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ABSTRACT2

Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain3
forgets more than is required based on limitations of mnemonic capacity. Episodic memories,4
in particular, are liable to be forgotten over time. Researchers have hypothesized that it5
may be beneficial for decision making to forget episodic memories over time. Reinforcement6
learning offers a normative framework in which to test such hypotheses. Here, we show7
that a reinforcement learning agent that uses an episodic memory cache to find rewards in8
maze environments can forget a large percentage of older memories without any performance9
impairments, if they utilize mnemonic representations that contain structural information about10
space. Moreover, we show that some forgetting can actually provide a benefit in performance11
compared to agents with unbounded memories. Our analyses of the agents show that forgetting12
reduces the influence of outdated information and states which are not frequently visited on the13
policies produced by the episodic control system. These results support the hypothesis that some14
degree of forgetting can be beneficial for decision making, which can help to explain why the15
brain forgets more than is required by capacity limitations.16
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1 INTRODUCTION
Many people bemoan their tendency to forget, and assume that if it was possible, it would be desirable to18
remember everything that had ever happened to them. Yet, evidence from psychology and neuroscience19
suggests that the mammalian brain has the capacity to store far more episodic memories than it does,20
and that healthy brains actually engage in active forgetting of episodic memories. For example, some21
individuals with a syndrome known as Highly Superior Autobiographical Memory (HSAM), are capable22
of remembering almost everything that has ever happened to them (Parker et al., 2006; Leport et al., 2016),23
but these individuals assert that this is a detriment for them, not an advantage. As well, neurobiological24
studies of forgetting have shown that a diverse array of molecular and cellular mechanisms promote the25
active forgetting of information (Akers et al. (2014); Epp et al. (2016); Shuai et al. (2010); Migues et al.26
(2016); Berry et al. (2012) – see also Wixted (2004); Hardt et al. (2013); Richards and Frankland (2017);27
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Anderson and Hulbert (2021) for reviews). In fact, researchers can prevent forgetting in animal models by28
interfering with these mechanisms, demonstrating that in principle, animals could remember more than29
they do (Berry et al., 2012; Shuai et al., 2010; Akers et al., 2014).30

Why would our brains actively forget what has happened to us? It has been hypothesized that transient31
memories may provide a better substrate for decision making, as they would render animals more flexible32
and better at generalization (Mosha and Robertson, 2016; Robertson, 2018; Hardt et al., 2013; Richards33
and Frankland, 2017). This “beneficial forgetting” hypothesis is supported by some animal studies34
demonstrating that artificially reducing forgetting can impair reversal learning and reduce generalization35
of learned associations (Epp et al., 2016; Shuai et al., 2010; Migues et al., 2016). For example, reducing36
AMPA receptor internalization in the hippocampus prevents the generalization of contextual fear memories37
(Migues et al., 2016).38

However, it is difficult to fully examine the validity of this normative hypothesis in real-life experiments.39
In the previous example (Migues et al., 2016), it is difficult to say exactly why reduced AMPA receptor40
internalization prevents generalization—is it due to reduced forgetting, or some other downstream affects of41
the experimental manipulation? Modelling and simulation provide a means of exploring the computational42
validity of the beneficial forgetting hypothesis in a fully controlled manner (Brea et al., 2014; Murre et al.,43
2013; Toyama et al., 2019). In particular, reinforcement learning (RL) from artificial intelligence (AI)44
provides a normative framework that is ideal for understanding the role of memory in decision making (Niv,45
2009; Gershman and Daw, 2017; Dolan and Dayan, 2013). In particular, episodic control, an approach in46
RL that utilizes one-shot memories of past events to shape an agent’s policy (Lengyel and Dayan, 2007;47
Pritzel et al., 2017; Blundell et al., 2016; Ritter et al., 2018), is ideal for exploring the potential impact of48
forgetting on decision making and computation.49

Therefore, to determine the validity of the beneficial forgetting hypothesis, we used an episodic control50
agent trained to forage for rewards in a series of maze environments. We manipulated both the underlying51
representations used for memory storage and the degree to which the episodic memory cache forgot52
old information. We find that when memories are stored using structured representations, moderate53
amounts of forgetting will not only leave foraging abilities intact, but will actually produce some modest54
performance improvements. We find that these performance gains result from the fact that forgetting55
with structured mnemonic representations eliminates outdated and noisy information from the memory56
cache. As a result, the agent’s episodic control system will produce policies that are more consistent over57
local neighbourhoods of state space. As well, forgetting with structured representations can preserve the58
confidence of the agent’s policies, particularly those near the goal. Altogether, these results support the59
beneficial forgetting hypothesis. They show that if an agent is using records of past experiences to guide60
their actions then moderate amounts of forgetting can help to produce more consistent decisions that61
generalize across space.62

2 MATERIALS AND METHODS
2.1 Reinforcement Learning Formalization63

Our episodic control model was designed to solve a reinforcement learning task. The reinforcement learning64
problem is described as a Markov decision process (MDP) for an “agent” that must decide on actions that65
will maximize long-term performance. An MDP is composed of a set of discrete states (s ∈ S) sampled66
over time, t, a set of discrete actions (a ∈ A), a state-transition probability distribution P (s′|st = s, at = a),67
a reward function R(s) = r, and a discount factor γ ∈ [0, 1] to weigh the relative value of current versus68
future rewards (we set γ=0.98 for all simulations). The transition distribution P (st+1 = s′|st = s, at = a)69
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specifies the probability of transitioning from state s to a successor state s′ when taking action a. The70
reward function R(s) specifies the reward given in state s. The transition distribution and reward function71
describe the statistics of the environment, but are not explicitly available to the agent; the agent only72
observes samples of state-action-reward-next state transitions (st = s, at = a, rt = r, st+1 = s′). The73
policy π(a|st = s) specifies a probability distribution over available actions, from which the agent samples74
in order to select an action in the environment. The return at time t, Gt, is the temporally discounted sum75
of rewards from the present time-step into the future:76

