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Abstract

Genetically regulated gene expression has helped elucidate the biological mechanisms
underlying complex traits. Improved high-throughput technology allows similar
interrogation of the genetically regulated proteome for understanding complex trait
mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed)
Multi-omics pilot study, which comprises data from Multi-Ethnic Study of
Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for
genetically regulated proteome-wide association studies (PWAS) in diverse populations.
We built predictive models for protein abundances using data collected in TOPMed
MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared
predictive models built via elastic net regression to models integrating posterior
inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to
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investigate the transferability of predictive models across ancestries, we built protein
prediction models in all four of the TOPMed MESA populations, African American
(n=183), Chinese (n=71), European (n=416), and Hispanic/Latino (n=301), as well as
in all populations combined. As expected, fine-mapping produced more significant
protein prediction models, especially in African ancestries populations, potentially
increasing opportunity for discovery. When we tested our TOPMed MESA models in
the independent European INTERVAL study, fine-mapping improved cross-ancestries
prediction for some proteins. Using GWAS summary statistics from the Population
Architecture using Genomics and Epidemiology (PAGE) study, which comprises ~50,000
Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans,
we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait
associations were discovered, colocalized, and replicated in large independent GWAS

using proteome prediction model training populations with similar ancestries to PAGE.

At current training population sample sizes, performance between baseline and
fine-mapped protein prediction models in PWAS was similar, highlighting the utility of
elastic net. Our predictive models in diverse populations are publicly available for use in
proteome mapping methods at https://doi.org/10.5281/zenodo.4837328.

Author summary

Gene regulation is a critical mechanism underlying complex traits. Transcriptome-wide
association studies (TWAS) have helped elucidate potential mechanisms because each
association connects a gene rather than a variant to the complex trait. Like
genome-wide association studies (GWAS), most TWAS are still conducted exclusively in
populations of European ancestry, which misses the opportunity to test the full
spectrum of human genetic variation for associations with complex traits. Here, move
beyond the transcriptome and because protein measurement assays are growing to allow
interrogation of the proteome, we use data from TOPMed MESA to develop genetic
predictors of protein abundance in diverse ancestry populations. We compare
model-building strategies with the goal of providing the best resource for protein
association discovery with available data. We demonstrate how these prediction models
can be used to perform proteome-wide association studies (PWAS) in diverse
populations. We show the most protein-trait associations were discovered, colocalized,
and replicated in independent cohorts using proteome prediction model training
populations with similar ancestries to individuals in the GWAS. We shared our protein
prediction models and performance statistics publicly to facilitate future proteome
mapping studies in diverse populations.

Introduction

Genome-wide association studies (GWAS) have uncovered novel genetic associations
underpinning a wide array of complex traits [1-10]. Methods like PrediXcan and
FUSION have successfully integrated underlying gene regulation mechanisms in gene
mapping studies [11,12]. In these so-called transcriptome-wide association studies
(TWAS), reference expression quantitative trait loci (eQTL) data are used to build
models that predict gene expression levels from genotypes. The models are integrated
with GWAS data to test genes, rather than SNPs, for association with complex traits.
TWAS have a lower multiple testing correction burden than GWAS and provide clear
gene targets for future investigations [13,14]. In addition, TWAS inherently include
information such as direction of effect for a gene on a trait that is not often apparent at
the SNP level.
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Like polygenic risk scores, the efficacy of predictive models at the transcriptome
level is reduced by differences in linkage disequilibrium, allele frequencies, and effect
sizes across populations [15-20]. The exclusion of non-European ancestry populations
from much of human genetics diminishes the promise of precision medicine and misses
opportunities for fine-mapping and locus discovery [21,22]. Population-matched
transcriptome prediction increases TWAS discovery and replication rate [23]. Thus, as
multi-omics studies increase and methods like PrediXcan expand to include omics traits
beyond the transcriptome, inclusion of diverse ancestral populations is crucial. With the
advent of high-throughput proteome technologies [24,25], many studies have identified
protein QTLs (pQTLs), especially in plasma and European ancestries
populations [26-28]. Like eQTLs, GWAS are often enriched in pQTLs, and
proteome-wide association studies (PWAS) have been proposed [29, 30].

Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot
study [25], which comprises data from the Multi-Ethnic Study of Atherosclerosis
(MESA) [31], to optimize genetic predictors of the plasma proteome for PWAS. We
trained protein prediction models using genotype and plasma proteome data from an
aptamer-based assay of 1305 proteins from 971 individuals of African American,
Chinese, European, and Hispanic/Latino populations. We compared model building
methods that included fine-mapping to baseline elastic net within each population and
across all populations. We tested our protein prediction models in the independent
INTERVAL study [26] and show that while fine-mapping may improve cross-population
prediction performance, larger sample sizes are needed to increase confidence in
independent signals. We also applied S-PrediXcan [32] to the PAGE Study GWAS
summary statistics [1] to assess model performance in a PWAS framework.

