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Summary 

Exogenous cDNA introduced into an experimental system, either intentionally or accidentally, can 

appear as added read coverage over that gene in next-generation sequencing libraries derived 

from this system. If not properly recognized and managed, this cross-contamination with 

exogenous signal can lead to incorrect interpretation of research results. Yet, this problem is not 

routinely addressed in current sequence processing pipelines. Here, we present cDNA-detector, 

a computational tool to identify and remove exogenous cDNA contamination in DNA sequencing 

experiments. We apply cDNA-detector to several highly-cited public databases (TCGA, ENCODE, 

NCBI SRA) and show that contaminant genes appear in sequencing experiments where they lead 

to incorrect coverage peak calls. Our findings highlight the importance of sensitive detection and 

removal of contaminant cDNA from NGS libraries before downstream analysis. 
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Introduction 

Massively parallel DNA sequencing experiments including ChIP-seq, ATAC-seq, whole exome 

and whole genome sequencing are widely used research methods. These methods have been 

instrumental for identifying binding sites of DNA-associated proteins, histone modification states, 

chromatin accessibility, and germline and somatic genomic variants. In common functional 

studies, a wild-type gene or variant of interest is introduced into the experimental system with 

DNA vectors, which can then appear in the sequencing library. Sequence reads stemming from 

the exogenous gene of interest are then mapped back to the endogenous locus during the 

alignment step. In addition, trace amounts of vector DNA from other experiments performed in 

the same laboratory or on shared equipment can contaminate the DNA library, leading to the 

presence of foreign genes in the derived alignment. Signal from these contaminant genes can 

then affect downstream results and interpretation, for example through spurious increased copy 

number (Kim et al., 2020; Lee et al., 2018), false germline or somatic variant calls (Kim et al., 

2016; Lim et al., 2015), or incorrect coverage peak calls (Corces et al., 2018; Kim et al., 2016; 

Lim et al., 2015).  

 

Detection of such exogenous gene signal in an alignment can be challenging, in particular when 

the vector-derived signal overlaps true signal derived from exome or chromatin profiling. Few 

methods have been developed to detect vector contamination in NGS libraries. Some identify 

sequence reads from known cloning vectors, but do not search for the cDNA insert 

(https://sourceforge.net/projects/seqclean/, https://www.ncbi.nlm.nih.gov/tools/vecscreen/). 

Vecuum (Kim et al., 2016) was developed to also identify the contaminating gene; however, this 

tool relies on known vector backbone sequences, and paired-end reads are required.  

 

Because cloned cDNAs do not contain introns or their physiologic UTR regions, this property can 

be exploited to identify potential contaminants. Reads from these cDNAs only partially align to the 

genome at exon boundaries, with unmapped sequence matching either a vector (at the 5’ and 3’ 

ends) or a neighboring exon. In a genomic alignment, these reads appear as “clipped”, and thus 

can be distinguished from true signal reads that fully map to the genome across exon boundaries 

(Figure 1A).  
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Results 

Detection of cDNA in NGS libraries 

Prompted by the presence of intentional and accidental cDNA cross-contamination in our own 

data, we developed cDNA-detector, a computational tool that detects and optionally removes 

cDNA contamination in DNA sequencing data (Figure 1B). cDNA-detector takes a standard BAM-

formatted alignment and a gene model file as input. For each exon from the model file, the number 

of clipped and properly mapped reads at the two boundaries (the start and end coordinate) are 

counted. Using a binomial model, we test whether the fraction of clipped reads at any given 

boundary coordinate exceeds the expectation based on the background of total clipped reads 

(Methods). The two P-values for each exon and all P-values for each transcript are combined. 

Significant transcripts (P<0.05) or transcripts with more than 30% of significant exons are 

considered candidate contaminant transcripts for further analysis (Figure S1).  

