5,961 and 3,946 molecular 141 

features obtained from HILIC, and 9,256 and 5,131 features from RP, in positive and negative 142 

ionization modes, respectively. Before performing any statistical analysis, the false zero values were 143 

imputed for each mouse group in a tissue, individually. An arbitrary raw abundance value of 10,000 144 

was set as the threshold. Following rules were applied based on the signals of biological replicate 145 

measurements: (1) if the metabolite raw abundance was zero in more than 60% of the replicates, then 146 

the zero values were considered true zero. Therefore, all the non-zero values were replaced with zero 147 

regardless if they were smaller or higher than the arbitrary threshold (i.e., default intensity of 10,000); 148 
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(2) if the metabolite raw abundance was zero in less than 60% of the replicates and the non-zero 149 

values were lower than the threshold, then zero values were also considered true zero and the non-150 

zero values were replaced with zero; (3) if the metabolite raw abundance was zero in less than 60% 151 

of the replicates and the non-zero values were higher than the threshold, then zero values were 152 

considered false and were replaced with an imputed value. The imputed value was calculated for each 153 

molecular feature as the average of the non-zero raw abundances in that tissue-specific mouse group.  154 

A fold change (FC) value was calculated for each molecular feature and tissue by dividing the 155 

average signal abundance of the GF samples (“treatment” group) with that of the MPF samples 156 

(“control” group). Thus, FC > 1 signifies a higher abundance of the molecular feature in the GF mice 157 

and FC < 1 a higher abundance in the MPF mice. 158 

Data processing was carried out by R package (3.5.3) for unscaled data. Mann–Whitney U-test 159 

was chosen to identify the most differentially abundant molecular features between the GF and MPF 160 

for the tissue-specific metabolite levels. False discovery rate (FDR, corrected p-value, q-value) was 161 

performed based on Benjamini and Hochberg's method. Significant metabolites had p-values of ≤ 162 

0.05 and q-values below the threshold of ≤ 0.05.  163 

The raw abundances of metabolites were first z-normalized based on the following formula: 164 

xnormalized = (x − �̅�row)/SDrow. The k-means cluster analysis and hierarchical clustering were performed 165 

by the open-source software Multi experiment Viewer (MeV, http://mev.tm4.org) to visualize the 166 

common trends in the profile of the different molecular features (k-means clustering) as well as 167 

visualizing the abundance of the features when compared against the other molecular features present 168 

in the same cluster. The number of clusters was set to 10. The number of clusters was optimized based 169 

on visual inspection to reveal as many clusters as possible with a distinct pattern of molecular features 170 

without having two similar clusters. 171 
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After the statistical analysis, further filtering was applied on the obtained differential metabolic 172 

features based on the following inclusion criteria. The inclusion criteria must have existed in at least 173 

one tissue and one mouse group (i.e., GF or MPF): (1) fold change ≥ 1.3 with a p-value ≤ 0.05, and 174 

q-value ≤ 0.05 (2) high-intensity metabolite values (raw abundance ≥ 100,000), (3) containment of 175 

MS/MS fragmentation, (4) and retention time ≥ 0.7 min. This filtering procedure resulted in a set of 176 

4,605 statistically significant molecular features, which then underwent k-means clustering analysis. 177 

Principal component analysis (PCA) was applied to all the 24,294 molecular features for visualization 178 

of the overall metabolite feature pattern of different tissues. Tissue-wise volcano plot visualization 179 

was applied on the statistically significant molecular features to display discriminatory molecular 180 

features within a tissue between the GF and MPF mice using MetaboAnalyst platform 181 

(https://www.metaboanalyst.ca/) [51].  182 

3. Results 183 

3.1. The impact of microbiota on the metabolome of GF and MPF mice was tissue-wide 184 

A total of 130 samples from 13 tissues were analyzed from five GF and five MPF mice using 185 

high-resolution LC-MS platform with four analytical modes employing RP and HILIC modes with 186 

both positive and negative ionization providing an initial wide-scale assessment of the effect of the 187 

microbiome on mammalian metabolism. Figure 1 and Supplementary Table 1 summarize the 188 

detection rate and the proportion of differential and unique molecular features in the 13 different 189 

tissues; Most of detected individual features were present in the GI tract tissues (i.e., duodenum, 190 

jejunum, ileum, cecum, and colon), and the liver (≃41-74%), with the cecum containing highest 191 

percentage of all detected features, whereas plasma with 23% of all detected features showed the 192 

lowest number among all the 13 tissues. The GI tract tissues, and the liver also showed the highest 193 

percentage of significant molecular features (≃26-64%) (according to the statistical criteria applied) 194 

with the cecum containing highest percentage of significant molecular feature. It is noteworthy that 195 

the GF mice showed the highest percentage of significant molecular features (≥ 50%) in all the tissues 196 
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from the GI as well as plasma and BAT when compared to the MPF mice in the same tissue. 197 

Contrarily, MPF mice showed the highest percentage of significant molecular features in the liver, 198 

SAT, pancreas, muscle, VAT, and heart. Colon and SAT were the only tissues with more than half 199 

of their detected molecular features unique to the GF and MPF, respectively. 200 

To assess the differences in the metabolite composition in the GF and MPF mice, we performed 201 

PCA on the molecular features across all the tissues. The metabolic profile was influenced by the 202 

tissue type as the main driving factor as well as by the colonization status (i.e., GF or MPF), indicating 203 

that the extensive effect of microbiota on the metabolite composition extends to peripheral organs 204 

(Figure 2). 205 

Further detailed investigation on the differential molecular features in each tissue, demonstrates 206 

how the magnitude of the impact of the colonization status varies across the different tissue types 207 