PrediXcan [11] requires genotype data to estimate expression levels for use in
association testing, but S-PrediXcan [32] requires only GWAS summary statistics to
perform TWAS. The linkage disequilibrium (LD) reference information for S-PrediXcan
comes from the protein prediction model training population. We show
population-matched protein prediction models yield more reliable associations, defined
by colocalization and independent replication in large European GWAS, including those
available from UKBiobank. We make all protein prediction models publicly available at
https://doi.org/10.5281/zenodo.4837328 for use in PrediXcan and S-PrediXcan.

Results

Fine-mapping integration in protein abundance prediction
model training

We set out to provide a useful resource for proteome association discovery in diverse
populations. We sought a balance between protein prediction model performance and
maximizing the number of proteins that can be tested for association with complex
traits in PWAS. Using the same thresholds for significance as PrediXcan transcriptome
modeling [11,33], we quantified model quality by counting the number of protein models
with cross validated p > 0.1 and p < 0.05 within each population and model building
strategy. We compared baseline and fine-mapped elastic net models predicting protein
levels from SNP genotypes in each TOPMed MESA population, which included African
Americans (AFA, n=183), Chinese (CHN, n=71), Europeans (EUR, n=416),
Hispanic/Latinos (HIS, n=301), and all populations combined (ALL, n=971) (S1 Fig).
We tested several posterior inclusion probability (PIP) thresholds and LD cluster
filtering decisions to optimize our fine-mapping strategy (S1 Table). At all thresholds,
our fine-mapping strategy produced more predictive models compared to baseline,
which we expected because we performed SNP-level fine-mapping in the full data set
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prior to cross-validated elastic net modeling (Fig 1, S2 Fig). Because all fine-mapped
models within a populations showed similar and higher correlation to each other than to
baseline (S3 Fig), we chose to focus on one set of fine-mapped models, those with
PIP>0.001 and filtered LD clusters, to compare with baseline elastic net for the rest of
the main text. The PIP>0.001 and filtered LD clusters models, which we will now refer
to as our “fine-mapped” models (Fig 1), balance performance with the number of
proteins available for PWAS.

We found that 1187 unique protein aptamers have a significant prediction model
across all training populations and both our baseline and fine-mapped model building
strategies. While the smallest training population, CHN, produced the smallest number
of models for either strategy, AFA, HIS, and EUR produce comparable numbers of
models in spite of sample size differences (Fig 1B). For example, despite being less
than half the size of the EUR population, about the same number of fine-mapped
protein models were significant in AFA. This is likely due to more SNP variation in
African ancestry populations, which leads to more features for prediction.

While the ALL combined population produced the most significant protein models
in our baseline strategy, fine-mapping in ALL led to fewer protein models than in AFA,
HIS, or EUR (FiglB). Fine-mapping in ALL may home in on cross-population
associated variants with similar effect sizes at the expense of population-specific
variation.

In addition, we determined if any of our significant protein models represented new
genes not covered in previous transcriptome prediction modeling. As proteins measured
in blood plasma may contain proteins excreted by a number of tissues we compared our
protein models to RNA models built in both Whole Blood as well as all 49 GTEx
tissues [33]. In total, between both model building strategies and all training
populations, we found 372 distinct protein aptamers with at least one predictive model
that do not have an RNA equivalent model from GTEx v8 MASHR Whole Blood
models, 18 of which do not have an RNA equivalent model in any tissue in GTEx v8
MASHR models [33] (S3 Table).
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Fig 1. Protein prediction performance in TOPMed MESA populations. A.
Distributions of prediction performance across proteins within each training population
between modeling strategies. p is the Spearman correlation between predicted and
observed protein abundance in the cross-validation. Fine-mapping prior to elastic net
modeling produces more significant (p > 0.1, vertical dotted line) protein prediction
models than baseline elastic net. B. Significant (p > 0.1, p < 0.05) protein model counts
compared to population sample size colored by modeling strategy. TOPMed MESA
populations: CHN, Chinese; AFA, African American; HIS, Hispanic/Latino; EUR,
European; ALL, all populations combined.
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Fine-mapping can improve cross-population protein prediction
performance

While fine-mapping leads to more models which may allow for more associations to be
discovered in PWAS, our strategy could lead to overfitting. Thus, we next assessed
model performance by testing our TOPMed MESA models in an independent proteome
study. We tested the performance of models trained in the TOPMed MESA populations
for predicting protein levels from individual level genotypes using the INTERVAL study
(n= 3301 Europeans) [26,34]. We predicted protein abundance in INTERVAL using
both fine-mapped and baseline models trained in each TOPMed MESA population, for
a total of 10 model sets. Of the 804 protein aptamers measured within INTERVAL that
map uniquely to the same aptamer measured in TOPMed MESA, 597 unique protein
aptamers had a significant prediction model in at least one model set.