 

Next, cDNA-detector performs an in-depth search for additional evidence at exon boundaries for 

all exons in candidate contaminant transcripts. First, it seeks clipped reads within a range of 5 bp 

of the annotated exon boundary (Figure S1). This step captures clipped reads when part of the 

clipped region matches the adjacent intronic sequence, and thus the clip is not performed at the 

exact boundary coordinate; and it allows for additional space for potentially added sequence at 

the cDNA ends that could have been introduced during cloning. Further, cDNA-detector infers a 

consensus sequence from the clipped overhangs. It then searches the alignment for additional 

reads with short overhangs (1-2 bp) annotated as mismatches rather than clips, but whose 

overhang sequence aligns to the inferred consensus sequence at the respective boundary 

(Figure S1). Additional evidence from reads identified in these steps is added to the clipped read 

count, and P-values are re-calculated for all candidate contaminant exons and transcripts as 

described above. cDNA-detector further checks whether the consensus sequence of the clipped 

region maps to the neighboring exon.  

cDNA source inference 

Eukaryotic genomes contain endogenous retrogenes, processed (spliced) copies of genes that 

were reverse transcribed and re-inserted into the genomic sequence, often flanked by LINE-1 

elements in the human genome (Esnault et al., 2000; Kaessmann et al., 2009; Wei et al., 2001). 

Similar to contaminant cDNAs, these retrogenes are also intron-free and generate clipped reads 

at the source gene locus, and thus cDNA-detector will detect these instances. While retrogenes 
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are rarely picked up in ChIP-seq and ATAC-seq data, they can dominate genomic sequencing 

strategies (whole exome and whole genome). The tool therefore attempts to distinguish vector-

induced contaminants from retrogene copies (Methods; Figure S1). To infer the source of a given 

cDNA candidate, a database of known cloning vectors 

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) as well as consensus sequences of 

transposable elements (Bao et al., 2015) are queried for the consensus sequences derived from 

clips at the 5’ and 3’ ends of candidate transcripts. In the common case where clipped sequences 

are too short to yield a database query result, we consider the distance of the clipped position to 

the annotated boundary: if the distance is ≤ 5 bp, a vector is likely the source; if the distance is 

>10 bp, the cDNA candidate is deemed more likely to originate from a retrogene insertion. Cases 

where no clear evidence can be found (e.g. custom plasmids, short sequences) are annotated as 

“unknown”, and the user is encouraged to manually review potential sources. When using cDNA-

detector on genomic sequence data, we recommend suppressing the “retrocopy” output, such 

that only potential vector cDNA candidates are reported. 

Alignment decontamination 

If potential contaminants are identified, cDNA-detector provides the option to remove contaminant 

reads from the alignment (Figures 1B and S2A-B) to reduce the risk of spurious coverage peak 

and variant calls in downstream analysis. In addition to obvious contaminant clipped reads as 

identified above, cDNA-detector further classifies all reads in candidate cDNAs as either genomic 

or ambiguous (Figure S2B; Methods). Genomic reads span the exon boundary and properly map 

to the adjacent intron sequence; ambiguous reads do not overlap the boundary but instead map 

entirely inside the exon, and could thus originate from either true signal or the contaminant. In the 

decontamination step, cDNA-detector removes all bona fide contaminant reads. For ambiguous 

reads, the tool calculates the fraction of contaminant-to-genomic reads at the exon boundaries, 

and randomly discards the same fraction of ambiguous reads. This approach ensures that any 

true signal obscured by cDNA contamination remains in the decontaminated sample. With this 

strategy, contaminants can be effectively removed from alignments, revealing true signal 

previously obscured by contamination (Figures 1C and S2C). 

cDNA-detector sensitivity and specificity 

We evaluated cDNA-detector’s sensitivity and specificity by generating sets of simulated cDNAs 

with different read lengths, distinct sequencing strategies (single vs. paired-end) and variable 

coverage, and introducing these into a contamination-free ATAC-seq experiment (2x 38 bp reads, 
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43,344,211 reads total; Methods). We found high sensitivity (>80%) for detecting contaminants 

when using read lengths above 50 bp and coverage greater than 5x (Figures 1D-1E). However, 

cDNA-detector failed on very short, single-end reads because the aligner (Li and Durbin, 2009) 

with default parameters does not produce clipped reads when the read length is ≤30 bp. Similarly, 

specificity depended on cDNA read coverage, read length and sequencing strategy (Figures 1F-
1G), with >99% specificity achieved in single and paired-end experiments when read length was 

greater than 50 bp and cDNA coverage ≥5x. In summary, cDNA-detector is highly sensitive and 

specific even at relatively short read lengths and low contaminant DNA coverage.  