(Figure 3, Supplementary Figure 1). Likewise, on the level of individual metabolites and metabolite 208 

classes, it was evident that the variation across organs was high, as some of metabolites were 209 

differential only in one tissue and some others across several, for example tauro-alpha/beta-210 

muricholic acid and p-cresol glucuronide were differential in multiple tissues and present only in GF 211 

and MPF mice respectively, whereas particular phospholipids were only differential in SAT and 212 

mostly present in GF mice (Figure 3 and Supplementary Figure 1). 213 

We further applied k-means cluster analysis to examine the abundance of the differential 214 

molecular features between the mice groups across all tissue types. In our data, the molecular features 215 

were clustered based on 1) their presence in the different tissues, 2) their presence in the GF or MPF 216 

mice (Supplementary Figure 2). Among the 10 clusters generated by k-means clustering analysis, 217 

clusters 2, 4, and 5 (1,214 molecular features in total) contained the metabolites that showed 218 

significant differences between the GF and MPF mice that were unique to one tissue or a subset of 219 

tissues. Cluster 2 indicates the subset of molecular features that were significantly higher in the cecum 220 

and the colon of the GF mice. Cluster 4 represents a subset of molecular features that were 221 
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significantly higher in the cecum and the colon of the MPF mice. Cluster 5 shows the metabolites 222 

that were significantly higher in the duodenum, jejunum, ileum, and liver of the MPF mice. It is 223 

notable that no other clusters contained features that were either unique to the GF or MPF subset of 224 

a tissue. After implementing PCA, volcano plots, and k-mean cluster analyses, the differential 225 

molecular features across all tissue types were taken into examination for metabolite identification. 226 

Supplementary Table 2 lists  the annotated metabolites organized into their respective chemical 227 

classes and metabolic pathways for the thirteen tissues and their sub-groups (GF and MPF). Figures 228 

4-8 illustrate the annotated compounds across different metabolite classes in a heatmap chart, and 229 

will be discussed in following chapters.  230 

3.2. Microbiota affects various  branches of amino acid and peptide metabolism. 231 

Our results show that majority of the amino acid metabolic pathways, including lysine, 232 

phenylalanine and tyrosine, polyamine, tryptophan, and urea cycle; arginine and proline pathways, 233 

were affected by the presence or absence of the microbiota (Figure 4). In lysine metabolic pathway, 234 

the level of lysine and 2-aminoadipic acid were higher in the GI tract tissues of GF mice than in their 235 

respective MPF group. In contrast, the rest of the identified metabolites, including N-acetyllysine, 236 

pipecolic acid, methyllysine, acetylhydroxylysine, carbamoylmethyllysine, glutarate, 5-237 

acetamidovaleric acid, 5-aminovaleric acid betaine (5-AVAB), 2-piperidinone, cadaverine, and N-238 

acetylcadaverine showed lower abundance in the GF mice. Additionally, 2-aminoadipic and glutarate 239 

were also higher in the plasma of GF mice. 240 

In phenylalanine and tyrosine metabolic pathway, the levels of phenylalanine, tyrosine, and N-241 

acetylphenylalanine were significantly higher in the GI tract of GF mice than in their respective MPF 242 

counterparts. Other identified phenylalanine and tyrosine metabolites, p-cresol glucuronide, p-cresol 243 

sulfate, and 3-phenyllactic acid had lower abundance in the GF mice (Figure 4). Notably, p-cresol 244 

glucuronide and p-cresol sulfate were found across all the examined tissue types, and as illustrated in 245 

the volcano plots (Figure 3), they were also the most differential metabolites in multiple tissues; p-246 
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cresol glucuronide in plasma, heart, liver, pancreas, cecum, and colon, p-cresol sulfate in plasma, 247 

heart, liver, cecum, and SAT. 248 

In tryptophan metabolic pathway (indole-containing compounds), tryptophan was significantly 249 

higher in abundance in the plasma, heart, muscle, cecum, and colon of GF mice (Figure 4). The 250 

abundance of N-acetyltryptophan in the duodenum, cecum and colon  of GF mice was also 251 

significantly higher than in their respective MPF counterparts. In contrast, abundance of tryptophan 252 

metabolites including 3-indoleacetic acid, 5-hydroxyindoleacetic acid, indolepropionic acid, 253 

hydroxykynurenine, and oxindole were significantly lower in the cecum and colon of GF animals. 254 

Additionally, 5-hydroxyindoleacetic acid, indolepropionic acid showed significantly low abundance 255 

in the plasma GF mice, and oxindole was significantly lower in all the GI tract tissues as well as in 256 

the pancreas and the liver.   257 

All the identified metabolites from the polyamine metabolic pathway (N-acetylputrescine, N-258 

carbamoylputrescine, and diacetylspermidine) were observed throughout various examined tissues 259 

excluding muscle, and had a lower abundance in the GF group in most of the tissues (Figure 4).  260 

In the urea cycle; arginine and proline metabolic pathways, the identified metabolites, urea, 261 

arginine, proline, homoproline, and carboxynorspermidine were markedly more abundant in the GI 262 

tract of GF mice than in that of the MPF mice, whereas only ornithine showed lower abundance in 263 

the GI tract of GF mice. Interestingly, BAT was the only tissue having a higher abundance of all the 264 

identified metabolites from this metabolic pathway in the GF mice (Figure 4).  265 

The results observed from the effect of the microbiota on peptide metabolism show a higher 266 

abundance of almost all the identified oligopeptides (di-, tri- and tetrapeptides) in the GI tract of GF 267 

mice (Figure 5). However, peptides were not among the most significantly changed metabolites 268 

across the different tissues, with the exception of  glutamylglutamic acid (Glu-Glu) and 269 

aspartyltyrosine (Asp-Tyr) that were the two peptides were also shown to be significantly higher in 270 
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the cecum tissue of GF from volcano plots (based on the inclusion criteria from volcano plots with 271 

molecular features above the threshold (Figure 3).  272 

3.3. Carbohydrates, products of energy and lipid metabolism are modified in response to 273 

the microbiota. 274 

The results herein indicated a higher level of mono- and disaccharides in the GF mice, particularly 275 

in the cecum and the colon (Figure 6). In this study, the abundance of the identified metabolites, 276 

aconitic acid, citric acid, isocitric acid, and malate from energy metabolism, was higher in the GI tract 277 

tissues of GF mice. All of the mentioned metabolites were lower in abundance in the heart tissue and 278 

malate was absent in the heart of GF mice (Figure 6). Notably, as also illustrated in the volcano plots 279 

