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ABSTRACT 10 

Motivation: The increasing number of publicly available databases containing drugs’ chemical 11 

structures, their response in cell lines, and molecular profiles of the cell lines has garnered 12 

attention to the problem of drug response prediction. However, many existing methods do not 13 

fully leverage the information that is shared among cell lines and drugs with similar structure. As 14 

such, drug similarities in terms of cell line responses and chemical structures could prove to be 15 

useful in forming drug representations to improve drug response prediction accuracy.  16 

Results: We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response 17 

prediction. Our models take advantage of the drugs’ chemical structure and the underlying 18 

relationships of drugs and cell lines through a bipartite graph and a heterogenous graph 19 

convolutional network that incorporate sensitive and resistant cell line information in forming 20 

drug representations. Evaluation of our methods and other state-of-the-art models in different 21 

scenarios show that incorporating this bipartite graph significantly improve the prediction 22 

performance. Additionally, genes that contribute significantly to the performance of our models 23 

also point to important biological processes and signaling pathways.  24 

 25 

Availability and Implementation: An implementation of the algorithms in Python is provided in 26 

github.com/ddhostallero/BiG-DRP. 27 

Contact: amin.emad@mcgill.ca 28 

Supplementary Information: Online-only supplementary data is available at the journal's 29 

website.  30 

 31 
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INTRODUCTION 32 

Utilization of machine learning and statistical analyses in precision medicine has gained attention 33 

in the past decade. Prediction of drug response based on molecular profile of samples based on 34 

samples’ molecular profiles is a major problem in this domain and various approaches have 35 

proposed for this purpose [1-5]. Gene expression profile of samples is widely used for this 36 

purpose due to their higher predictive ability compared to other molecular profiles [1]. The 37 

curation of large public databases of gene expression profiling of hundreds of cancer cell lines 38 

(CCLs) and their response to hundreds of different drugs (e.g., GDSC [6]) has development of 39 

novel methodologies in this domain. 40 

 41 

Due to the similarity in molecular and chemical structure of different drugs and their mechanisms 42 

of action, machine learning (ML) methods that can take advantage of these similarities are of 43 

great interest. Instead of training a different ML model for each drug, one can formulate the drug 44 

response prediction as a paired prediction problem, such that a model takes in a (drug, CCL) pair 45 

as input and trains a single model for all drugs and CCLs [7-9]. This increases the number of 46 

samples, and enables information sharing across many drugs and drug families. Chemical 47 

structure data (e.g., PubChem [10], ChEMBL [11]) is particularly useful for representing the drugs 48 

and models have been developed to take advantage of these [12-14].  49 

 50 

Some approaches [15, 16] have formulated this as a matrix factorization problem, forming a 51 

matrix of drugs and CCLs. One advantage of this is that these methods directly work with the 52 

“entities” (i.e. drugs and CCLs) and responses, and do not need to map feature representations 53 
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of the entities to their responses. However, this formulation is inherently transductive, since 54 

samples and drugs are expected to be present in the matrix. As a result, these models cannot be 55 

directly used to predict the response of a new CCL to a drug unless the CCL has drug response 56 

information in the training set for some other drugs. 57 

 58 

Taking inspiration from the concept of “entity” from the matrix factorization approaches and to 59 

overcome their shortcoming due to their transductive nature, we propose to utilize the 60 

underlying matrix by transforming these entities into drug and CCL nodes and form a bipartite 61 

graph. We hypothesized that incorporating cell line information that are highly sensitive or 62 

resistant to a drug could improve the drug representation for drug response prediction. In our 63 

approach called Bipartite Graph-represented Drug Response Predictor (BiG-DRP and BiG-DRP+), 64 

we formed this graph by filtering the most sensitive and resistant CCLs for each drug, and linking 65 

them through an edge. Although drugs are not directly connected to each other through an edge, 66 

2-hop message passing incorporates information on drug similarities. The model accepts drugs’ 67 

descriptors and CCLs’ gene expression profiles as input, and utilizes them as node attributes for 68 

the bipartite graph and as sample features. The output is a continuous drug response value 69 

pertaining to the predicted normalized log IC50. 70 

 71 

To evaluate the performance of BiG-DRP and BiG-DRP+, we used 5-fold cross validation and 72 

compared these results across different baselines and other drug response prediction 73 

approaches, namely NRL2DRP [17] and PathDNN [7]. We tested on two data-splitting methods, 74 

leave-pairs-out and leave-cell lines-out, which represent two possible scenarios of data 75 
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availability. In both scenarios, we have shown significant improvement compared to other 76 

approaches. In addition, using a computational pipeline that we developed for identifying the 77 

most contributing features, we identified genes that pointed to biological processes and signaling 78 

pathways involved in drugs’ mechanisms of action.  79 

 80 

METHODS 81 

Bipartite Graph-based Drug Response Prediction 82 

We developed a novel deep learning-based drug response prediction model that takes advantage 83 

of a bipartite graph between drugs and cell lines, which we called Bipartite Graph-represented 84 