Gt =
N∑
k=0

γkrt+k (1)

The aim of the reinforcement learning task is for the agent to generate policies which will allow it to77
maximize the return.78

2.2 Environments and Foraging Task Design79

Simulations of the foraging task were carried out in four different grid-world environments: (1) open field,80
(2) separated field, (3) four rooms, and (4) tunnel (Fig. 1A). Each environment was designed as a 20x2081
grid of states connected along a square lattice, with four possible actions Down, Up, Left, and Right in82
each state. In three of the four test environments (separated field, four rooms, tunnel), obstacles were83
present in some states. These obstacle states were removed from the graph such that there were no edges84
connecting obstacles to other states. That is, the graph adjacency matrix was updated such that A(s, o) = 085
for any state s and adjacent obstacle state o. Actions which would result in the agent moving into a barrier86
or boundary returned the agent’s current state.87

Each environment contained a single location associated with a reward state, s∗, (R(s∗) = 10) that88
the agent had to “forage” for. All other states were associated with a small penalization (R(s) = −0.01,89
∀s 6= s∗). The agent’s goal, therefore, was to find the reward state with as short a path as possible. Whenever90
the agent found the reward state the agent’s location was reset randomly. We define an “episode” as a91
single instance of the agent starting in a random location and finding the reward (Fig. 1B). Episodes had a92
maximum length of simulated time (250 time-steps), and thus, if the agent failed to find the reward state in93
this time no positive rewards were received for that episode. Each agent experienced multiple episodes for94
training and evaluation (details below).95

2.3 Episodic Controller96

The central component of an episodic controller is a dictionary of sizeN (consisting of keys, {k1, . . . , kN}97
and values {v1, . . . , vN}) for storing events. We refer to this dictionary as the “memory bank”. Each stored98
event consisted of a state activity vector (which was used as a key for the memory), and an array of99
returns observed following the selection of one of the four actions (which was the value of the memory).100
Effectively, the episodic controller stores memories of returns achieved for specific actions taken in past101
states, and then generates a policy based on these memorized returns. Notably, this means that the episodic102
controller is not a standard “model-free” reinforcement learning agent, as it does not use a parametric103
estimator of value. Instead, it uses non-parametric, one-shot memories of experienced returns stored in104
the memory bank to determine its policies (Lengyel and Dayan, 2007; Pritzel et al., 2017; Blundell et al.,105
2016).106

2.3.1 Storage107

Events were logged in the memory bank at the conclusion of each episode. Specifically, the returns for108
the episode were calculated from reward information stored in transition buffers. Tuples of state, action,109
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Figure 1. Illustration of the environments and foraging task. (A) Four different grid-world environments
were used for the foraging task to test the effects of memory restriction on episodic control. The
environments differed in placement of obstacle states. Partitioning the plane created bottleneck states
through which the agent must successfully navigate to reach the reward location. (B) Example episodes
from the foraging tasks. The agent’s starting location at the beginning of each episode is chosen at random
from the available states in the environment.

and return (st, at, Gt) for each time-step t in the episode were written to the memory bank, i.e. if writing110
to memory index i the key and value were set to ki = st and vi[at] = gt (Fig. 2A). For each event to be111
stored, if the current state was not present in the memory bank (i.e. if st 6= ki ∀ i), a new value array112
was initialized and the return information was added at the index corresponding to the action selected. If113
the state was already present in memory, the value array was updated with the most recent return value114
observed for the given action. Return values were timestamped by the last time that the dictionary entry for115
that state was updated. This timestamp information was used to determine which entry in memory was116
least recently updated and would be forgotten (see below).117

2.3.2 Retrieval118

For each step in an episode, the episodic controller produced actions by sampling from a policy generated119
by retrieving past events stored in the memory bank (Fig. 2B). On the first episode of each simulation, the120
episodic controller used a random walk policy to explore the space, as no items were present in memory121
(since event logging was done at the end of an episode), and thus no policies could be constructed from122
previous experiences. Once information was logged to the dictionary, the agent generated a policy for123
each state by querying available states in memory. Namely, if the agent was in a state st = s, the recall124
function measured pairwise Chebyshev distance between the activity vector for state s and the state activity125
vectors present in the list of memory keys ({k1, . . . , kn}), and then returned the index, i whose key had the126
smallest distance to the current state. This index was used to retrieve the associated return array, vi, which127
was used to compute the policy to be followed at that time-step. Specifically, a softmax function across the128
return values at memory index i was used to generate a probability distribution over actions, which was the129
policy:130

π(a|st = s) =
evi[a]∑
a′ e

vi[a′]
(2)
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Figure 2. Illustration of episodic control storage and retrieval. (A) Schematic diagram of storage in the
episodic controller. The memory bank is a dictionary of key-value pairs, with state activity vectors as
keys pointing to value arrays which log returns observed from taking a particular action in that state.
Events are written to the memory bank at the end of each episode. Events can be added to memory up to a
predetermined number of unique keys (states). If the current state does not exist in memory, a new value
array is appended to record the action-return information. If the current state does exist in memory, the
value array is amended/replaced with the most recent action-return information. (B) Schematic diagram
of retrieval in the episodic controller. Items are retrieved from memory at each time-step of an episode.
Pairwise distance between the activity vector for the current state s and all state activity keys k in memory
is computed, and the entry with the smallest distance d(s, k) is used to generate a policy from the recorded
return values.