(Figure 3), malate was among the most differential compounds in the heart of MPF mice. 280 

Bile acids were among the most differential metabolites affected by the gut microbiota, and they 281 

were found not only in the GI tract and liver, but throughout the examined tissues including heart, 282 

pancreas, and fat tissues (Figure 7). Germ-free animals had lower levels of identified primary bile 283 

acids, including chenodeoxycholic acid, allocholic acid, β-muricholic acid, norlithocholic acid, three 284 

isomers of hydroxy-oxo-cholan-24-oic acid, 7-HOCA (7alpha-hydroxy-3-oxo-4-cholestenoate), 285 

cholanic acid-diol-sulfoethyl-amide, and 7-sulfocholic acid. In contrast, the identified conjugated 286 

primary bile acids, taurocholic acid, and one of its isomers (i.e., taurallocholate, tauroursocholate, or 287 

taurohyocholate), tauro-α/β-muricholic acid, and several unidentified glycine and taurine-conjugated 288 

bile acids were higher in the GF mice (Figure 7). The increase of taurine conjugated bile acids in the 289 

GF status was particularly evident in e.g., VAT tissue (Supplementary Figure 1). The identified 290 

secondary bile acids, including 7-ketodeoxycholic acid, hyodeoxycholic acid, deoxycholic acid, 291 

taurochenodesoxycholic acid (taurochenodeoxycholic acid), taurodeoxycholic acid, lithocholic acid, 292 

and ursodeoxycholic acid were either completely missing from the GF mice or were present in 293 

negligible amounts.  294 
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In the carnitine and acylcarnitine metabolic pathways, carnitine, acetylcarnitine, 295 

clupanodonylcarnitine/adrenylcarnitine, malonylcarnitine, butyrylcarnitine, isovalerylcarnitine, 296 

linolenylcarnitine, and heptadecanoylcarnitine, showed lower abundance in the GI tract of GF mice, 297 

while hydroxyoctadecenoylcarnitine showed the higher abundance in the same mouse line compared 298 

to the MPF mice. Interestingly, L-carnitine had higher abundance in plasma samples of GF mice 299 

(Figure 7).  All the detected fatty amides were low in abundance in the GF mice in the cecum and the 300 

colon (Figure 7).   301 

3.4. Flavonoids, phenolic acid derivatives, and terpenes were other chemical classes 302 

influenced by microbiota. 303 

The intestinal microbiota plays an important role in the metabolism of plant-derived 304 

phytochemicals including flavonoids, phenolic acid derivatives, and terpenes. The results herein 305 

indicate that the differences in identified flavonoids, phenolic acid derivatives, and terpenes between 306 

the GF and MPF mice were mostly found in the GI tract, and these differences were higher in or 307 

exclusive to the GF animals with a few exceptions’ high abundances in the MPF mice (Figure 8). 308 

Exceptions included daidzein, 3-(3-hydroxyphenyl)propionic acid, dihydrocaffeic acid, gentisic acid, 309 

and medicagenic acid along with three unidentified flavonoids with molecular formulas C18H18O8 310 

(two isomers) and C21H22O10 and one triterpenoid with formula C30H48O2 that were higher in GI tract 311 

of MPF mice. More specifically, gentisic acid, a bacterial end-metabolite of dietary (plant) salicylic 312 

acid [52], along with microbial degradation products of the dietary phenolic acids, including 3-(3-313 

hydroxyphenyl)propionic acid and dihydrocaffeic acid, were absent or existed in low amounts in the 314 

GF mice tissues. Various derivatives of the isoflavonoid compounds including daidzein and its 315 

sulfated form, formononetin and its glucuronide, genistein glucuronide, and genistein sulfate were 316 

also annotated in the data, and the compounds were differential in GI tract of the animals. Notably, 317 

as also illustrated in the volcano plots (Figure 3), 3-(3-hydroxyphenyl)propionic acid was among the 318 
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most differential metabolites in the cecum and the colon of MPF mice. Ferulic/isoferulic acid sulfate 319 

and vanillic acid sulfate were higher in the cecum of GF mice. 320 

4. Discussion 321 

In this study, we observed how the presence or absence of gut microbiota has a strong influence 322 

on the biochemistry of mammalian tissues and revealed substantial variation in the distribution of 323 

metabolites from distinct chemical classes. The most affected metabolite classes were amino acids, 324 

peptides, carbohydrates, metabolic products of energy metabolism, lipids particularly, bile acid, fatty 325 

amide, and acyl carnitine metabolism, and plant-derived phytochemicals, including flavonoids, 326 

phenolic acid derivatives, and terpenes. We herein also reported that all the GI tract tissues as well as 327 

plasma and BAT were the most affected tissues in the GF mice and showed higher percentage of 328 

significantly abundant metabolites when compared to their counterpart MPF mice in the same tissues. 329 

Given the fact that the GF status of the mice has an impact on the number of the significant 330 

metabolites [53], this may suggest that with a lack of gut microbiota and, subsequently, its related 331 

compounds in the GF mice, the host endogenous metabolism gives rise to different metabolic 332 

pathways that compensate for the loss or absence of microbiota [54]. This hypothesis may also be 333 

supported by the high abundance of metabolites from energy metabolism in the GF mice. Our results 334 

established that multiple tissue metabolites are potentially derived from microbiota. Metabolic 335 

pathways, endogenous and diet-derived metabolites that were modulated by gut microbiota in the 336 

mice merit to be studied further for the potential synergistic health implications.  337 