Drug Response Predictor (BiG-DRP). We also proposed an extension of BiG-DRP, called BiG-DRP+, 85 

which accounts for constantly changing drug representations in the former approach. An 86 

overview of the architecture of these models are provided in Figure 1. 87 

 88 

The BiG-DRP pipeline first obtains latent embeddings CCLs and drugs and uses them in the drug 89 

response prediction task. To obtain drug embeddings, first a heterogeneous bipartite graph 90 

composed of CCL nodes and drug nodes is formed. The nodes of the bipartite graph are 91 

connected via two types of edges: sensitive edges or resistant edges. These edges are based on 92 

the log IC50 values of each CCL-drug pair. A sensitive edge implies that the CCL is likely to be 93 

sensitive to the drug, while a resistant edge implies that it is likely to be resistant to the drug. In 94 

addition, each CCL node is assigned attributes corresponding to its gene expression (GEx) profile 95 

and each drug node is assigned attributes corresponding to its drug descriptors. Then, a 96 

heterogenous graph convolutional network (H-GCN) generates embeddings of each drug 97 
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(denoted as ℎ𝑑
(2) in Figure 1) using this bipartite graph. For each drug of interest, the H-GCN 98 

obtains an embedding that not only captures the molecular characteristic of the drug itself, but 99 

also captures the characteristics of other drugs that induce a similar sensitive/resistant pattern 100 

in CCLs. Inclusion of the GEx profiles of CCLs as node attributes in the bipartite graph allows the 101 

model to define the “similar pattern” mentioned above in a broader sense: instead of requiring 102 

a similar pattern in the exact same CCLs, the model can identify such patterns in CCLs that have 103 

a similar GEx profile.  104 

  105 

 106 

Figure 1: The computational pipeline and architecture of BiG-DRP and BiG-DRP+. Latent drug 107 

embeddings are generated using a heterogenous graph convolutional network based on a 108 

bipartite graph of drug-CCLs and drug descriptors. In parallel, CCL embeddings are generated 109 

using an encoder neural network based on their gene expression profile. These embeddings are 110 

then used by a predictor neural network to predict the drug response values.  111 

 112 

 113 
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To obtain embeddings of the CCLs based on their GEx profiles (denoted as �̂� in Figure 1), the 114 

model uses a neural network that is separate from the H-GCN. While it is possible to use the 115 

bipartite graph and the H-GCN to obtain CCL embeddings, such a choice would limit the 116 

applicability of the pipeline to only CCLs that are already present in the training set. The reason 117 

is that a CCL that is not present in the training set will be in the form of a single disconnected 118 

node in the bipartite graph and no embedding can be found for it using the H-GCN. However, in 119 

many practical applications (e.g., prediction of clinical drug response of patients based on models 120 

trained on preclinical CCLs [4, 5]), a model must be able to predict drug response of samples that 121 

are not seen by the model during the training for any drug. To avoid this limitation, the CCL 122 

embeddings are obtained independent of the H-GCN network and the bipartite graph. The drug 123 

and CCL embeddings are then concatenated, representing each (drug, CCL) pair. Then, a series of 124 

neural network layers (called predictor) are used to predict the drug response of each such pair 125 

using the concatenated embeddings.  126 

 127 

The BiG-DRP+ is an extension of BiG-DRP, which aims to stabilize the trained model. After the 128 

“last” training epoch of BiG-DRP, we train the model for one more epoch but with a smaller 129 

learning rate and “frozen” drug embeddings. The lower learning rate prevents the predictor from 130 

overfitting while the freezing of the embeddings allows the predictor to learn the finite set of 131 

drugs instead of constantly changing representations of the exact same drugs. 132 

 133 
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Construction of the Heterogenous Bipartite Graph 134 

We denote the heterogenous bipartite graph as 𝐺(𝑉𝐶 , 𝑉𝐷, 𝐸𝑟 , 𝐸𝑠), where 𝑉𝐶  is the set of CCL 135 

nodes used to build the graph (a subset of all the CCLs in the study) and 𝑉𝐷 is the set of drug 136 

nodes. 𝐸𝑟 is the set of edges that connect drugs to their “most resistant” CCLs, while 𝐸𝑠  is the set 137 

of edges that connect drugs to their “most sensitive” CCLs. For a fixed value of 𝑘, a drug is 138 

connected via a resistant edge to CCLs whose log IC50 is among the top  𝑘  percent and is 139 

connected via a sensitive edge to CCLs whose log IC50 is among the bottom 𝑘 percent of the CCLs. 140 

The set 𝑉𝐶  is then the union of all such CCLs whose drug response are among the top 𝑘 or bottom 141 

𝑘 percent of all cell lines for at least one drug. It is worth noting that the edges in this graph are 142 

unweighted and the log IC50 values are only used to determine whether a resistant (or sensitive) 143 

edge exists or not. We used  𝑘 = 1 in our analysis, but the performance of BiG-DRP and BiG-DRP+ 144 

were not sensitive to the choice of 𝑘, as discussed in Results.  145 

 146 

Drug embedding using heterogenous graph convolutions 147 

We used a 2-layer heterogenous graph convolutional network (H-GCN) to find a network-based 148 

embedding of the drugs. An H-GCN is a variation of graph convolutional network [18], which 149 

allows multiple edge types. A forward pass of an H-GCN can be summarized using the following 150 

equation: 151 

ℎ𝑣
(𝑙+1)

= 𝜎 (∑ (𝑏𝑟
(𝑙)