This function maintains the relative magnitudes of the return values present in the associated memory131
value array. Consequently, actions associated with larger returns would give rise to a greater probability for132
repeating those actions, while actions associated with smaller returns would be less likely to be selected.133

2.3.3 Forgetting134

Memory restriction conditions were implemented by limiting the number of entries that could be written135
to the dictionary. Once this limit was reached, storing a new memory necessitated overwriting a previous136
memory. In most agents, the entries in memory which were least recently accessed were selected to be137
overwritten by the new information. Thus, the agents forgot their most remote memories. In random138
forgetting experiments (see Fig. 8), memories were selected for overwriting by sampling from a uniform139
distribution over indices in memory.140

Memory capacity was set as a percentage of total available (i.e. non-obstacle) states in the environment.141
For example, when memory was restricted to 75% capacity, we set the size limit of the dictionary to be142
N = 300 for the open field environment, because it had 400 total available states, whereas we set N = 273143
in the four rooms environment, since it had 365 total available states. The 100% (i.e. unlimited memory)144
condition was a situation where N was set to the total number of available states, and thus, no memory145
ever had to be overwritten.146
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2.4 State Representations147

We compared the performance of an episodic controller under memory restriction conditions using four148
different representations of state. All representations produced a unique activity vector for each state of149
the environment (see Fig.3A-B). Unstructured representations contained no relational state information,150
meaning that activity vectors for states close in graph space shared no common features, and were not151
close in representation space (Fig. 3C-D). Unstructured representations were either onehot or random state152
activity vectors. Random activity vectors were produced by drawing samples from the continuous uniform153
distribution over the half-open interval [0.0,1.0). Onehot vectors were generated by setting a single index154
to one and zeros in all other positions.155

In contrast, structured representations encoded a state as a function of its relationship to all other states156
(Fig 3C-D). Structured representations were either “place cell” or successor representation activity vectors.157
For place cell representations, each unit of the activity vector was tuned to be most highly activated when158
the agent state was near its preferred location. The activities of each unit were graded according to how159
distant the agent’s state was from the preferred location in Euclidean space. Activities were generated by a160
two dimensional Gaussian function such that when the agent occupied state s = (x, y), activity of a given161
unit i, with preferred centre (xi, yi) was:162

fi(x, y) =
1

2πσ2
e
−x−xi

2σ2
+
y−yi
2σ2 (3)

Where σ is the size of the place field, here set to be the size of one unit in the grid (1/20 = 0.05).163

Successor representation activity vectors described states in terms of the expected future occupancy of164
successor states. The successor representation for a state s is the row of a matrix, M , with entries M(s, s′)165
given by:166

M(s, s′) = E
[ ∞∑
t=0

γtI(st = s′)|s0 = s

]
(4)

where I(st = s′) is 1 if st = s′ and 0 otherwise. For a given state transition probability distribution,167
P (st+1 = s′|st = s, at = a), and a given policy, π(at = a|st = s), the state transition matrix T has168
entries:169

T (s, s′) =
∑
a

π(a|s)P (s′|s, a) (5)

And as such, the successor representation matrix can then be computed as:170

M =
∞∑
t=0

γtT t (6)

This sum is a geometric series which converges for γ < 1, and as such we computed the successor171
representation matrix analytically by:172

M = (I − γT )−1 (7)

Where I is the identity matrix. Notably, we used a random walk policy to generate the successor173
representations used in these simulations, i.e.π(at = a|st = s) = π(at = a′|st = s), ∀a, a′. As174
noted, the successor representation activity vector for each state s was the corresponding row of the matrix175
M .176
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One feature of note is that place cell activity vectors do not respect the existence of boundaries – their177
activity level is determined only by Euclidean distance between states. By contrast, since the successor178
representation is computed analytically using the graph adjacency matrix, and edges connecting obstacle179
states to other states were removed from the graph, the successor representation is sensitive to boundaries180
(Fig. 3C-D).181

Figure 3. Illustration of state representations used in the simulations. (A) Example state from the separated
field environment where the agent is at position (9,10) in the grid. (B) Representations of state (9,10)
with random, onehot, place cell (PC), and successor representation (SR) encodings. These state activity
vectors are used as keys for the episodic dictionary. (C) Heatmap of Chebyshev (L∞ norm) distance of
state representations for each state and probe state (9,10) for each state encoding. Note that the distance in
representation space under random and onehot (unstructured) state encodings has no relationship to the
geodesic distance between states in the graph. In contrast, distance in representation space under place cell
and successor representation (structured) encodings shows that states nearby on the graph are also nearer in
representation space. (D) Distance between representation as a function of geodesic distance between state
(9,10) and other states.

2.4.1 Distance Metrics182

For states in the graph of the environment, we consider the distance between s1 and s2 to be the geodesic183
distance, i.e. the minimum number of edges which connect these vertices. This geodesic distance respects184
boundaries, as obstacle states are removed from the graph and as such no edges go into or out of these185
states. To measure distance in representation space, we use the L∞ norm, also known as the Chebyshev186
distance. The distance between two state activity vectors p and q is given by:187

d(p, q) := max
i
(|pi − qi|) = lim

k→∞

( n∑
i=1

|pi − qi|k
)1/k

(8)

As described above, for a given state s, the item in memory used to generate a policy for behaviour was the188
item at memory index i such that i = argminid(s, ki).189
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2.5 Data Collection190