Proteins and amino acids are a main part of the diet. In addition to serving as nutrients, they play 338 

a crucial role in maintaining the gut microbiota and energy metabolism. For instance, some gut 339 

microbial species are able to yield energy from the oxidized forms of the branched-chain amino acids, 340 

which also leads to SCFAs as well as branched-chain fatty acids production [55]. It is also evident 341 

that gut bacteria play an important role in host amino acid homeostasis  [56-58]; once taken up by 342 
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bacteria, amino acids can be either incorporated into bacterial cells for protein biosynthesis, or 343 

become catabolized and used as energy source, or get biotransformed to a diverse range of bioactive 344 

molecules such as conversion of tryptophan to other indole-containing metabolites [59, 60]. Our 345 

results showed a significant presence of peptides, mostly in the GI tract of GF mice, most likely due 346 

to the absence of gut microbiota to hydrolyze them further. Likewise, lysine, urea, proline, arginine, 347 

and the aromatic amino acids tryptophan, phenylalanine, and tyrosine with their acetylated forms, N-348 

acetyltryptophan and N-acetylphenylalanine serve as substrates for multiple pathways in gut 349 

microbiota, and all of these were indeed accumulating in the GI tract in the absence of gut microbiota 350 

[43, 59-61]. Thus, higher levels of these metabolites in the GI tract of GF mice may explain the critical 351 

role of gut microbiota in expanding the compound diversity. Indoleacetic acid, hydroxyindoleacetic 352 

acid, indolepropionic acid, and oxindole are microbial catabolites of tryptophan and existed in higher 353 

abundance in the cecum, colon, and some in the plasma as well in the MPF mice. Microbial 354 

tryptophan catabolites are shown to have potential role in mediating microbe-host interactions and 355 

eventually contribute to the health status of the host [62]. Indoleacetic acid, hydroxyindoleacetic acid, 356 

and indolepropionic acid are shown to regulate gut barrier function [62, 63] and merit further 357 

investigation for their potential role in reducing likelihood of cardiovascular diseases [64] and 358 

developing type 2 diabetes [65, 66] likely by modulating host metabolism through the production of 359 

glucagon-like peptide-1 (GLP-1) to improves insulin resistance [62]. Oxindole, another tryptophan 360 

microbial metabolite, was higher in all the GI tract tissues as well as in the liver and plasma in the 361 

MPF mice. High abundance of this metabolite is observed in impairment of insulin secretion in 362 

pancreatic beta cells and in hepatic encephalopathy conditions [67, 68] and merit further 363 

investigations for its potential role as a biomarker of hepatic cirrhosis. In phenylalanine and tyrosine 364 

metabolic pathways, p-cresol sulfate, p-cresol glucuronide, and 3-phenyllactic acid are known 365 

metabolites of gut microbiota and lower levels of these metabolites in the GF mice are expected [69-366 

71]. p-cresol which is the precursor of p-cresol sulfate and p-cresol glucuronide, is one of the end 367 
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product of tyrosine and phenylalanine biotransformation by intestinal bacteria [72]. p-cresol exert 368 

many biological and biochemical toxic effects and should be excreted from the body [72]. In one of 369 

the mechanisms when this methylphenol metabolite reaches the mucosa of the colon [73] and liver 370 

[74], sulfatation and glucuronidation take place, as a result p-cresol sulfate and p-cresol glucuronide 371 

are generated. The two latter metabolites are less toxic and more water-soluble compared to the parent 372 

compound, p-cresol, which makes it easier for the body to ger rid of them via urinary excretion.  373 

Other affected metabolic pathways in the study were lysine and polyamine pathways. Although 374 

lysine was one of the main dietary constituents of both mice groups in the study, the higher abundance 375 

of 2-aminoadipic acid in plasma, ileum, cecum, and colon of the GF mice may be due to lysine 376 

degradation by the host, as it is the key intermediate metabolite of lysine catabolism. Lower levels of 377 

N-acetyllysine, pipecolic acid, methyllysine, acetylhydroxylysine, 5-acetamidovaleric acid, 5-378 

AVAB, 2-piperidinone, cadaverine, N-acetylcadaverine, and glutarate from lysine pathway in the GF 379 

mice may be explained by the lack of gut microbiota, as the bacterial catabolism of lysine is shown 380 

to be one of the main contributing factors responsible for the production of these metabolites [75, 76]. 381 

A majority of the foodstuff contains polyamines and microbiota produces these compounds are 382 

absorbed in great amounts in the large intestine [77]. The bacterial-derived sources of polyamines 383 

may be the reasons why the high abundance of these compounds was observed in the MPF mice in 384 

our study [78].  385 

Even though conventional mice have been shown to synthesize more urea compared to germ-free 386 

ones [79], we observed elevated level of urea in the GF mice, particularly, in the cecum and colon. 387 

That is most likely because of the breakdown of urea by gut microbiota urease and its bioconversion 388 

into ammonia and carbon dioxide (Figure 9) [79]. This phenomenon may be the reason for higher 389 

levels of arginine and proline in the GF mice. Lower levels of ornithine in the same mouse group 390 

could be explained by the promotion of bacterial ornithine production from arginine, which was 391 

strongly accumulating throughout majority of tissues examined from the GF mice  [80] as well as the 392 
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bacterial inhibition of arginine biosynthesis from ornithine [81]. Higher abundance of 393 

carboxynorspermidine, another metabolite of the urea cycle; arginine and proline metabolism, may 394 

be explained by lack of microbiota in this mouse group to use this metabolite as a substrate for the 395 

biosynthesis of norspermidine [82]. 396 

Gut microbiota is shown to modulate the energy balance of the host by allowing the host to harvest 397 

energy more efficiently from the digested food [83]. Carbohydrates undergo fermentation by gut 398 

bacteria that leads to the production of SCFAs, which serve as a major source of energy for the gut 399 

bacteria as well as host intestinal epithelial cells [84]. Since the GF mice lack microbiota, the intestinal 400 

epithelial cells utilize sugars as the primary source of energy. As a result, a higher abundance of 401 

carbohydrates (mono- and disaccharides) in all the tissues from the GI tract of GF animals was 402 

observed when compared to the conventional ones. The contribution of gut microbiota to the energy 403 

homeostasis of the host is well-established [85]. Germ-free mice have been reported to be leaner than 404 

conventionally raised mice and they are protected against diet-induced obesity [86]. High abundance 405 

of aconitic acid, citric acid, isocitric acid, and malate from energy metabolic pathway in the GF mice 406 

can be explained by the lack of microbe-mediated increase in energy uptake. Therefore, the host 407 

intrinsic metabolism must compensate to maintain its energy homeostasis through upregulating its 408 