+
1

√|𝒩(𝑣, 𝑟)|
∑ ℎ𝑢

(𝑙)
𝑊𝑟

(𝑙)

𝑢∈𝒩(𝑣,𝑟)

)

𝑟∈ℛ

+ 𝛼ℎ𝑣
(𝑙)

) 152 

where ℎ𝑣
(𝑙)

 is node 𝑣’s embedding at the 𝑙th layer, 𝜎 is a non-linearity function, 𝒩(𝑣, 𝑟) is node 153 

𝑣’s set of neighbours connected using the edge type 𝑟. 𝑊𝑟
(𝑙)

and 𝑏𝑟
(𝑙)

 are the weights and biases 154 
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at the 𝑙th H-GCN layer for edge type 𝑟, respectively. Intuitively, this allows a separation of GCN 155 

parameters for each edge type, and thus creates context during the message passing. The 156 

normalization factor √|𝒩(𝑣, 𝑟)| prevents the embedding values from exploding due to a large 157 

number of neighbours. 158 

 159 

Although we constructed a bipartite graph, artificially adding self-loops to the graph is a common 160 

practice in GCNs to retain some information from the previous layer, avoiding the complete 161 

dependence of the node’s embedding to its neighbors. However, in the case of H-GCN, self-loops 162 

increase the complexity of the model by adding another set of parameters. To avoid this, we 163 

injected a residual term (𝛼ℎ𝑣
(𝑙)

)  to the forward pass to simulate self-loops. Here, 𝛼  is a 164 

hyperparameter (we fixed the value to 𝛼 = 0.5 ) pertaining to the amount of information to be 165 

retained for the next layer.  166 

 167 

The bipartite graph and the H-GCN allow us to find a drug embedding that captures relevant 168 

information about the CCLs that are generally resistant/sensitive to it (its 1-hop neighbours), as 169 

well as information on other drugs to which these CCLs have a similar or inverse pattern of 170 

response (its 2-hop neighbours). These embeddings enable sharing of information across drugs 171 

that are connected to similar set of cell lines via similar edge types.  172 

 173 

Data Acquisition and Preprocessing 174 

We obtained the drug response data in the form of log IC50 values from the Genomics of Drug 175 

Sensitivity in Cancer (GDSC) database [6]. We only selected drugs with known log IC50 values as 176 
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 10 

well as binarized responses that allow us to calculate the key performance metrics used for 177 

evaluation of different methods. We also filtered out duplicate drugs that came from different 178 

batches, which are tagged with different drug IDs, named with synonyms, or labeled as 179 

“rescreens”. In cases of such duplicates, we only kept the one for which the drug response in a 180 

larger number of cell lines was measured. We collected the Simplified Molecular Input Line Entry 181 

System (SMILES) encoding [19] of these drugs and used the RDKit software [12] to generate drug 182 

descriptors (e.g. molecular weight, number of aromatic rings) from these encodings. Descriptors 183 

with missing values were excluded from the analysis. At the end of these data cleaning steps, we 184 

were left with 237 unique drugs, each with feature vectors of length 198 (representing their drug 185 

descriptors). 186 

 187 

We performed z-score normalization on drug descriptors, one feature at a time across all drugs. 188 

We also z-score normalized the log IC50 values of each drug (one drug at a time) across cell lines. 189 

This is necessary since the log IC50 values of different drugs have significantly different means 190 

and standard deviations, which renders the calculated metrics incomparable across drugs and 191 

inflates the overall correlation coefficient. For example, a relatively small mean squared error for 192 

a certain drug, or a high overall spearman correlation do not necessarily indicate good 193 

performance without such a normalization. This drug-wise normalization allows us to compare 194 

results across different drugs, and prevents overestimation of the models’ performance. 195 

 196 

For the 237 drugs above, we obtained the RNA-seq GEx profile of 1001 CCLs from the Cell Model 197 

passports [20]. We performed log2(FPKM +1) transformation on the FPKM values. We excluded 198 
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genes that showed a small variability across the cell lines (genes with standard deviation <0.1) as 199 

well as genes with missing values in some cell lines. After these preprocessing steps, we ended 200 

up with 944 unique CCLs and their GEx values of 13,823 genes. This amounted to a total of 201 

181,380 labeled CCL-drug pairs.  202 

 203 

Training Procedure 204 

As discussed earlier, to enable the model to generalize to completely new CCLs (those that are 205 

not seen by the model for any drug during training), we used a separate neural network, parallel 206 

to the H-GCN. As input, this network accepts the CCLs’ gene expression vector 𝑥 and produces a 207 

latent representation  �̂� = 𝐹𝑐(𝑥). We then concatenate  �̂� with the drug 𝑑’s embedding, ℎ𝑑
(2)

, 208 

and use it as input for our predictor, a 3-layer neural network that outputs the predicted drug 209 

response values (�̂�).  210 

 211 

The model was trained end-to-end using the mean squared error ℒ = (𝑦 − �̂�)2 and Adam as the 212 

optimizer [21]. We also fixed the learning rate to 0.0001 and batch size to 128. We used Leaky 213 