Resource consumption 
To test cDNA-detector’s compute resource consumption, we used a human exome alignment 

(Lim et al., 2015) with 300 M reads. From this exome, we randomly sampled different read 

numbers and ran cDNA-detector on a Linux high-performance cluster with 72 processors and 251 

GB RAM. For small datasets (< 50 M aligned reads), the cDNA detection step was typically 

completed within 15 minutes and uses ≤1 GB memory. cDNA detection on the full exome took 

about 44 minutes and 2 GB memory (Figures S3A-S3B). For large datasets, including whole 

genome alignments, cDNA-detector can be run in multi-thread mode to decrease processing time, 

but requires additional memory (Figures S3C-S3D). With its low resource footprint, cDNA-

detector can easily be integrated into existing NGS processing pipelines as an additional quality 

control step. 

cDNAs in public databases 

We applied cDNA-detector to several large public datasets with different types of high-

throughput sequencing experiments to assess potential cDNA cross-contamination. Among 

404 ATAC-seq experiments generated from primary tumors in The Cancer Genome Atlas 

(TCGA; Corces et al., 2018), we identified 16 samples (4%) with suspected exogenous cDNA 
contamination. Contaminants included the cancer genes KRAS (2 samples, including one sample 

identified by manual review), STAG2 (8 samples, including one sample identified by manual 

review), DDX58 (4 samples; DDX58 encodes RIG-I), and SNAP25 (3 samples), some of which 

can be traced to other projects from the same laboratory (Chen et al., 2017; Mazumdar et al., 

2015) (Figure 2A; Table S1). Inspection of consensus ATAC-seq peak calls provided with the 

study revealed that at least some contaminant exons caused spurious peak calls that could affect 

downstream analyses (Figure 2A). Sixteen cDNAs (in 41 samples) were detected in 14,485 ChIP-
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seq, ATAC-seq and other DNA-seq experiments from the Encyclopedia of DNA Elements 

(ENCODE) consortium (Figure 2B; Table S2). Some of these represent intentionally introduced 

genes, such as TERT for cell line immortalization, or KLF4 and MYC in reprogrammed iPS cells 

(Figure S4). Other genes (PPARG, PAX7) could not be traced to intentional transduction in the 

cell lines in which they were detected and are likely cross-contaminants. Peak calls generated 

from these experiments and available for public use are affected by these exogenous cDNAs 

where they contribute signal in unexpected genomic locations (Figure 2B). We further performed 

cDNA detection on a random sampling of 619 human sequencing tracks from 317 projects listed 

in the NCBI’s Sequence Read Archive (SRA). Fifteen samples with 39 cDNAs were identified in 

this dataset (Figure 2C; Table S3). Detected cDNAs again included intentionally introduced 

transgenes, but also contaminants that could be traced to other projects in the same laboratory 

(Huang et al., 2017; Pan et al., 2017; Shi et al., 2019; Yang et al., 2017; Figure 2C). A sampling 

of 71 mouse genome sequencing tracks from 36 projects in SRA yielded three cDNAs. These 

include intentionally introduced truncated Sun1 and NRAS of human origin (Seehawer et al., 

2018), demonstrating that cDNA-detector is mismatch-tolerant and can detect instances of cross-

species cDNA contamination (Figure 2D; Table S4). No candidate vector-induced cDNAs were 

detected in 324 exomes from the Cancer Cell Line Encyclopedia (CCLE; Ghandi et al., 2019; data 

not shown). 