energy metabolism [83].  409 

Among the lipid chemical class, the metabolic pathways that were significantly altered included 410 

bile acid metabolism, fatty amide metabolism, and fatty acid (acylcarnitine) metabolism. Gut 411 

microbiota and its composition can substantially influence the dietary fats and, consequently, the lipid 412 

metabolism in the host. It is shown that GF mice tend to be resistant to the metabolic changes after a 413 

high-fat diet, suggesting that gut microbes are important mediators of lipid-induced metabolic 414 

dysfunction [87]. Amongst different lipid subclasses, bile acids have gained special attention in their 415 

relation to gut microbiota because of secondary bile acids, which have a microbial origin [88]. Bile 416 

acids are crucial in aiding lipid digestion and as dynamic signaling molecules to regulate energy 417 
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homeostasis, glucose metabolism, and innate immunity [89]. Likewise, in our study the bile acids 418 

were among the most widely distributed metabolites across the different tissue types, reflecting 419 

potentially-significant role in metabolism of different organs [90].The results herein showed lower 420 

levels of primary bile acids in the GI tract of GF mice. The bile acid metabolism occurring in the 421 

germ-free mice are rather complex and previous studies indicated high variability in bile acid 422 

metabolism between germ-free and conventional mouse models; the phenotypes conceivably depend 423 

on diet, genetic background, and the respective composition of the microbiota in the conventional 424 

control groups [91]. The profound modulatory impact of gut microbiota on bile acids (i.e., 425 

deconjugation, dehydrogenation, and dihydroxylation of primary bile acids) is well-established. Mice 426 

lacking intestinal bacteria have no deconjugation effect on the amino acid moiety of conjugated 427 

primary bile acids, and as they pass through the GI tract, they remain intact, which was also suggested 428 

in our study as the higher abundance of tauro-conjugated primary bile acids were found in the GI tract 429 

of the GF mice. On the other hand, all the identified secondary bile acids were missing from the GF 430 

mice, confirming that gut microbiota was absent in these mice. 431 

Another lipid subclass with a significant difference between the two mouse lines was fatty amides. 432 

Fatty amide metabolism may be interrelated with bile acid metabolism; in our data, the MPF mice 433 

showed a lower abundance of fatty amides in the upper part of the GI tract compared to the lower 434 

part. Conversely, we observed a higher abundance of tauro-conjugated bile acids in the upper part of 435 

the GI tract when compared to the lower part of the GI tract of the same mouse group. Some bile 436 

acids, including tauro-α- and β-muricholic acids (in mice) and ursodeoxycholic acid (in humans) are 437 

known to be potent antagonists of the bile-acid-activated nuclear receptor, farnesoid X receptor 438 

(FXR) [20, 92]. Additionally, in a study reported by Gonzalez et al., it was shown that FXR could be 439 

bound by a number of endogenous bile acids, including tauro-α- and β-muricholic acids in the upper 440 

section of the GI tract expected [93]. Given this fact, we herein speculate that because of this affinity 441 

between FXR and tauro-conjugated-muricholic acids, the fatty amides gene expression towards their 442 
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biosynthesis is downregulated in the upper part of the GI tract of MPF mice. The low abundance of 443 

tauro-α- and β-muricholic acids in the lower part of the GI tract of the same mouse group may be 444 

justified by the gut microbiota enzymatic activity through deconjugation as they pass through the GI 445 

tract [93]. Therefore, fewer tauro-α- and β-muricholic acids are available to bind to FXR in the lower 446 

section of the GI tract. As a result, the FXR expression and fatty amide biosynthesis are upregulated 447 

in this area, and that may explain the higher abundances of fatty amides in the lower part of the GI 448 

tract of MPF mice (Figure 10). However, more experimentations such as gene expression analysis in 449 

conventional and germ-free mice are required to fully validate this proposed model. 450 

Acylcarnitines are essential for oxidative catabolism of fatty acids as well as energy homeostasis 451 

in the host. Their accumulation in different organs is an indication of incomplete mitochondrial fatty 452 

acid β-oxidation and are important diagnostic markers of mitochondrial fatty acid β-oxidation 453 

disorders [94]. Some fatty acids can be converted to intermediate metabolites by gut bacteria. These 454 

bacterial fatty acids intermediate metabolites can further be absorbed and metabolized through β-455 

oxidation in the host mitochondria, which then be converted into acylcarnitines and excreted 456 

(Supplementary Figure 3) [95]. This phenomenon may account for the role of gut microbiota in 457 

inducing acylcarnitine production in the MPF mice, as it was observed in this study, and that may be 458 

an indication of diminished fatty acid oxidation in germ-free mice. Amongst the metabolites that were 459 

present in the plasma, L-carnitine was the only detected metabolite from acylcarnitine metabolism 460 

pathway completely missing in plasma of MPF mice; aside from its main source, diet, L-carnitine is 461 

synthesized endogenously in liver and kidney from two essential amino acids, lysine and methionine. 462 

On the other hand, L-carnitine is metabolized by gut bacteria and liver in MPF mice to produce 463 

TMAO [96]. TMAO was our reference metabolite to assure the germ-free status of the mice used in 464 

the study, as it is a metabolite with microbial origin [46]. Besides the slow turnover of carnitine in 465 

the body [97], the absence of microbiota and lysine supplementation in the diet may account for 466 

higher plasma level of L-carnitine in GF mice. As mentioned, with the absence of microbiota, the GF 467 
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mice are not able to convert carnitine to TMAO, and with additional lysine supplementation, this 468 

amino acid can enter the carnitine biosynthesis pathway to produce more carnitine.  469 

In addition to dietary fibers, polyphenols, flavonoids, and terpenes are good examples of food 470 

components that favor the growth of probiotic bacteria in the colon [98]. Most of these compounds 471 

have very low bioavailability, and they reach the lower part of the GI tract wherein resident gut 472 

microbiota catabolizes them into smaller phenolic metabolites that are better absorbed and can have 473 

different biological effects using their unique hydrolytic enzymes (e.g., rhamnosidases). NIH #31M 474 