ReLU for all non-linearity functions (i.e. 𝜎(𝑥) = max(0, 𝑥) + 0.01 × min (0, 𝑥)). The number of 214 

training steps were decided by randomly selecting samples from the training data and using them 215 

as a validation set for early stopping. The model was then re-trained with the entire training set 216 

and the previously identified optimal number of training steps. For BiG-DRP+, the extra epoch’s 217 

learning rate was set to 0.00001.  218 

 219 
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In our approach, elements of a batch are (drug, CCL) pairs, although all drug embeddings can be 220 

generated simultaneously for each forward pass. Embeddings generated using graph 221 

convolutional networks rely on the node connectivity. This generally means that a small 222 

perturbation of a node’s embedding may affect the embeddings of its neighbors in the next GCN 223 

(or H-GCN) layer. Unlike regular dense neural networks, it is possible that a dramatic change 224 

would occur in the embeddings, even with a relatively small learning rate. In such cases, the 225 

predictor may not easily map the “new” embedding to the “known” ones, especially if the drug 226 

was not part of the batch during the previous training step. The predictor could see this as having 227 

an infinite number of drugs, increasing the level of complexity to the learning process. To address 228 

this “moving embedding problem”, we developed BiG-DRP+, which slightly modifies the training 229 

of BiG-DRP.  230 

 231 

The idea of BiG-DRP+ is to stop the training of the H-GCN component after several epochs but 232 

continue the training of the predictor using the “frozen” drug embeddings. In our BiG-DRP+ 233 

model, we froze the drug embeddings obtained by BiG-DRP (after the number of epochs 234 

determined by early stopping), but continued the training of other components of the 235 

architecture for one extra epoch (we used a lower learning rate for this epoch). This stabilizes the 236 

training of the predictor and enables it to identify CCLs that were treated by the same drug (since 237 

the half of the input to the predictor pertaining to the drug features are now fixed). The lower 238 

learning rate is a preventative measure to avoid overfitting. 239 

 240 

 241 
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Evaluation and Cross-validation 242 

To evaluate the performance of our model we used 5-fold cross validation (CV), in which one fold 243 

was kept aside as the test set for evaluation and was not used during training of the model nor 244 

for the selection of hyperparameters. This process was repeated five times (each time with a 245 

different fold as the test set) to ensure that the specific choice of the test set does not bias the 246 

results. We adopted two types of data splitting techniques to form the folds, namely leave-pairs-247 

out (LPO) and leave-cell lines-out (LCO).  248 

 249 

In the LPO-CV, the disjoint folds were randomly selected from the set of all (CCL, drug) pairs, 250 

while in the LCO-CV the folds contained randomly selected sets of mutually exclusive CCLs. Prior 251 

to training, GEx values were z-score normalized per gene. We used only the training folds’ unique 252 

CCLs to calculate the means and standard deviations to prevent data leakage between training 253 

and test sets. Imposing the uniqueness criterion above ensures that the models are not biased 254 

towards CCLs that exists in a larger number of (drug, CCL) pairs. To ensure a fair comparison, 255 

identical folds were used for all methods. For each drug, predictions of the five folds on their 256 

respective test sets were collected and were used to evaluate different methods.  257 

 258 

To assess generalizability of our models to independent datasets, we obtained GEx profile (in the 259 

form of FPKM) and RECIST clinical drug response of patient tumours from The Cancer Genome 260 

Atlas (TCGA) [22] treated with cisplatin or gemcitabine. We selected these drugs since they were 261 

present in our training dataset and the clinical drug response was available for more than 150 262 

patients treated with these drugs (n = 309 for cisplatin and n = 158 for gemcitabine) and there 263 
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were at least 50 sensitive and 50 resistant patients in each dataset. Similar to previous studies 264 

[23], we considered “stable disease” or “progressive disease” as resistant and “complete 265 

response” or “partial response” as sensitive. Similar to the preprocessing steps used for GDSC 266 

dataset, the expression of each gene in the testing set (in the form of log2(FPKM +1)) was z-score 267 

normalized across the samples, before being given to the models as input.  268 

 269 

Baseline Methods 270 

We compared our method against several baseline algorithms including both deep learning-271 

based and traditional machine learning methods, detailed below. First, we used a multilayer 272 

perceptron (MLP) with a similar architecture and hyperparameters as BiG-DRP. Similar to BiG-273 

DRP, the MLP also utilized the GEx and drug features. However, instead of an H-GCN, we replaced 274 

it with a dense neural network, which takes the drug features as input. We also used a support 275 

vector regressor (SVR) with a linear kernel as well as a SVR with a radial basis function (RBF) as 276 

traditional ML baselines. The concatenation of the GEx and drug features were used as the input 277 

to SVR models. Due to the large size of the data, we used Nystroem’s transformation [24]  to 278 

approximate the SVR’s kernels to improve its efficiency. Hyperparameters, namely the number 279 

of Nystroem components, regularization factor, and gamma for RBF were selected using nested 280 

cross validation.  281 

 282 

NRL2DRP [17] is a graph representation learning-based method that uses a graph composed of 283 

genes, drugs, and CCL nodes, connected by edges according to their sensitivity, mutation, and 284 

protein-protein interactions. However, NRL2DRP uses a topology-based graph embedding called 285 
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LINE [25], which is typically used for transductive learning. We slightly modified NRL2DRP to 286 

predict continuous values instead of binary values (so that it can be applied to our data). PathDNN 287 