We compared the performance of the fine-mapped model set to baseline model set
within each training population by comparing the distributions of the Spearman
correlations using Wilcoxon signed-rank tests. Fine-mapped models trained in AFA and
CHN had significantly better prediction in INTERVAL than baseline elastic net models,
fine-mapped models trained in EUR and HIS were not significantly different, while
fine-mapped models trained in ALL were significantly worse (Fig 2). Over the range of
fine-mapping thresholds we tested, we found similar results. Fine-mapped models in
AFA consistently outperformed baseline models, fine-mapped CHN was either
significantly better or not different, and fine-mapped ALL, HIS, and EUR were either
significantly worse or not different from baseline (S4 Table, S4 Fig).

Within each model building strategy, we were interested in comparing protein
prediction performance in INTERVAL between the similar ancestries EUR training
population and the larger, multi-ancestries ALL population. In order for a protein to be
predicted in INTERVAL, at least one SNP in the MESA model must be polymorphic
(MAF>0.01) in INTERVAL. Within the baseline models, more proteins were predicted
in INTERVAL using the ALL training population (n = 183) compared to EUR (n =
149), with 107 shared proteins. However, more proteins were predicted with EUR
fine-mapped models (n = 340) compared to ALL fine-mapped models (n = 259), with
183 shared proteins. Yet, for the proteins predicted by both training populations in
INTERVAL, the ALL population predicted better with both the baseline (Wilcoxon
signed-rank test p = 0.0012) and fine-mapped (Wilcoxon signed-rank test p = 0.0064)
model building strategies (Fig 3). The mean difference of ALL - EUR prediction
performance was larger, but with more variance, using the fine-mapped (mean [95% CI]
= 0.018 [0.00070-0.036]) compared to baseline (mean [95% CI] = 0.0074 [0.0027-0.012])
models. Thus, fine-mapping across ancestries can be beneficial to prediction (Fig3B).
Fine-mapping across ancestral populations likely leads to better performance when
causal SNPs are shared among the populations. We note that without a functional
assay, a causal SNP cannot be distinguished from a proxy SNP in high LD. When we
compared all five TOPMed MESA training populations within each model building
strategy, most prediction performance of common proteins did not vary between
populations, with occasional decreased performance in the smaller compared to the
larger populations (S5 Fig, S5 Table, S6 Table). As sample sizes in proteomics
studies increase, allowing identification of SNPs with higher PIP values, including

trans-acting pQTLs, we anticipate increased benefit from multi-ancestries fine-mapping.

Population-matched protein prediction models map the most
trait associations

To test whether fine-mapping prior to model building leads to discovery of more
protein-trait associations, we applied S-PrediXcan [32] using our TOPMed MESA
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Fig 2. TOPMed MESA protein prediction model performance comparison
in the independent INTERVAL population. Within each training population,
the fine-mapped model performance in INTERVAL (y-axis) is compared to the baseline
elastic net model performance in INTERVAL (x-axis). Each dot represents a protein
that is predicted by both baseline models and fine-mapped models. Performance was
measured as the Spearman p between the measured protein aptamer level and the
predicted protein aptamer level. Fine-mapped models performed better than baseline
models in AFA (Wilcoxon signed-rank test, p = 0.0016) and CHN (p = 0.036), were not
significantly different in EUR, (p = 0.74) and HIS (p = 0.54), and significantly worse in
ALL (p = 0.0085). TOPMed MESA populations: AFA, African American; ALL, all
populations combined; CHN, Chinese; EUR, European; HIS, Hispanic/Latino.