All simulations were run in Python 3.6.8 with functions from NumPy and SciPy libraries. Each simulation191
was run with a different random seed. Each simulation generated a new instance of an environment class192
and an episodic controller with an empty memory dictionary. Data was collected over 5000 episodes for193
each random seed.194

2.6 Data Analysis195

2.6.1 Performance Metrics196

To compare between different environments, raw episode reward scores were transformed to percentages197
of the optimal performance by subtracting the minimum performance score (-2.5) and scaling by the best198
possible total rewards the agent could achieve, averaged across episodes. To calculate the best possible199
average cumulative reward across episodes, R∗, for each environment we used:200

R∗ = 10− 0.01λ (9)

Where λ is the mean geodesic distance of all available states to the reward state. This value represents201
the number of penalization steps an agent with an optimal policy would accrue before reaching the202
reward location from a randomly chosen starting state of the environment. Thus, the performance of the203
agent was scaled to be a percentage of the total rewards that an optimal agent would obtain on average.204
Measures of simulation performance were collected by averaging across the 5000 episodes of a simulation205
run. Mean performance values for each condition were calculated by taking the mean of simulation-206
average values over all random seeds. Standard deviation was computed over the simulation-average207
values. Statistical significance of performance differences between memory restriction conditions was208
calculated using Welch’s t-test (a two-tailed, unpaired t-test for samples with unequal variances), with a209
Bonferroni correction used for multiple comparisons. Runs conducted with agents selecting actions from a210
random-walk policy were used for comparison determining chance levels of cumulative reward.211

Successful episodes were those in which the agent reached the rewarded state in fewer than 250 steps.212
If the agent did not reach the reward state within 250 steps, the episode was terminated, and would be213
counted as a failed episode.214

2.6.2 Policy Maps215

For each episode, policy maps were generated by querying the memory for each available state in the216
environment and storing the resulting policy. These policy maps were used to produce both preferred217
direction plots (Fig. 6C) and policy entropy plots (Fig. 7), discussed in greater detail below.218

To visualize the average policy over time, we generated a two dimensional direction preference vector,219
zs, for a given state s by taking the inner product of the policy and the matrix of 2D cardinal direction220
vectors, i.e.:221

zs = πs


0 −1
0 1
−1 0
1 0

 (10)

For each state, preferred direction vectors (Fig. 6C) were averaged across the last 400 episodes of the222
simulation run. This allowed us to average over a large number of episodes while ensuring that for each223
memory restriction condition, the memory bank had reached its capacity limit.224
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2.6.3 Trajectories225

Example trajectories (Fig. 6A) were collected by reconstructing the episodic memory from saved226
dictionaries, and sampling actions from episodic policies produced at each state. Trajectories in the227
unstructured case were taken from an agent using onehot state representations, while trajectories in the228
structured case were taken from an agent using successor representations (Fig. 3). Three sample trajectories229
were collected in each memory restriction condition for both structured (successor representation) and230
unstructured (onehot) state representations from the same three starting locations: (5,5), (5,14), and (14,5).231
These three starting locations were chosen to visualize paths taken by the agent in the separated field232
environment such that the agent would have to navigate to the reward from either the same or opposite side233
of the boundary. All starting states are chosen to be equally distant from the boundaries of the environment234
such that they have an equal probability of visitation and therefore are equally likely to be present in235
memory.236

To compute average trajectory length, trajectories were sampled from reconstructed episodic memory237
banks (one per episode, which captured the exact state of the memory at that point in the run). That is,238
saved dictionaries were used to reconstruct a new episodic controller for each episode. Starting locations239
were chosen randomly from a uniform distribution over available states, and sample trajectories (n=5) were240
collected for each episode. The number of steps the agent took (up to a maximum of 250, as in the original241
runs) was saved for each sample. Trajectory length average (Fig. 6B) was taken over all samples from all242
episodes together (n=1000). Error is given as standard error of the mean of all samples.243

2.6.4 Policy Entropy244

The entropy of a policy π(a|s) is the amount of information or surprise inherent in the possible outcomes245
of sampling from this distribution. The entropy is computed by:246

Hπ = −
∑
a

π(a|s) log π(a|s) (11)

To compute average policy entropy, we first computed policy entropy in each state for each of the last 400247
episodes of the simulation run, and then averaged the entropy measure for each state across episodes.248

2.6.5 Forgetting Incidence249

To measure how the choice of forgetting rule (either forgetting the oldest entry in memory or a random250
entry) changed which states were more or less likely to be forgotten, we kept a running tally of states251
discarded from memory for each simulation run. That is, for each state in an environment we maintained252
a count of the number of times that state was overwritten in the memory bank. We divided these counts253
by the total number of events of forgetting to get the frequency with which each state was forgotten for254
a given simulation run. Forgetting frequency arrays were averaged across simulation runs of the same255
type (structured or unstructured, random or oldest forgetting, n=6 for each combination). The relative256
incidence of forgetting was computed by taking the difference between the average frequency of forgetting257
under the oldest-state and the random-state forgetting rules. This difference showed how much more likely258
oldest-state forgetting was to preserve states in memory (forgot less often than random) or to overwrite259
states in memory (forgot more often than random).260

3 RESULTS
3.1 Moderate forgetting improves performance for structured state representations261

We first investigated the effects of memory restriction on performance in four gridworld tasks for agents262
using either structured or unstructured representations of state information. In all environments, there263
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Figure 4. Memory capacity restrictions led to enhanced performance when state representations are
structured. No difference in performance was observed between representations when memory capacity is
unrestricted (see Supplementary Fig. S1). Structured representations produced better average performance
over 5000 episodes when memory capacity was moderately restricted (∗∗, p < 1 × 10−5; ∗, p < 0.001).
Unstructured state representations show a decreased average performance under restriction conditions. At
25% memory capacity (i.e. 75% of all states are forgotten), unstructured state representations performed,
on average, little above agents using random walk policies for behaviour (dotted line).