[7] is another deep learning method that proposes to add some level of explainability to the drug 288 

response prediction problem by constraining the neural network connectivity using a pathway 289 

mask. This method uses drug targets and gene expressions, both of which should be in any of the 290 

Kyoto Encyclopedia of Genes and Genomes  (KEGG) pathways [26]. We obtained the drug targets 291 

and pathway information from the PathDNN’s repository. The drug targets were represented by 292 

their normalized STITCH [27] confidence score, which indicates a non-zero value for genes in the 293 

drug’s targets. However, we removed three compounds because they did not have known targets 294 

in the KEGG pathways. 295 

 296 

Identification of genes that are most predictive of drug response 297 

To identify genes that are predictive of drug response, we used a neural network explainer called 298 

CXPlain [28] and a similar approach which we previously developed to aggregate contribution 299 

across CCLs and identify top contributors [5]. CXplain uses Granger’s causality [29] as the basis of 300 

the feature attribution. Intuitively, for each of the features, it tries to predict the increase in the 301 

sample’s loss if that specific feature is zeroed-out. We trained separate explainers for each of the 302 

drugs, since this eliminates the unnecessary complexity of learning attributions for multiple drugs, 303 

as well as the additional feature dimensions (i.e., drug features). We pooled the scores by 304 

calculating the mean attribution across all the CCLs for each of these drugs. The top genes were 305 

identified by a threshold calculated using kneedle [30], with sensitivity S=2.  306 

 307 
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Pathway characterization analysis 308 

We used KnowEnG’s gene set characterization pipeline [31] to perform pathway enrichment 309 

analysis (using Reactome pathways [32]). The p-values of Fisher’s exact test were corrected for 310 

multiple tests (i.e., multiple pathways) using Benjamini-Hochberg false discovery rate (FDR).  311 

 312 

RESULTS 313 

Performance of BiG-DRP and BiG-DRP+ based on leave-pair-out cross validation 314 

First, we evaluated BiG-DRP, BiG-DRP+, and other baseline algorithms using a five-fold LPO-CV, 315 

in which the folds were randomly selected among the set of all possible (CCL, drug) pairs. Table 316 

1 shows a summary of the performance results using area under the receiver operating 317 

characteristic curve (AUROC) and Spearman’s correlation coefficient (SCC). To calculate these 318 

metrics across all drugs, we first calculated them separately for each drug (Supplementary Table 319 

S1) and then obtained mean and standard deviation across the drugs. BiG-DRP+ outperforms all 320 

other methods according to both metrics, and BiG-DRP outperforms all baselines but has a 321 

slightly worse performance compared to BiG-DRP+. BiG-DRP+ has a ~5% higher AUROC and a ~11% 322 

higher SCC compared to that of MLP, which utilizes a similar architecture to BiG-DRP+ (except for 323 

the usage of the bipartite graph and the H-GCN). This highlights the importance of this novel 324 

aspect of the algorithm.  325 

 326 

 327 

 328 
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Table 1: The performance of BiG-DRP, BiG-DRP+ and baseline methods using five-fold LPO-CV 329 

evaluation. Best performance values are underlined. *Since PathDNN requires availability of at 330 

least one drug target in any of the signaling pathways, we could only apply it to 234 drugs.   331 

 332 

 
Drug 

Attributes 
Other inputs 

Number 
of Drugs 

AUROC 
mean (± std.) 
across drugs 

SCC 
mean (± std.) 
across drugs 

BiG-DRP+ Descriptors GEx 237 0.878 (±0.068) 0.748 (±0.100) 

BiG-DRP Descriptors GEx 237 0.875 (±0.068) 0.742 (±0.099) 

MLP Descriptors GEx 237 0.835 (±0.083) 0.675 (±0.120) 

NRL2DRP None 
Drug-CCL-Gene 

network 
237 0.804 (±0.085) 0.516 (±0.119) 

PathDNN 
Drug 

Targets 
GEx, pathway 
information 

234* 0.766 (±0.083) 0.516 (±0.115) 

SVR-RBF Descriptors GEx 237 0.737 (±0.100) 0.502 (±0.123) 

SVR-Linear Descriptors GEx 237 0.736 (±0.101) 0.494 (±0.129) 

 333 

 334 

Figure 2 compares the performance of BiG-DRP+ against other methods for individual drugs 335 

(measured based on SCC). Each circle in the scatter plots reflects a drug, and the color of the 336 

circles reflect the density of other circles in their vicinity. Comparing BiG-DRP+ and BiG-DRP 337 

shows that the drug-specific SCC values are generally close to each other (concentrated around 338 

the diagonal line); however, the one-sided Wilcoxon signed rank test (p=2.26E-36) suggests that 339 

the performance for the majority of the drugs have improved in BiG-DRP+, albeit a small amount. 340 

Comparing to other baselines, the figure shows that the majority (and in many cases all) of the 341 

circles are above the diagonal line, suggesting a substantial improvement of their response 342 

prediction by BiG-DRP+. One-sided Wilcoxon signed rank tests also confirmed this observation, 343 

resulting in statistically significant p-values (Figure 2 and Supplementary Table S2).  344 
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 345 