Comparison with other methods 

Vecuum (Kim et al., 2016) is a similar tool for cDNA detection, also based on evaluating soft-

clipped reads at exon boundaries and comparing hits with a static reference vector database. To 

compare cDNA-detector to Vecuum, we applied cDNA-detector to the human whole-exome 

sequencing dataset from this publication (Kim et al., 2016; Lim et al., 2015). cDNA-detector 

detected contamination with MTOR cDNA in the same three of the eight exomes (Figure S5). In 

addition, cDNA-detector discovered TMEM138 cDNA originating from a vector, used in the same 

research group (Lee et al., 2012). cDNA-detector further identified additional cDNAs of likely 

retrogene origin (Figure S5). In our NCBI SRA dataset, Vecuum (with lenient parameters) only 

discovered 16 out of 39 hits found by cDNA-detector (Methods; Tables S3 and S5), two out of 41 

samples in ENCODE (Tables S2 and S5), and two of the hits in the TCGA ATAC-seq dataset. 

This  appears to be caused by  short overall read lengths and specifically clipped read length in 

the ENCODE dataset and a very large number of clipped reads in TCGA ATAC-seq, where 

adapters are still present in the alignment). 
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Discussion 

Our results highlight that intentional and unintentional cDNA contamination is pervasive in 

published sequencing experiments, including some widely used, highly cited datasets, yet 

remains largely unnoticed. cDNA contaminants are shown to directly affect signal peak calls, and 

may contribute to other spurious findings. In some cases, specific genes detected as contaminant 

cDNAs could be traced to other published studies from the submitting laboratory, highlighting the 

risks of intra-lab contamination. This cross-contamination raises potential issues with keeping 

specific research constructs confidential and private when necessary. In addition to laboratory 

protocol improvements, we thus recommend careful review and computational decontamination 

of high-throughput genomic sequencing data for cDNA contaminants as an essential part of any 

sequence processing pipeline.  

Methods 

Method outline 

The general framework of cDNA-detector consists of three steps: 1. Preparation of a gene model 

file, for example all exons for a given species and genome assembly, 2. detection of potential 

cDNA in a BAM-format alignment file, 3. optional clean-up of identified cDNA sequencing reads 

from the alignment (Figure 1B; Figures S1 and S2A). 

Generation of gene model file 

An annotation file containing genomic coordinates for exon positions for a given species and 

assembly is required to run cDNA-detector. A processing script to generate such gene models 

from GTF format annotation files is part of the cDNA-detector distribution. Pre-generated models 

for the human (hg19 and hg38) and mouse exome (mm10 and mm39) are provided with the tool. 

Users may consider adding entries for specific transcript variants (such as truncated genes), 

custom amplicons, or non-coding RNAs that are suspected or known contaminants. 
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Detection of candidate cDNA in DNA sequencing experiments 

cDNA source reads at exon boundaries 
Soft-clipped reads as identified by a read’s CIGAR string (S) in the BAM file are considered 

potential contaminant reads. In addition, cDNA-detector looks for reads with mismatches just past 

the exon boundary inside the intron (by MD tag). Reads whose overhang into the intron sequence 

is an exact substring of the consensus sequence of other soft-clipped reads in this location are 

also counted as possible cDNA reads. Consensus sequences are generated by aligning the intron 

overhang of all clipped reads, including a base with ≥ 80% frequency in the consensus.  

Statistical identification of candidate cDNAs 

To evaluate whether the number of soft-clipped boundary-spanning reads for a given exon 

exceeds the number expected by chance, we build a background expectation model by using all 

soft-clipped reads overlapping any exon region boundary as defined in the gene model. We then 

test for significant enrichment of soft-clipped reads, as calculated above, for each single exon 

boundary genomic position. We define the total number of reads overlapping a specific exon 

boundary, including genomic reads from the target experiment properly mapped to the adjacent 

intron, as 𝑛!. The total number of soft-clipped and overhang reads is defined as 𝑛". The total 

number of soft-clipped reads in all exon regions is 𝑁", and the total number of all reads in all exon 

regions is defined as 𝑁!. We use a beta-binomial model to calculate the probability of observing 

at least 𝑛" reads at a given exon boundary by chance (equation 1): 

𝑃(𝑋 ≥ 𝑛") = 1 − + ,
𝑛!
𝑥
.