was no significant difference in mean performance between structured and unstructured representations264
when the memory capacity was unbounded (100% capacity, see Fig. 4 and Supplementary Fig. S1). In this265
case, wherein the agent was able to store each state visited, each state representation was a unique alias in266
memory and retrieval would always return an exact match to the queried state activity vector. Thus, the267
agent could always generate a policy based on the exact return values observed in that given state.268

Any restrictions in memory capacity impaired performance of agents using unstructured representations.269
At the extreme, when only 25% of states encountered were able to be stored in memory, agents using270
unstructured state representations performed only a little bit better than chance (i.e. rewards collected under271
random walk policy). In contrast, when memory capacity was moderately restricted, agents using structured272
representations of state not only didn’t show a reduction in performance, they actually performed better on273
average than their full-capacity memory counterparts (Fig. 4, right column). In general, restricting the size274
of the memory bank to 60-70% of its full capacity conferred the greatest advantage in most environments275
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(see Supplementary Fig. S2). Importantly, significant restrictions to memory capacity (i.e. only 25% of276
all states in memory) led to impaired performance regardless of representation type in all environments277
except the open field. In the open field environment, no significant performance impairment was observed278
until memory size was restricted to 10% of total capacity (see Supplementary Fig. S2). Thus, for structured279
mnemonic representations, moderate amounts of forgetting can improve performance of the episodic280
controller in the foraging task, and the amount of forgetting that can be used is environment-dependent.281

3.2 Forgetting with structured representations preserves proximity of recalled282
memories to current state283

Figure 5. (A) Percentage of events over all episodes in which the agent’s current state in memory was
in memory. Agents using either structured or unstructured representations showed a similar incidence
of exact match to current state in successful trials when memory capacity restrictions were mild. As
memory restrictions were increased, agents using structured state representations maintained a slightly
higher incidence of exact matches in memory. By contrast, in episodes in which the agent did not reach the
goal state (failed episodes), agents using unstructured state representations showed a lower proportion of
exact matches in memory than their counterparts using structured representations. With significant memory
restrictions, this difference was eliminated. (B) Structured representations show that the representation
retrieved by memory when no exact match was present maintains a close distance to the probe state until
memory restrictions become quite severe. On successful trials, agents using structured representations
maintained states in memory that were nearer to the current state. In failed episodes, the average nearest
state in memory was more distant from the probe state, indicating close neighbours were less often present
in memory when the agent was unable to reach the reward state in the allotted time.

To better understand the performance of moderate forgetting in agents utilizing structured state284
representations, we investigated the percentage of episodes in which exact matches to memory were found,285
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and the average distance between representations retrieved from memory and queried state representations286
(Fig. 5). We found that across all memory conditions successful episodes had a higher percentage of287
exact matches between stored memory keys and queried states, both for structured and unstructured288
representations (Fig. 5A). This suggests that the ability to find an exact match in memory is one factor289
determining performance. Indeed, with forgetting, agents using structured representations maintained a290
greater proportion of exact match states in memory than agents using unstructured representations (Fig.291
5A), and they also performed better in these conditions (Fig. 4). Together, these results imply that with292
forgetting, agents using unstructured representations experience more failures as a result of an inability to293
match to queried states, and as the amount of forgetting increases, these agents have fewer exact match to294
queried states than their counterparts using structured representations.295

However, exact matches in memory are clearly not always required for finding the reward, since some296
successful episodes did not involve exact matches. Therefore, we then explored the average distance297
to the closest state which was returned by memory when no exact match was present. For unstructured298
representations, all neighbouring states are equally distant from the probe state (see Fig. 3) and so the299
nearest distance to a non-match state remains constant regardless of the forgetting condition. In contrast,300
for structured representations, minimal forgetting produced nearest matches which were relatively close301
to the queried state in both successful and failed episodes (Fig. 5B). As forgetting increased, the average302
distance of the nearest match in memory also increased, and we saw a greater increase in average distance303
on failed trials than for successful trials. This indicated that in trials where the agent was unable to reach304
the rewarded state within the time limit, it had both fewer exact matches in memory (Fig. 5A) and had305
on average less similar neighbouring states available in memory from which to generate a policy (Fig.306
5B). Moreover, in moderate forgetting conditions (e.g. 90-60% capacity), the distance between states in307
memory and queried states remained relatively constant, indicating that structured representations allowed308
the agents to still recall similar states to the queried state under conditions of moderate forgetting. This can309
explain why moderate forgetting did not have a detrimental impact on episodic control using structured310
representations.311

3.3 Moderate forgetting with structured representations promotes policy coherence312

Our results on memory retrieval matches helped explain why structured representations did not suffer313
from performance limitations with moderate forgetting. But why did moderate forgetting produce a slight314
increase in performance for structured representations? To address this question, we next investigated how315
forgetting impacted the policies of agents using different state representations. In particular, we wanted316
to investigate the ways in which policies of neighbouring states agreed with each other or not. In other317
words, we asked, to what extent does the episodic controller generate a spatially coherent policy under318
different forgetting conditions? This matters because in the absence of a spatially coherent set of policies319
the agents may traverse winding paths to the reward, rather than move directly to it. Such a difference could320
impact performance slightly, given the small negative reward for moving. To visualize this, we computed321
the preferred direction for each state as the policy-weighted average of the cardinal direction vectors in322
polar coordinates. This gave an angle which the agent was, on average, likely to move from the given state.323
This can be thought of as an approximation of the gradient of the policy map.324