Figure 2: The drug-wise performance of BiG-DRP+ compared to baseline methods using five-fold 346 

LPO-CV evaluation. Each circle represents a drug, and the color of the circles reflect the density 347 

of other circles in their vicinity (yellow shows that there are many circles concentrated in that 348 

area). The coordinates reflect SCC for BiG-DRP+ (y-axis) and baseline methods (x-axis). The p-349 

values are obtained using a one-sided Wilcoxon signed rank test, comparing the SCC of BiG-DRP+ 350 

and the baselines across drugs.  351 

 352 

Performance of BiG-DRP and BiG-DRP+ based on leave-cell line-out cross validation 353 

Next, we evaluated the performance of different models using a five-fold LCO-CV. This is a stricter 354 

evaluation, since unlike LPO-CV, a CCL in the test set is never seen by the models during training, 355 

since folds are randomly selected based on the CCLs and not based on (CCL, drug) pairs. Table 2 356 

shows the summary of the results using our performance metrics. Note that due to the 357 

transductive nature of NRL2DRP’s embedding method (LINE [25]), this method could not be 358 

applied to the LCO-CV evaluation and hence is not included in this table.  359 
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 360 

Based on these evaluations, BiG-DRP+ has the best performance using AUROC and SCC, while 361 

BiG-DRP has the second-best performance. The BiG-DRP+ clearly outperforms MLP using both 362 

metrics, further highlighting the importance of the bipartite graph and H-GCN in the drug 363 

response prediction task. Similar to LPO-CV evaluation, a drug-wise analysis using SCC for each 364 

drug showed a significantly superior performance of BiG-DRP+ compared to all baseline methods 365 

(one-sided Wilcoxon Signed-Rank test, Supplementary Table S2). Supplementary Table S1 366 

provides the drug-specific performance metrics for all drugs.  367 

Table 2: The performance of BiG-DRP+, BiG-DRP and baseline methods using five-fold LCO-CV 368 

evaluation. Best performance values are underlined. *Since PathDNN requires availability of at 369 

least one drug target in any of the signaling pathways, we could only apply it to 234 drugs.   370 

 371 

 
Drug 

Attributes 
Other input 

features 
Number of 

Drugs 

AUROC  
mean (± std.)  
across drugs 

SCC  
mean (± std.)  
across drugs 

BiG-DRP+ Descriptors GEx 237 0.746 (±0.077) 0.431 (±0.094) 

BiG-DRP Descriptors GEx 237 0.743 (±0.077) 0.426 (±0.095) 

MLP Descriptors GEx 237 0.730 (±0.086) 0.413 (±0.100) 

SVR-RBF Descriptors GEx 237 0.680 (±0.110) 0.348 (±0.120) 

SVR-
Linear 

Descriptors GEx 237 0.666 (±0.102) 0.324 (±0.119) 

PathDNN Drug Targets 
GEx, pathway 
information 

234* 0.612 (±0.074) 0.193 (±0.061) 

 372 

To assess the generalizability of BiG-DRP+ and BiG-DRP to independent datasets, we used them 373 

to predict the drug response of patient tumours from the TCGA dataset treated with cisplatin or 374 

gemcitabine. Given the predicted log IC50 values, we used a one-sided Mann-Whitney U test to 375 

determine if our models can distinguish between the patients that are resistant from those that 376 
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are sensitive to these two drugs. Our statistical analysis showed significant p-values for both 377 

drugs using BiG-DRP+ (p = 2.66E-6 for cisplatin and p = 2.01E-2 for gemcitabine) and using BiG-378 

DRP (p = 2.25E-6 for cisplatin and p = 1.58E-2 for gemcitabine).  379 

 380 

Detailed Evaluation of BiG-DRP+ 381 

Since one major component of the BiG-DRP and BiG-DRP+ pipeline is the bipartite graph of the 382 

CCLs and drugs, we sought to evaluate the effect of different thresholds for forming this graph. 383 

As explained in Methods, a drug is connected to a CCL with a sensitive (resistant) edge if the log 384 

IC50 of the CCL is among the bottom (top) k% of all the CCLs. In our analysis, we fixed this value 385 

to be k = 1. To assess the robustness of the results to this parameter, we formed different 386 

bipartite graphs with different choices of k = 0.5, 1, 2, 5, 10 and repeated the LPO-CV and LCO-387 

CV. Supplementary Table S3 provides the SCC and AUROC of BiG-DRP and BiG-DRP+ for these 388 

evaluations for different values of k. These results suggest that the performance of our proposed 389 

methods remain stable for these different choices of k, with a slight deterioration as k increases 390 

(less than 1% in all evaluations when comparing k=10 to k=1). This deterioration is expected, since 391 

an increase in k increases potentially erroneous edges in the bipartite graph.  392 

 393 

Next, we asked whether the choice of drug features as attributes in the bipartite graph has a 394 

significant effect on the performance of BiG-DRP+. To address this question, we used Morgan 395 

fingerprints [13] of the drugs, alone or in addition to the drug descriptors, as the attributes of the 396 

drug nodes in the bipartite graph. The results (provided in Table 3) revealed that there is not a 397 
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substantial difference between any of these choices, but simultaneously using both types of drug 398 

features slightly improves the results.  399 

 400 

Table 3: The performance of BiG-DRP+ with different drug attributes. The rows show the results 401 

of BiG-DRP+ when drug descriptors (vectors of length 198), Morgan fingerprints (vectors of length 402 

512), or the combination of both (vectors of length 710) are used as node attributes. 403 

 404 

Method 
Drug 

Attribute 

LPO-CV LCO-CV 

AUROC 
mean (± std.) 