#!$%

&'(

𝐵(𝛼	 + 𝑥, 	𝑛!	 − 𝑥	 + 	𝛽	)
𝐵(	𝛼, 	𝛽)

	

For 𝑋 in {	𝑛" , 𝑛" + 1,… , 𝑛!}, where α	=	𝑁", β	=	𝑁!		-	𝑁" 	+	1 and B(α,	β) is the Beta function. 

An exon with contaminant cDNA will have soft-clipped reads at both of its boundaries. We 

therefore combine the P-values for both exon boundaries for all exons using the harmonic mean 

P-value (Wilson, 2019) (to account for dependence between the two P-values). Finally, all 

combined exon-wise P-values are corrected with the Benjamini-Hochberg procedure (Benjamini 

and Hochberg, 1995). Exons with corrected P-value (Q-value) ≤ 0.05 are considered candidate 

cDNA-exons. To further increase confidence that a flagged exon originates from cDNA, the 

overhang consensus sequence of soft-clipped reads at both exon boundaries will be compared 

to the sequence of the neighboring exon(s). If at least one substring match is found, exons are 
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kept for further analysis. Finally, transcripts with ≥ 30% of exons passing the above criteria will be 

reported. 

cDNA source inference 

cDNA-detector attempts to identify the source of a candidate cDNA to distinguish endogenous 

(retrocopy) and exogenous (vector) origins. Source inference is performed by querying the 

overhang sequence of the 5’ and 3’ ends of a candidate cDNA against the NCBI UniVec 

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) and Repbase database of human and 

mouse known repeat sequences (Bao et al., 2015). The highest-scoring match with E-value ≤ 10 

is taken as probable origin. Accordingly, a “vector” is reported if the top match stems from UniVec 

and “retrocopy” is inferred if this hit comes from RepBase. In addition, we require a distance of 

>5 bp for a repeat match from the clipped position for a “retrocopy” assignment, as these genes 

often carry adjacent UTR sequence (Casola and Betrán, 2017). In case where no suitable match 

is found, we use the distance from the exon boundary to the clip as estimate: if the distance is ≤ 

5 bp, a cloned vector sequence is more likely (“vector-likely”); if the distance is greater than 10 

bp, we infer a possible retrogene (“retrocopy-likely”); otherwise the source is labeled “unknown”. 

Because source inference strongly depends on the length of the overhang sequence available for 

BLAST query, it is thus most reliable for experiments with long read lengths. 

Removal of contaminant reads from alignment 

After the candidate cDNA contamination detection step, a new alignment file can be generated 

with candidate contaminant reads removed. This step is straightforward for soft-clipped reads at 

flagged exon boundaries, as these are very likely contaminants. However, exogenous DNA will 

also be present as fully aligned reads inside exon regions without overlapping boundaries. In 

some cases, such as a first exon, these reads can overlap with actual ChIP-seq or ATAC-seq 

signal derived from the proximal promoter. To address this issue, cDNA-detector assigns reads 

in candidate cDNA exon regions into three classes: (i) clipped reads and their mates clearly 

obtained from cDNA contamination (𝑅"); (ii) reads derived from the genome aligned across an 

exon boundary without soft-clips or mismatches, neighboring exon homology, or a proper mate 

mapped outside the exon ( 𝑅*); and (iii) reads which cannot be unambiguously assigned to either 

class (	𝑅+) due to full genomic alignment inside an exon region. 

For each candidate contaminant exon, cDNA-detector will first calculate the ratio of 𝑅" to all 

unambiguous reads (𝑅" + 𝑅*), and then remove the same fraction of ambiguous reads	fully 

mapped inside the exon regions (𝑅+):  
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𝑅#+ = 𝑛𝑖𝑛𝑡(	
𝑅"

𝑅* + 	𝑅"
∗ 𝑅+)	

Where	𝑅#+ is the number of ambiguous reads to remove, nint	is the nearest integer function. 𝑅#+ 

reads are then randomly selected and removed from this exon. After removal of contaminant 

reads in all flagged exons, a separate “clean” BAM file is written to a specified output location.  