We found that with unrestricted memory, agents using structured and unstructured representations of325
state showed similarly low levels of spatial coherence in average preferred direction. Put another way,326
policies for neighbouring states were not very consistent, and did not tend to recommend similar actions.327
For agents using unstructured state representations, restricting memory capacity caused neighbouring states328
to produce more consistent policies, but these policies did not become more likely to lead the agent to the329
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Figure 6. (A) Agents using structured or unstructured state representations displayed similarly low levels
of coherence in the policies of neighbouring states when all states could be maintained in memory
(i.e. unrestricted). Moderate memory restrictions encouraged neighbouring states to generate similar
average preferred directions when structured representations were used, but not when unstructured
representations were used. For unstructured representations, decreased memory capacity led to more
coherence in neighbouring policies because all states produced the same policies on average, regardless
of position relative to the reward location. By contrast, decreased memory capacity led to better policy
generalization for structured state representations, especially near the reward location (black square). (B)
Example trajectories sampled from episodic controller. Agents using structured representations took more
direct paths to the reward location from each of the example starting locations (5,5), (5,14), and (14,5).
With more restricted memory capacity, agents using structured representations were able to maintain
direct paths to reward, whereas agents using unstructured state representations took more winding paths to
reach reward. In 25% memory capacity condition, agents using unstructured representations took paths
resembling a random walk. (C) Agents using either type of representation had similar average number of
steps per episode (i.e. trajectory length). As memory capacity was restricted, but agents using structured
representations reduced average trajectory length, reflecting more direct paths to reward state, while paths
taken by agents using unstructured representations became less directed.

rewarded state. By contrast, restricting memory capacity for agents using structured state representations330
promoted a high level of policy coherence for neighbouring states, especially for states near the reward331
location, and these policies were appropriate policies for finding the reward (Fig. 6A). As a result, the332
average path length for the agents with structured representations, but not unstructured representations,333
decreased slightly with moderate forgetting, which can likely explain their improved performance (Fig.334
6B-C). Another way of understanding this result is that moderate forgetting with structured representations335
allows the policies to generalize over space more, which can be beneficial in moderation to prevent undue336
wandering due to episodic noise. This is in-line with previous work showing that reducing forgetting in337
animals reduces memory generalization (Migues et al., 2016).338
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Figure 7. Average policy entropy for each state. (A) Agents using unstructured state representations
displayed a greater average policy entropy in all states as memory capacity was restricted. By contrast,
limitations on memory capacity promoted lower entropy policies for agents using structured state
representations, especially in states more proximal to the reward location (white box). (B) Average policy
entropy as a function of geodesic distance from the reward state. Structured representations maintained
a lower average policy entropy than agents that used unstructured representations. As memory capacity
limitations became stricter, agents using unstructured representations tended to produce more uniformly
distributed, higher entropy policies. By contrast, even at most stringent memory restriction conditions,
agents using structured representations maintained relatively lower entropy policies at states nearer to the
reward location.

3.4 Moderate forgetting with structured representations promotes greater certainty in339
policies340

In addition to the impact of forgetting on spatial coherence of the policies, we wondered whether341
forgetting might also impact performance via the “confidence” of the policies, i.e. the extent to which342
the agent places a large amount of probability on specific actions. Thus, we measured the average policy343
entropy for each state for agents using structured or unstructured state representations at different levels of344
restriction to the memory bank capacity. Here, low entropy policies are those which strongly prefer one345
action; high entropy policies are those which tend toward the uniform distribution (and are therefore more346
likely to produce a random action). With unrestricted memory capacity, both agents using structured and347
unstructured representations were more likely to produce low entropy policies closer to the rewarded state348
(Fig. 7A, left column).349

Greater restriction on memory capacity caused agents using unstructured state representations to produce350
higher entropy policies in more areas of the environment (Fig. 7A, top row and Fig. 7B, blue points). In351
contrast, moderate restrictions on memory capacity encouraged agents using structured representations352
to produce even lower entropy policies near the rewarded state (Fig. 7A, bottom row Fig. 7B, red points).353
These results suggest that the agents with structured representations also benefited from moderate forgetting354
thanks to an increase in their policy confidence near the reward.355
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Figure 8. (A) Removal of a random entry from memory impaired performance of agents using both
structured and unstructured representations. While agents using structured representations still performed
better than agents using unstructured representations, any performance benefit of memory capacity
restriction was eliminated. (B) Difference in frequency of forgetting states at 75% memory capacity.
Agents using a forgetting rule where random entries in memory were eliminated chose states at the same
rate regardless of position. Here we compare the tendency of agents that replace the least recently updated
entry in memory to either maintain entries or replace them relative to the random forgetting agents. Agents
which replaced the oldest entry in memory showed a greater tendency to preserve bottleneck states and
states near the reward location, regardless of state representation. Agents using an oldest-forgetting rule
also replaced peripheral states at a higher rate than agents that forgot states randomly.