Rodent Diet comprises soybean and whole grains (wheat, oats, and corn). Therefore, it is likely that 475 

it contains a high number of phytochemicals that consequently reflect the mice tissue metabolome. 476 

In this study, although many of the identified phenolic acid derivatives flavonoids, isoflavonoids, and 477 

terpenes come from the diet, they remained intact in the GI tract of GF mice while they were absent 478 

or existed in low abundance in the GI tract of MPF mice. Interestingly, the identified metabolites 479 

from these chemical classes were mostly present in the GI tract of the animals. This may suggest that 480 

after microbial biotransformation, the transformed metabolites are more easily absorbed in the 481 

intestine and could exhibit enhanced bioavailability compared to their parent compounds [99]. 482 

Examples from this study include a higher abundance of daidzein and 3-(3-hydroxyphenyl)propionic 483 

acid in the majority of the tissues and dihydrocaffeic acid, gentisic acid, and medicagenic acid along 484 

with three unidentified flavonoids with molecular formulas C18H18O8 (two isomers) and C21H22O10 485 

and one Triterpenoid with formula C30H48O2 in the cecum and the colon in MPF mice. Daidzein, the 486 

aglycone form of daidzin, is one of the widely studied isoflavones from soybeans. Following 487 

ingestion, daidzin is hydrolyzed by gut microbial glucosidases (some strains of Bifidobacterium, 488 

Lactobacillus, Lactococcus, and Enterococcus), which release the more bioavailable and potent 489 

metabolite against oxidative stress and cancer, daidzein [100, 101]. Acute and chronic exposure to 490 

daidzein in rats, has been associated with reduction of food intake and low adiponectin levels. Among 491 

various physiological properties that daidzein may have, it is known to be involved in lipid 492 
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biosynthesis and that may suggest one of the reasons behind why daidzein levels exists in higher 493 

levels in adipose tissues of MPF mice tissue [102]. 3-(3-hydroxyphenyl)propionic acid and 494 

dihydrocaffeic acid are respectively the dehydroxylated and hydrogenated forms of caffeic acid (a 495 

common dietary component found in a variety of plant-derived food products) by gut microbiota 496 

(Bifidobacterium, Escherichia, Lactobacillus, and Clostridium) and merit attention for their 497 

antioxidant activities [103-106]. Gentisic acid, an active microbial metabolite of salicylic acid 498 

hydroxylation, is shown to inhibit colorectal cancer cell growth [52]. Some dietary phytochemicals 499 

such as ferulic/isoferulic acid and vanillic acid may be metabolized by gut microbiota. On the other 500 

hand, a higher abundance of their liver-modified metabolites ferulic/isoferulic acid sulfate and 501 

vanillic acid sulfate in the majority of the GF mice tissues may suggest that these latter metabolites 502 

escaped the microbial biotransformation, as they may be already absorbed in the upper intestinal 503 

track, and reached the liver to be converted into the sulfated form [107]. In general, while these 504 

characteristics of most of the identified phytochemicals and their derivatives that existed in higher 505 

abundance in the GF mice cannot be assessed in this study, it can be hypothesized that the presence 506 

of microbiota is essential in modulating the pool of phytochemicals entering the host tissues and 507 

exerting their physiological effect. 508 

5. Study limitations 509 

The important study limitations to consider in these outcomes was that with the current MS/MS 510 

databases, only a relatively small portion of the metabolites can be identified or putatively annotated. 511 

Additionally, in this study, the number of molecular features detected especially in the tissue samples, 512 

was remarkably high, and therefore the identification could only be focused on the fraction of the 513 

most differential features within each tissue. It is evident that the germ-free status caused massive 514 

differences across all the examined tissues and should therefore be addressed in a tissue-specific 515 

manner, alongside with other analytical techniques e.g., gene expression analysis. Models including 516 

germ-free animal studies have been widely used as a source of knowledge on the gut microbiota 517 
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contributions to host homeostatic controls as they allow disruption in the gut microbiota to be 518 

studied in a controlled experimental setup [46]. However, when translating the results from gut 519 

microbiome research from mouse models to humans, there are pitfalls to be considered as these 520 

two species are different from another in anatomy, genetics and physiology [108]. Additionally, 521 

germ-free animals may not represent the best translational model for studying the functionality of the 522 

microbiota since they have intrinsically underdeveloped immunological responses, shortened 523 

microvilli, and many other structural and functional differences compared to conventional animals. 524 

However, studies showed that germ-free animals are valid in vivo experimental models for preclinical 525 

studies and for investigating the host-microbial interactions in health and diseases. Nevertheless, 526 

further investigations are needed to understand the massive impact microbiota on biochemicals at the 527 

interphase of food and human metabolism, and eventually, on health. 528 

6. Conclusions 529 

In summary, we have demonstrated a significant effect of the microbiome on the metabolic profile 530 

of 13 different murine tissues by applying a non-targeted metabolomics approach to a germ-free 531 

mouse model system. The results support the hypothesis that the chemistry of all major tissues and 532 

tissue systems are affected by the presence or absence of a microbiome. The strongest signatures 533 

come from the gut through the modification of host amino acids and peptides, carbohydrates, energy 534 

metabolism, bile acids, acylcarnitines, fatty amides, and xenobiotics, particularly the breakdown of 535 

plant-based natural products, flavonoids, and terpenes from food. Growing evidence from animal 536 

models and human studies supports that the microbiota is a key to various aspects of our health. As 537 

the link between humans and their microbial symbionts becomes more and more apparent, a 538 

combination of global non-targeted approaches and the development of tools that connect these data 539 

sets warrants greater attention to enable us to identify novel metabolites, leading to a better 540 

understanding of the deep metabolic connection between our microbiota and our health – with diet in 541 

between. We propose further investigations to uncover unique organ-specific microbial signatures 542 
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and whether the specific inter-organ microbial signature can be linked to the host metabolic diseases 543 

such as obesity and its related disorders. 544 
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mass spectrometry; MoNA, MassBank of North America; HMDB, human metabolome database, FC, 561 

fold change; FDR, False discovery rate; MeV, Multi experiment Viewer; PCA, principal component 562 

analysis; 5-AVAB, 5-aminovaleric acid betaine; Glu-Glu, glutamylglutamic acid; Asp-Tyr, 563 

aspartyltyrosine; 7-HOCA, 7alpha-hydroxy-3-oxo-4-cholestenoate; GLP-1, glucagon-like peptide-1; 564 