Performance 

cDNA simulation experiments for sequencing strategy and read length 

To evaluate detection performance, we generated simulated contaminating cDNAs by randomly 

selecting 100 cDNAs sequences from the CCDS database (Pujar et al., 2018) for each of 10 

simulation experiments. Selected cDNAs were “cloned” in silico into the pLX307 vector sequence 

(http://www.addgene.org/117734/), by replacing the luciferase gene with the corresponding tested 

cDNA. We then randomly simulated artificial paired-end or single-end reads with read lengths 30 

bp, 35 bp, 50 bp, 100 bp, 120 bp, 150 bp, and fragment size 350 bp for paired-end experiments, 

from the vector with insert, to an average target coverage of 100x. Simulated reads were aligned 

to the hg38 human genome assembly with bwa mem (Li and Durbin, 2009). Aligned reads were 

then added to a T47D ATAC-seq experiment with ERBB2 reads from an intentionally introduced 

construct removed with cDNA-detector. For experiments with <100x coverage, we randomly 

downsampled to the desired target coverage from this alignment. cDNA-detector was run with 

default settings to discover simulated cDNA contamination. Sensitivity is defined as the fraction 

of detected true positive cDNAs of all 100 inserted cDNAs. Specificity is defined as the fraction of 

detected true positive cDNAs in all detected cDNAs. Due to possible identical alignments for reads 

derived from homologous genes, a homolog was also counted as true positive if identified as 

cDNA candidate by cDNA-detector. 

Resource consumption 

In order to test the time and memory usage and multi-threaded performance of cDNA-detector, 

we randomly extracted reads to the desired read number from exome SRR1819826 (Lim et al., 

2015). Time and memory consumption were assessed for cDNA-detector with default settings.  

Comparison with Vecuum 

We directly compared cDNA-detector to Vecuum using the exome data used in the respective 

publication (SRP055482; Lim et al., 2015). FASTQ files were aligned to the hg19 genome 

assembly with bwa mem with the default settings (Li and Durbin, 2009). cDNA-detector was run 
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with --num_initial_potential_cdna 5000 (allowing a larger number of initial cDNA candidates for 

evaluation) to detect cDNA contamination. Candidate cDNAs were manually reviewed for 

presence of soft-clipped reads and other evidence in the Integrative Genome Viewer (IGV; 

Robinson et al., 2011).  

We also applied Vecuum to the samples from the TCGA, NCBI SRA (human samples only) and 

ENCODE in which cDNA-detector identified candidate cDNAs. Vecuum run with default 

parameters (minimal match length l=20 and mapping quality threshold Q=30) detected few cDNAs 

in the comparison data. Individual hits could be recovered with Vecuum with more relaxed 

parameters (-l15 -Q1 for TCGA ATAC-seq; -l 10 -Q1 for NCBI SRA and ENCODE data), although 

at the cost of lost specificity.  

Application to public datasets 

We applied cDNA-detector snapshot 26 to three large public data sets using the Terra.bio platform 

and on local compute: 404 ATAC-seq experiments from primary tumors from TCGA (Corces et 

al., 2018), 14,485 ChIP-seq, ChIA-PET, ATAC-seq and DNase-seq tracks from the ENCODE 

(Davis et al., 2018) with read length >30 bp, 324 exomes from the Cancer Cell Line Encyclopedia 

(Ghandi et al., 2019), and 317 human and 36 mouse studies from the NCBI’s SRA repository (see 

references in Tables S3 and S4). SRA studies were selected based on the availability of BAM-

format files and restricted to ChIP-seq, ATAC-seq and DNase-seq experiments with sequence 

read length >30 bp. We then randomly selected one or two (if the study contained more than one 

experiment) samples from those projects. SRA files were downloaded, then converted to BAM 

format with sam-dump (https://ncbi.github.io/sra-tools/sam-dump.html) and samtools (Li et al., 

2009) with default parameters. Analysis with cDNA-detector was performed as described above. 

Potential cDNAs were manually reviewed in IGV. 
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Table S2: Identified cDNAs in samples from ENCODE 

Table S3: Identified cDNAs in select human samples from the NCBI SRA 
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Figure legends 

Figure 1: Workflow and performance of cDNA-detector. A, Schematic illustrating the source 

of intentional or contaminant cDNA reads in sequencing experiments. Vectors (grey) with cDNA 

(red) are amplified in the library preparation process and sequenced together with the experiment. 