SCC 
mean (± std.) 

AUROC 
mean (± std.) 

SCC 
mean (± std.) 

BiG-
DRP+ 

Descriptors 0.878 (±0.068) 0.748 (±0.100) 0.746 (±0.077) 0.431 (±0.094) 

Morgan 0.878 (±0.068) 0.748 (±0.100) 0.743 (±0.080) 0.426 (±0.098) 

Both 0.879 (±0.068) 0.748 (±0.099) 0.746 (±0.077) 0.433 (±0.095) 

 405 

Next, we sought to better characterize the bipartite graph and the drugs that have most 406 

benefited from using this graph in the drug response prediction task. For this purpose, we first 407 

formed a single bipartite graph by aggregating the bipartite graphs corresponding to each of the 408 

five folds in our LCO-CV evaluation (i.e., by finding the union of edges). Then, we used a nested 409 

stochastic block model [33] to infer the modular substructure of the graph, while taking into 410 

account the edge type (i.e., resistant and sensitive) connecting each two nodes. Figure 3A 411 

illustrates the bipartite graph and clusters identified using this method (see Supplementary Table 412 

S4 for the cluster assignment of drugs and CCLs). In particular, five drug clusters were identified. 413 

Comparing the performance of BiG-DRP+ compared to MLP (SCC-LCO), revealed that all these 414 

clusters significantly benefit from the use of the bipartite graph (one-sided Wilcoxon signed rank 415 

test, Figure 3B). In particular, Cluster 3 had the highest median improvement in SCC (8.4%) and 416 
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had a significant improvement p-value (p = 5.25 E-5). The majority of the drugs in this cluster (13 417 

out of 20) are protein kinase inhibitors, with 8 of them targeting members of serine/threonine 418 

protein kinase family and 5 of them targeting members of tyrosine kinase family. These 419 

observations suggest that information sharing across the bipartite graph used in our methods 420 

benefit certain groups of drugs more than others and this may be dependent on the similarity 421 

between drugs’ mechanisms of action.  422 

 423 

Figure 3: The CCL-drug bipartite graph and its clusters. The boxplots show the distribution of SCC 424 

improvements obtained for each drug using BiG-DRP+ compared to MLP in the LCO evaluation. 425 

The p-values are obtained using a one-sided Wilcoxon signed rank test.   426 

 427 

Identification of biomarkers of drug sensitivity  428 

To identify genes whose expression substantially contribute to the predictive model, we used a 429 

pipeline similar to the one we proposed in a previous study [5]. This approach provides an 430 

aggregate contribution score for each gene in the model and uses these scores to systematically 431 
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identify the set of top contributing genes in each model. We focused on 15 drugs for which BiG-432 

DRP+ provided the highest SCC values in the LCO-CV evaluation. Supplementary Table S5 provides 433 

the ranked list of genes that were implicated for each of the 15 drugs. We clustered the drugs 434 

based on the contribution scores of all implicated genes (Figure 4). Interestingly, four drugs 435 

formed a clear cluster, separate from the others: trametinib, refametinib, selumetinib, and 436 

pd0325901. Further investigation revealed that these drugs all are MEK inhibitors (i.e., inhibit the 437 

mitogen-activated protein kinase kinase enzymes) and involve some similar mechanisms of 438 

action [10].  439 

 440 

Next, we focused on genes implicated for trametinib, a MEK-inhibitor for which BiG-DRP+ had 441 

the best performance (SCC in LCO-CV). For this drug, ETV5 had the highest prediction contribution. 442 

ETV5 and ETV4 (the fourth highest contributor) are among the ETS family of oncogenic 443 

transcription factors. The expression of this family has been shown to be upregulated in solid 444 

tumours and they have been shown to be involved in tumour’s progression, metastasis and 445 

chemoresistance [34]. Previous studies have shown ETV5 to be regulated by ALK, a receptor 446 

tyrosine kinase, in a MEK/ERK-dependent manner in neuroblastoma cell lines [35]. In addition, 447 

treatment of various cancer cell lines with trametinib has been shown to downregulate ETV5 [35-448 

37]. Moreover, the overexpression of ETV4 and ETV5 have been shown to reduce the sensitivity 449 

different cancer cell lines to this drug [37].  450 

 451 

To obtain a better functional characteristic of the genes implicated for trametinib, we also 452 

performed pathway enrichment analysis on genes implicated for this drug (see Supplementary 453 
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Table S6 for results of pathway enrichment analysis of all 15 drugs). Several important pathways 454 

related to MAPK signaling, EGFR signaling, and IL2 signaling were identified (Fisher’s exact test, 455 