FXR, farnesoid X receptor  565 
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Figures and Tables 809 

 810 

Figure 1. Number and percentage of significant molecular features per tissue. The total number 811 

of total significant molecular features from each tissue sourced from MPF only, GF only or shared 812 

(Upper), Percentage of significant unique molecular features from each murine class per tissue 813 

(Lower). Level of significance is defined as having a fold change ≥ 1.3, p-value ≤ 0.05, and q-value 814 

≤ 0.05 815 
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 816 
Figure 2. Principal component analysis (PCA) of the profiling data shows separation between 817 

tissues and mice groups. Data shown for reverse phase (RP) and HILIC modes with both positive 818 

and negative ionization a) PCA of all the analyzed samples from all tissues, b) PCA of plasma 819 

samples from the GF and MPF mice, c) PCA of BAT samples from the GF and MPF mice, d) PCA 820 

of ileal samples from the GF and MPF mice, e) PCA of cecal samples from the GF and MPF mice.821 
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 822 

 823 
Figure 3. Volcano plots of the molecular features detected in nine representative tissues. The 824 

illustrated tissues include plasma, heart, liver, pancreas, muscle, duodenum, cecum, subcutaneous 825 

adipose tissue (SAT), and brown adipose tissue (BAT); see Supplementary Figure 1 for volcano plots 826 

of all studied tissues individually with selected metabolites annotated. The binary logarithm of the 827 

fold change (FC) is shown as the function of the negative common logarithm of the q-value (false 828 

discovery rate corrected p-value). A positive log2(FC) signifies a higher abundance in the GF mice 829 

compared to the MPF mice. The purple dots represent molecular features fulfilling the significance 830 

criteria (FC > 200 or FC < 0.005 for the cecum and the colon tissues, FC > 100 or FC < 0.01 for 831 

duodenum, jejunum, and ileum, FC > 30 or FC < 0.033 for the rest of the tissue types, and q < 0.1).  832 

Molecular features are presented as their binary logarithmic fold change [log2(FC)]against the 833 

negative common logarithm of the q-value [false discovery rate corrected p-value; –log10(q)] of the 834 

differential expression between the GF and MPF mouse group. 835 

Note: Although the purple dots represent molecular features fulfilling the above-mentioned 836 

significance criteria, and were unique to the sample type.837 
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 838 
Figure 4. Heatmap representation of identified metabolites in amino acid chemical class. Fold-839 

change and degree of significance comparisons were performed between the GF and MPF within 840 

each tissue (Mann–Whitney U-test and Benjamini and Hochberg false discovery rate correction p-841 

value ≤0.05, and q-value ≤ 0.05). Each comparison for a tissue is represented by a colored cell. Gray 842 

cells represent metabolites that were not found in the tissue. Orange and blue cells represent 843 

metabolites more abundant in  GF and MPF mice, respectively.  844 

*Metabolite is known to be bacterial-borne. 845 
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 846 
Figure 5. Heatmap representation of identified metabolites in peptide chemical class. Fold-847 

change and degree of significance comparisons were performed between the GF and MPF within 848 

each tissue (Mann–Whitney U-test and Benjamini and Hochberg false discovery rate correction p-849 

value ≤0.05, and q-value ≤ 0.05). Each comparison for a tissue is represented by a colored cell. Gray 850 

cells represent metabolites that were not found in the tissue. Orange and blue cells represent 851 

metabolites more abundant in  GF and MPF mice, respectively.  852 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456100


 

 853 
Figure 6. Heatmap representation of identified metabolites involved in carbohydrate and 854 

energy metabolism.  855 

Fold-change and degree of significance comparisons were performed between the GF and MPF 856 

within each tissue (Mann–Whitney U-test and Benjamini and Hochberg false discovery rate 857 

correction p-value ≤0.05, and q-value ≤ 0.05). Each comparison for a tissue is represented by a 858 

colored cell. Gray cells represent metabolites that were not found in the tissue. Orange and blue cells 859 

represent metabolites more abundant in  GF and MPF mice, respectively.  860 

* This metabolite is one the following isomers: Mannitol, Galactitol, Iditol861 
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 862 
Figure 7. Heatmap representation of identified metabolites in bile acids, fatty amides, carnitine, 863 

and acylcarnitine metabolism classes. Fold-change and degree of significance comparisons were 864 

performed between the GF and MPF within each tissue (Mann–Whitney U-test and Benjamini and 865 

Hochberg false discovery rate correction p-value ≤0.05, and q-value ≤ 0.05). Each comparison for a 866 

tissue is represented by a colored cell. Gray cells represent metabolites that were not found in the 867 

tissue. Orange and blue cells represent metabolites more abundant in  GF and MPF mice, respectively.  868 

*Despite comparing the spectra against the purified standard, we were not able to differentiate 869 

between tauro-α-muricholic acid and tauro-β-muricholic acid.  870 

**Taurocholic acid isomer: either taurallocholate or tauroursocholate or taurohyocholate. 871 
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 872 
Figure 8. Heatmap representation of identified metabolites in phenolic acid derivatives, 873 

flavonoids, and terpenes. Fold-change and degree of significance comparisons were performed 874 

between the GF and MPF within each tissue (Mann–Whitney U-test and Benjamini and Hochberg 875 

false discovery rate correction p-value ≤0.05, and q-value ≤ 0.05). Each comparison for a tissue is 876 

represented by a colored cell. Gray cells represent metabolites that were not found in the tissue. 877 

Orange and blue cells represent metabolites more abundant in  GF and MPF mice, respectively. 878 
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 879 