Upon alignment of reads, cDNA-derived reads (red boxes) map to the respective gene locus in 

the genome, along with true signal reads (blue). Textured red read segments indicate sequence 

not mapping to the genome and “clipped” by the alignment algorithm. B, Overview of the two main 

components of the cDNA-detector algorithm, “detect” and “decontaminate”. C, ATAC-seq 

experiment from TCGA before (pink) and after (green) removal of vector-induced KRAS. For 

comparison, an uncontaminated sample (grey) is shown. Boxes indicate contaminant signal over 

exons. D-E: Sensitivity of cDNA-detector on single-end (D) and paired-end (E) sequencing 

experiments, depending on read coverage. F-G: Specificity of cDNA-detector on single-end (F) 
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and paired-end (G) read data dependent on coverage. Error bars indicate standard errors. 

Random sample size n = 10 for each library type and read length. 

 

Figure 2: cDNA contamination in published datasets. A, Examples of ATAC-seq signal from 

two primary tumor samples from the TCGA (Corces et al., 2018) showing contamination with 

DDX58 (encoding the antiviral innate immune response receptor RIG-I; left) or the cohesin 

component STAG2 (right). True signal would be expected at the promoter and potential intragenic 

regulatory elements, but not over all exons. Arrowheads indicate spurious signal peak calls 

caused by contaminant reads over exons (black boxes in gene track; peak calls obtained from 

Corces et al., 2018). B, cDNA contamination with PPARG in a FOXK2 ChIP-seq experiment in 

HEK293T cells and PAX7 in an EZH2 ChIP-seq experiment in HUVEC cells from the ENCODE 

project. Arrowheads indicate official ENCODE peak calls due to contaminant signal over exons. 

C, Examples of cDNA contamination with prostate cancer genes FOXO1 and SPOP in an 

androgen receptor (AR) ChIP-seq experiment performed in the prostate cancer cell line C2-4 

(Zhao et al., 2016a, 2016b). D, Example of transduced human NRAS cDNA in a mouse ATAC-

seq experiment in cell line ICC2.7.  

 

Figure S1: Flowchart detailing the steps of the cDNA-detector detection step. 
 

Figure S2: Decontamination of cDNA reads from NGS libraries. A, Flowchart depicting the 

steps of the decontamination step. B, Three classes of reads at an exon boundary are considered 

in the decontamination step: cDNA, genomic DNA (gDNA), and ambiguous reads originating from 

either cDNA or genomic signal (aDNA). Red arrows show examples of cDNA reads with 

mismatches instead of clips. C, Example of an ATAC-seq experiment contaminated with DDX58 

cDNA and cDNA-detector “decontamination”. Contaminant signal is clearly visible over the first 

exon, overlapping real ATAC-seq signal from the transcription start site (top, pink track). After the 

decontamination step, the enrichment over the exon is removed while preserving the ATAC-seq 

peak (green), comparable to an uncontaminated sample (grey). Gene transcribed from the 

reverse strand. 

 

Figure S3: Resource consumption of cDNA-detector. A, Runtime of the cDNA-detector 

detection step depending on the number of reads in the alignment. B, Memory usage in GB of 

the detection step for different number of reads. C-D: Time (C) and memory (D) usage for different 
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read numbers when using multiple threads. The error bars indicate standard errors. Sample size 

n = 10 for each simulation (except the full data set of 300 M reads). 

 

Figure S4: cDNA identified in a reprogrammed iPS cell line. MYC and KLF4 cDNA in L1-S8R 

cells (yellow) reprogrammed with OCT4, SOX2, KLF4, cMYC, and uncontaminated control cell 

line PC-3 (grey).  

 

Figure S5: cDNA identified by cDNA-detector in a human whole-exome sequencing 
dataset. Identification of known vector contamination (MTOR), previously unknown vector 

contamination (TMEM138) and genomic retrocopies of processed genes by cDNA-detector in the 

dataset presented in the Vecuum publication (Kim et al., 2016).  
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