FDR<0.05). Taken together, these results suggest that genes that contribute to the predictive 456 

ability of BiG-DRP+ for trametinib point to important genes and signaling pathways involved in 457 

its mechanism of action.  458 

 459 

 460 

Figure 4: The clustering of 15 drugs based on contribution scores of their genes. The contribution 461 

scores of the union of genes implicated for these drugs is used to cluster drugs using hierarchical 462 

clustering. The heatmap shows the contribution scores.  463 
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DISCUSSION AND CONCLUSION 464 

In this study, we proposed two novel graph representation deep learning methods to incorporate 465 

information regarding the sensitivity and resistance of cell lines, their gene expression profiles 466 

and chemical drug attributes to obtain better drug representations. Using cross-validation and 467 

different data splitting methods we showed significant improvement compared to traditional and 468 

state-of-the-art methods. Using a computational pipeline to make neural networks explainable, 469 

we identified a set of genes that substantially contribute to the predictive model. These genes 470 

implicated important signaling pathways and pointed to shared and unique mechanisms of action 471 

in the drugs.  472 

 473 

Moreover, detailed evaluation of our methods showed a high degree of robustness towards 474 

changes in the threshold used to form the bipartite graph. This further supports the importance 475 

of different techniques we used to ensure stability of our proposed architecture: the 476 

normalization factor and the injected self-loop in our H-GCN’s forward pass. More specifically, 477 

due to the injected self-loop, the nodes retain a portion of their own information, which forces 478 

the embeddings to have some level of separation. The normalization factor also helps by 479 

preventing the received messages from becoming too large and overpowering the self-loop. It is 480 

important to note that this robustness may not be applicable to some corner cases. For example, 481 

when a drug’s connected CCLs are not connected to any other drug (i.e., it forms a disconnected 482 

star subgraph), this drug’s embedding would not benefit from the existence of the second H-GCN 483 

layer. As another example, the second H-GCN layer will be obsolete if all the drugs happen to 484 

form disconnected stars, and thus no information sharing will take place across drugs. Another 485 
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example is when we add a new drug that results in a disconnected node. A disconnected node 486 

will not be able to incorporate CCL information into the drug embedding, which defeats the 487 

purpose of the H-GCN.  488 

 489 

Unlike many previous models (e.g., NRL2DRP [25]) that require both cell lines and drugs to be 490 

present in the training set, BiG-DRP is designed to enable prediction of unseen cell lines (those 491 

that are not present in the training set). However, the drug embedding part of the model (the H-492 

GCN) requires the drugs to be part of the bipartite graph. This constraint implies that the drugs 493 

present in the test set must be also present in the training set. As a result, this model generally 494 

is not applicable to predict the response of CCLs to unseen new drugs. Although this could be 495 

naively remedied by assuming known edges involving the unseen drug in the bipartite graph, this 496 

kind of solution is impractical and would be difficult to enact without reducing the test set. 497 

However, in most practical applications (e.g., prediction of drug response of cancer patients [4] 498 

and [5]), it is more crucial for the model to generalize to unseen samples (CCLs or patients). The 499 

reason is that before a drug enters clinical trial or enters clinical usage, many in-vitro studies on 500 

CCLs are first performed. Consequently, one can expect to have access to molecular description 501 

and drug response of a drug for which the drug responses of a new set of samples (CCLs or 502 

patients) are to be predicted.  503 

 504 

In summary, this study proposes new techniques to improve drug response prediction and to 505 

identify biomarkers of drug sensitivity.  506 

 507 
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SUPPLEMENTARY TABLES 520 

Supplementary Table S1: The performance of BiG-DRP+, BiG-DRP and baseline methods 521 

(columns) using five-fold CV for each drug (rows). Values presented are the mean across five folds. 522 

Each tab corresponds to a performance metric (Spearman’s correlation coefficient and area 523 

under the receiver operating characteristic) for each data-splitting scenario: leave-cell lines-out 524 

(LCO) and leave-pairs-out (LPO). 525 

 526 

Supplementary Table S2: The results of the one-sided Wilcoxon signed rank test, represented by 527 

the p-values. The test compares the per-drug Spearman’s correlation coefficient (SCC) of the BiG-528 

DRP+ and the other methods, where the alternative is that BiG-DRP+’s SCC is significantly larger. 529 

 530 

Supplementary Table S3: The performance of BiG-DRP and BiG-DRP+ using for 𝑘 ∈531 

{0.5, 1, 2, 5, 10} . The performance metrics were calculated independently per drug and 532 

presented as the mean and standard deviation. 533 

 534 
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Supplementary Table S4: The cluster assignments of the aggregated bipartite graph using the 535 

nested stochastic block model. The first tab shows that cluster indices for the drugs and the 536 

second tab shows the cluster indices for the cell lines. Although the graph partitioning was 537 

performed on the entire graph, drug and cell line clusters were mutually exclusive so similar 538 

indices in different tabs do not pertain to the same cluster. 539 

 540 

Supplementary Table S5: The top genes and their normalized contribution scores for top-541 

performing drugs in the leave-cell lines-out scenario.  Each tab corresponds to the top genes for 542 

a specific drug.  543 

 544 

Supplementary Table S6: The results of the pathway enrichment analysis of the top genes 545 

(Supplementary Table S5) on the Reactome pathways using Fisher’s exact test. Each tab 546 

corresponds to a specific drug. The corrected p-values are indicated in the pvalue_cor column. 547 

 548 

 549 
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