Figure 9. Summary of the fate of key metabolites (arginine, proline, urea, and ornithine) in the 880 

urea cycle and arginine and proline metabolism. Catabolism of dietary amino acids leads to the 881 

production of ammonia. Ammonia further undergoes conversion to urea via the urea cycle. In 882 

mammals with conventional gut microbiota, urea can be broken down to ammonia and CO2 by 883 

bacterial urease. The ammonia produced by microbiota is released into the GI tract and is taken up 884 

by host cells and serves as a substrate to synthesize arginine in the urea cycle. Within the urea cycle, 885 

arginine is then converted into urea and ornithine. Simultaneously, ornithine can also be synthesized 886 

by gut bacteria. Ornithine produced from the two mentioned pathways can enter the arginine 887 

biosynthesis pathway to synthesize more arginine; nevertheless, the bacterial inhibition of arginine 888 

biosynthesis can be inhibited by some bacteria. This excess amount of arginine can enter either the 889 

arginine and proline metabolism or the urea cycle. 890 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.12.456100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.12.456100


 

 891 

Figure 10. Proposed interrelation between tauro-conjugated muricholic acids and fatty amide 892 

biosynthesis in proximal and distal GI tract. When the FXR is bound to tauro-α- and β-muricholic 893 

acids in the upper section of the GI tract, the fatty amides biosynthesis is downregulated. As tauro-α- 894 

and -β-muricholic acids pass through the GI tract, they get deconjugated by gut microbiota. Therefore, 895 

there are fewer tauro-α- and β-muricholic acids are available to bind to FXR in the lower section of 896 

the GI tract. Thus, the FXR expression is upregulated in this area, and that may explain the higher 897 

abundances of fatty amides in the lower part of the GI tract.898 
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Supplementary Figure 1. Volcano plots of the molecular features detected in all the 13 899 

representative tissues (ppt format).900 
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 901 

Supplementary Figure 2. k-means cluster analysis of the filtered* molecular features (4,605 902 

molecular features). Clusters 2, 4, and 5 containing 1,214 molecular features were considered for 903 

compound identification. Clusters 2 and 4 showed the molecular features that were mostly differential 904 

in the cecum and the colon and were higher in abundance in the GF and MPF mice, respectively. 905 

Cluster 5 showed the molecular features that were mostly differential in the duodenum, jejunum, 906 

ileum, and liver and were higher in abundance in the MPF mice. *Filtering criteria for inclusion were 907 

(1) p-value ≤0.05, and q-value ≤ 0.05, (2) high-intensity metabolite values (raw abundance ≥ 908 

100,000), (3) containment of MS/MS fragmentation, (4) and retention time ≥0.7 min. For a molecular 909 

feature to be included, these inclusion criteria should exist at least in one tissue and one mouse group 910 

(GF or MPF). The different mouse groups are illustrated as follows with 5 mice in each group: Plasma 911 

MPF, Plasma GF, Heart MPF, Heart GF, Liver MPF, Liver GF, Pancreas MPF, Pancreas GF, Muscle 912 

MPF, Muscle GF, Duodenum MPF, Duodenum GF, Jejunum MPF, Jejunum GF, Ileum MPF, Ileum 913 

GF, Cecum MPF, Cecum GF, Colon MPF, Colon GF, VAT MPF, VAT GF, SAT MPF, SAT GF, 914 

BAT MPF, and BAT GF.  915 
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 916 

 917 
Supplementary Figure 3. Induction of acylcarnitine production in the MPF mice (a suggested 918 

mechanism).919 
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Supplementary Table 1. Summary of detected molecular features in all tissues from all the ionization modes 

Tissue 

Total detected 

molecular 

features# 

Total 

significantly 

changed 

molecular 

features* 

Significant 

change MPF 

> GF† 

Significant 

change GF > 

MPF† 

Unique to 

MPF† 

Unique to 

GF† 

Significant 

Shared† 

Cecum 17894 (74%) 11375 (64%) 4603 (40%) 6772 (60%) 2438 (21%) 3621 (32%) 5315 (47%) 

Ileum 16659 (69%) 6074 (36%) 2198 (36%) 3876 (64%) 1419 (23%) 2271 (38%) 2380 (39%) 

Duodenum 16046 (66%) 4149 (26%) 1713 (41%) 2436 (59%) 1299 (31%) 1505 (36%) 1342 (33%) 

Jejunum 15613 (64%) 6247 (40%) 2257 (36%) 3990 (64%) 1321 (21%) 2489 (40%) 2500 (40%) 

Colon 15004 (62%) 7226 (48%) 2448 (34%) 4778 (66%) 1737 (24%) 3606 (50%) 1880 (26%) 

Liver 10021 (41%) 3715 (37%) 2295 (62%) 1399 (38%) 1055 (28%) 628 (17%) 2032 (55%) 

Pancreas 9415 (39%) 1625 (17%) 982 (60%) 643 (40%) 672 (41%) 440 (27%) 513 (32%) 

SAT 8976 (37%) 1373 (15%) 814 (61%) 525 (39%) 756 (56%) 471 (35%) 112 (9%) 

BAT 8687 (36%) 1409 (16%) 665 (47%) 744 (53%) 494 (35%) 613 (44%) 302 (21%) 

Heart 7748 (32%) 1233 (16%) 646 (52%) 587 (48%) 434 (35%) 397 (32%) 402 (33%) 

Muscle 7145 (29%) 1257 (18%) 675 (54%) 582 (46%) 524 (42%) 475 (38%) 258 (21%) 

VAT 7019 (29%) 981 (14%) 525 (54%) 456 (46%) 434 (44%) 356 (36%) 191 (20%) 

Plasma 5469 (23%) 1061 (19%) 402 (38%) 659 (62%) 330 (31%) 397 (37%) 334 (32%) 

VAT (visceral adipose tissue), SAT (subcutaneous adipose tissue), BAT (brown adipose tissue) 
#The percentage is based on the total number of molecular features detected in all the tissues from the ionization modes (i.e., 

24,294). 

*Defined as having a fold change ≥ 1.3, p-value ≤ 0.05, and q-value ≤ 0.05. 
†The percentage is based on the tissue-specific number of the total significantly changed molecular features. 

920 
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Supplementary Table 2. List of annotated compounds from volcano plots and k-mean cluster 921 

analyses (excel format). 922 
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