3.5 Enhanced performance depends on forgetting more remote memories356

Finally, we wondered whether moderate forgetting in general was beneficial for performance on structured357
representations, or whether or design of forgetting the most remote memories was important. Specifically,358
in forgetting conditions, once the memory bank limit was reached the agents overwrote those memories359
that were accessed the longest time ago. To determine how important this was for our performance effects,360
we compared the performance of an agent that replaced the most remote item in memory with an agent that361
chose random entries for overwriting.362

We found that the structured representation performance advantage was eliminated when random items363
were deleted from memory, and instead, more forgetting always led to performance reductions (Fig. 8A).364
Moreover, agents using unstructured representations also performed worse when random items were deleted365
from the memory bank (Fig. 8A). The fact that random forgetting impairs both agents using structured366
and unstructured state representations suggests that overwriting random states is as likely to delete an367
important or useful state from memory as it is to delete a relatively uninformative state from memory. Thus,368
we speculated that agents using random forgetting were more likely to prune states from memory that369
important for navigation to the reward than agents using a forgetting rule which prioritized removal of370
remote memories. This speculation was based on the idea that removing remote memories would tend to371
overwrite states that were more infrequently visited and therefore less important in finding the reward.372
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To determine whether this was true, we compared the frequency at which a state was forgotten under373
each of these conditions. Agents using a forgetting rule where random entries in memory were overwritten374
chose states at the same rate regardless of position. We then visualized the retain/forget-preference of375
agents using a replace-oldest forgetting rule relative to the replace-random forgetting rule. Agents which376
replaced the oldest entry in memory showed a greater tendency to preserve bottleneck states and states near377
the reward location, both for unstructured and structured representations (Fig. 8B). Such states are critical378
visitation points along many potential trajectories to the reward, and thus, it is natural that their removal379
impairs performance from multiple starting points. Interestingly, agents that used oldest-forgetting also380
replaced peripheral states at a higher rate than agents that forgot states randomly, and these states are much381
less likely to be used in navigating to the reward. These results were consistent across memory restriction382
conditions (see also Supplementary Fig. S3) These results show that forgetting remote memories can help383
to preserve critical trajectories in memory while eliminating less useful information for behaviour, in-line384
with the beneficial forgetting hypothesis (Mosha and Robertson, 2016; Robertson, 2018; Hardt et al., 2013;385
Richards and Frankland, 2017).386

4 DISCUSSION
In order to explore the hypothesis that forgetting may sometimes benefit action selection, we investigated387
the effects of memory restriction on the performance of RL agents using episodic control to navigate a388
simulated foraging task in four different environments (Fig. 1). The episodic controller stored information389
about returns observed in each state visited in a given trajectory, which could then be queried in subsequent390
episodes to generate policies for behaviour (Fig. 2). As a consequence of restricting the maximum391
number of entries which could be stored in memory, agents were forced to overwrite (i.e. forget) some392
prior experiences. We measured differences in performance when states were represented with activity393
vectors which either encoded a state in terms of its position in the more general environmental context394
(structured representations), or encoded a state as an unique alias unrelated to any other state (unstructured395
representations, see Fig. 3).396

When information for each state could be stored in memory (i.e. no forgetting), there was no difference in397
performance between agents using structured and unstructured state representations. When all states could398
be remembered perfectly, there was no need to recall information from nearby states (i.e. state aliasing399
is trivial), and consequently, there was no need to make use of the relational information contained in400
structured representations (Fig. 4). Similarly, stringent memory capacity restrictions (only 25% availability)401
impaired performance regardless of state representation condition (Fig. 4), because such strong restrictions402
on memory capacity forced the removal of episodic information necessary for navigating through bottleneck403
states. However, when state representations contained structural information, moderate limits on memory404
capacity actually enhanced performance. In contrast, this advantage was not conferred on agents using405
unstructured representations of state (see Fig. 4).406

We subsequently explored potential explanations for the performance of structured representations with407
moderate forgetting. We found that forgetting with structured representations preserved the proximity of408
recalled memories to the current state. Agents using structured state representations averaged a smaller409
distance between recalled representations than their counterparts using unstructured state representations,410
regardless of the degree of forgetting (Fig. 5). In addition, structured state representations promoted similar411
policies in neighbouring states (Fig. 6A), which then lead to more consistent, and efficient trajectories to412
the reward (Fig. 6B-C). Unstructured representations, on the other hand, did not promote coherent policies413
among neighbouring states, so agents still took more meandering trajectories with moderate forgetting.414
We also observed that agents utilizing structured representations demonstrated greater certainty in the415

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.455968doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yalnizyan-Carson et al. Forgetting Enhances Episodic Control

actions they selected (i.e. lower policy entropy), and thus they were more likely to sample ”correct” actions416
(Fig. 7). Finally, we found that these results depended on forgetting remote memories and preserving417
recent memories, and this seemed to be due to the importance of recent memories for traversing bottleneck418
states (Fig. 8). Altogether, these results provide theoretical support for the hypothesis that some degree of419
forgetting can be beneficial because it can help to remove noisy or outdated information, thereby aiding420
decision making.421

This work offers a putative explanation for how active forgetting in biological brains may present422
advantages over a memory system that can store all events ever experienced. The real world is a complex423
and dynamic environment in which underlying statistics are not always stationary. Thus, information from424
prior experience can quickly become obsolete when the statistics from which it was generated have changed.425
Our results are in-line with the normative hypothesis that active forgetting of experienced episodes can be426
helpful for behavioural control as it minimizes interference from outdated or noisy information (Richards427
and Frankland, 2017; Anderson and Hulbert, 2021).428

Moreover, our work shows that representations of state with useful semantic content, such as relational429
information, can leverage similarity between related states to produce useful policies for action selection.430
A wealth of work in psychology and neuroscience suggests that the hippocampus, the central structure in431
storage and retrieval of episodic memories, functions to bind together sensory information with relational or432
contextual information such that it can be used flexibly for inference and generalization (Eichenbaum, 1999;433
Preston et al., 2004). In accordance with these ideas, we showed that leveraging the relational structure434
between representations of state can enable generalization from experiences in neighbouring states to435
produce successful behavioural policies even when a given state is not explicitly available in memory.436

To-date, episodic-like memory systems in reinforcement learning tasks have largely bypassed the question437
of forgetting by allowing memory systems to grow as needed (Lengyel and Dayan, 2007; Pritzel et al.,438
2017; Blundell et al., 2016; Ritter et al., 2018). We propose that episodic control mechanisms which more439
faithfully model the transient nature of biological episodic memory can confer additional advantages to RL440
agents. In particular, including notions of beneficial forgetting and state representations which contain rich441
semantic information could potentially provide additional performance benefits over agents maintaining442
unrestricted records.443

It should be recognized that this work is limited in its explanatory power because it has only been444
applied in simple gridworld environments where state information is relatively low dimensional. More445
complex navigational tasks (i.e. greater number of possible state/action combinations, tasks involving446
long range dependencies of decisions, etc.) would provide more biologically realistic test beds to apply447
this conceptualization of beneficial forgetting. Additionally, hippocampal cellular activity involved in448
representations of episodic information has historically been thought to furnish a cognitive map of space449
(O’Keefe and Nadel, 1978). Moreover, recent work has demonstrated that the hippocampus appears to450
encode relational aspects of many non-euclidean (and even non-spatial) tasks (Schapiro et al., 2016;451
Constantinescu et al., 2016; Aronov et al., 2017; Stachenfeld et al., 2017; Zhou et al., 2019). Thus, in order452
to make a stronger claim about modeling the effects of forgetting in episodic memory, this work should453
also be applied in non-navigation tasks.454

In addition, the return information used here to generate policies was computed by Monte-Carlo sampling455
of rewards, which is not the only way animals compute relative value of events in a trajectory (Dolan and456
Dayan, 2013; Niv, 2009; Toyama et al., 2019). Perhaps the main issue is that Monte Carlo methods require457
the task structure to be episodic—i.e. trajectories eventually terminate—and they require backwards replay458
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for calculating returns. There is some evidence for such backwards replay in the hippocampus (Wilson459
and McNaughton, 1994; Ólafsdóttir et al., 2018), but animals are also able to learn in an online fashion in460
continuous tasks (Niv, 2009; Gershman and Daw, 2017). Indeed, much work in RL and neuroscience has461
led to the conclusion that animals learn value of states by bootstrapping using temporal differences, with462
dopaminergic activity of striatal neurons providing a signal of a bootstrapped reward prediction error for463
learning (Schultz et al., 1997; Montague et al., 1996; Sutton and Barto, 1998). Here, the choice to store464
Monte-Carlo return values rather than bootstrapped reward prediction errors was done largely to reduce465
variance in return estimates, but in principle, there is no reason that online value estimates learned with466
reward prediction errors could not be used.467

An additional aspect of forgetting that we did not explore is that the brain tends to prioritize remembering468
information that is surprising or unique (Brewer, 1988). The forgetting rules presented in this work did not469
account for violations of expectation of observed rewards or return values. Rather, the primary forgetting470
rule presented here described information decay only in terms of time elapsed since it was last updated,471
which could be argued to more closely reflect passive forgetting of information which is not consolidated472
from short- to longer-term memory stores (Anderson and Hulbert, 2021; Richards and Frankland, 2017).473

Finally, this work models behavioural control by episodic memory systems alone. In biological brains,474
episodic memory is closely interrelated with procedural memory subserved by the striatum (habitual control,475
roughly analogous to model-free RL) and with semantic memory involving more distributed cortical476
representations of information (and some work draws parallels between semantic memory and model-based477
control in RL) Packard and McGaugh (1996); Schultz et al. (1997); Binder and Desai (2011); Gershman478
and Daw (2017). Experimental work has shown that episodic memories contribute to semantic knowledge479
by generalization across unique experiences (Sweegers and Talamini, 2014). Moreover, repeated training480
shifts behavioural control from hippocampally-dependent processing to striatally-dependent processing481
(Packard and McGaugh, 1996). These findings demonstrate that episodic memory does not function in a482
vacuum, and that behavioural control in the brain is dependent on a combination of mnemonic processes.483
Thus, future work could more closely model animal behavioural control joining either model-based or484
model-free reinforcement learning systems with an episodic control system.485

In conclusion, our computational study demonstrates that forgetting can benefit performance of RL agents486
when representations of state information contain some relational information, and points to potentially487
fruitful directions for exploring more faithful models of animal behavioural control. Additionally, this488
work demonstrates that RL systems using episodic control may be enhanced by more faithfully modeling489
episodic memory as it is understood in psychology and neuroscience, i.e. as a bandwidth limited mechanism490
to bind sensory and relational information for flexible behavioural control.491
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Supplementary Material

1 SUPPLEMENTARY TABLES AND FIGURES

Figure S1. Average performance for episodic control using structured and unstructured representations
with unrestricted memory. Performance was computed as the average over 5000 runs for different random
seeds (n=22) for each condition. Distribution of average performance was similar between agents using
structured and unstructured representations in each of the four gridworld environments. There was no
significant difference between the mean performance across random seeds for structured and unstructured
representations.
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Figure S2. Average performance at memory capacity restrictions in 10% increments for agents using
either structured or unstructured representations of state (n=6 for each condition). Data collected and
analyzed as in Fig. 4.
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Figure S3. Results as in Fig. 8B for restriction of memory to 50% and 25% capacity. Similarly, the oldest
forgetting rule showed a greater propensity for retention of bottleneck states and forgetting of peripheral
states over the random forgetting rule condition, except in the case of the open field task for structured
representations at 25% memory capacity. In this condition, agents using structured representations and
forgetting oldest entries tended to retain memories for states more distal from the reward location at a
greater rate than agents using random forgetting.
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