prediction models to test proteins for association with the 28 phenotypes analyzed in the
PAGE GWAS [1,35]. Individuals in the PAGE study self-identified as Hispanic/Latino
(n = 22,216), African American (n = 17,299), Asian (n = 4,680), Native Hawaiian (n =
3,940), Native American (n = 652), or Other (n = 1,052) [1]. We identified a total of 29
distinct Bonferroni significant protein-trait associations using baseline elastic net models
and 54 using fine-mapped models (p < 1.54e — 06 for baseline, p < 7.60e — 07 for
fine-mapped, S7 Table). The most associations were found when applying models built
in TOPMed AFA followed by TOPMed HIS, regardless of model building strategy (Fig
4A). We observed similar patterns for most fine-mapping thresholds tested (S6 Fig).
For protein-trait pairs discovered via S-PrediXcan, we then performed colocalization
analysis to provide more evidence the SNPs in the protein region are acting through
protein regulation to affect the associated phenotype. Similar numbers of distinct
protein-trait associations are both S-PrediXcan significant and colocalized between
baseline elastic net models (22) and fine-mapped models (21) (Fig 4B, S7 Table).
We then use the UKB+ GWAS summary statistics (see Methods) to survey which
protein-trait pairs replicate in independent data. The majority of associations that are
both colocalized and S-PrediXcan significant in PAGE replicated with the same
direction of effect in the UKB+ data (p < 1.54e — 06 for baseline, p < 9.59¢ — 07 for
fine-mapped; Fig 4C). Baseline elastic net models have the greatest number of
protein-trait pairs which meet all three significance criteria (21) compared to
fine-mapped models (17). Models trained in HIS and AFA have the most associations
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meeting all three significance criteria compared to the other training populations, likely
reflective of the similar ancestries between AFA, HIS, and PAGE. Fine-mapped models
trained in TOPMed HIS and TOPMed AFA generally have more protein-trait
discoveries and replications compared to other training populations across PIP
thresholds and clustering strategies (S6 Fig). In total we find 21 protein-trait
associations that meet all three significance criteria (Table 1, S7 Table). Even though
fine-mapping produced more models to test, a higher proportion of significant
baseline-modeled proteins have colocalized SNP signals between protein abundance and
traits, with similar numbers of protein-trait associations that replicate in UKB+ studies

between fine-mapped and baseline models (Fig 4).

Table 1. Significant associations found in PAGE. Each protein-phenotype pair may be present across multiple
populations for different model building strategies. For each distinct protein-phenotype pair we present only the model

association with the lowest p value in PAGE. All significant associations are listed in S7 Table.

Aptamer Protein Phenotype Train Pop Model PAGE 3 PAGEp UKB+ 3 UKB+p PAGE coloc prob
SL000276 Apo E LDL cholesterol AFA Fine-Mapped 15.65 4.22e-218 0.381 1.00e-51 0.991
SL004668 Apo E3 LDL cholesterol AFA Fine-Mapped 16.11 2.42e-217 0.396 1.00e-51 0.993
SL000277 Apo E2 LDL cholesterol HIS Fine-Mapped 19.44 7.77e-206 0.487 9.35e-57 0.991
SL004669 Apo E4 LDL cholesterol HIS Fine-Mapped 23.64 7.77e-206 0.593 9.35e-57 0.954
SL000051 CRP C-reactive protein ALL baseline 1.40 1.41e-122 1.03 3.05e-176 0.989
SL000276 Apo E Total cholesterol AFA Fine-Mapped 12.49 1.77e-114 0.290 1.00e-51 0.992
SL000277 Apo E2 Total cholesterol HIS Fine-Mapped 15.77 4.64e-111 0.371 1.00e-51 0.991
SL004668 Apo E3 Total cholesterol HIS Fine-Mapped 17.45 4.64e-111 0.411 1.00e-51 0.989
SL004669 Apo E4 Total cholesterol HIS Fine-Mapped 19.17 4.64e-111 0.451 1.00e-51 0.950
SL001943 IL-6 sRa C-reactive protein HIS baseline -0.121 1.51e-33 -0.107 2.23e-308 0.996
SL000277 Apo E2 C-reactive protein EUR baseline -0.356 4.89e-27 -0.466 1.82e-267 0.993
SL004669 Apo E4 C-reactive protein EUR Fine-Mapped -0.301 1.06e-26 -0.313 5.68e-73 0.991
SL004669 Apo E4 HDL cholesterol HIS baseline -6.60 4.15e-25 -0.184 6.18e-56 0.950
SL000277 Apo E2 HDL cholesterol HIS Fine-Mapped -2.37 7.29e-25 -0.070 4.25e-59 0.991
SL000276 Apo E HDL cholesterol HIS Fine-Mapped -2.25 7.29e-25 -0.066 4.25e-59 0.996
SL004668 Apo E3 HDL cholesterol HIS Fine-Mapped -2.62 7.29¢-25 -0.077 4.25e-59 0.989
SL000276 Apo E C-reactive protein EUR baseline -0.223 1.37e-13 -0.310 9.46e-176 0.993
SL004668 Apo E3 C-reactive protein EUR baseline -0.235 1.28e-12 -0.361 5.25e-161 0.985
SL001990 IL-1Ra C-reactive protein ALL baseline -0.188 1.30e-10 -0.136 5.01e-65 0.981
SL000437 Haptoglobin, Mixed Type  LDL cholesterol ALL baseline -1.86 1.11e-9 -0.051 2.03e-114 0.985
SL000437 Haptoglobin, Mixed Type  Total cholesterol ALL baseline -2.07 1.79e-9 -0.048 1.90e-105 0.984

L AFA = TOPMed African American. EUR = TOPMed European
ALL = TOPMed multi-ethnic.

. HIS = TOPMed Hispanic/Latino.

We identified 21 distinct protein-phenotype associations which are Bonferroni
significant in PAGE, colocalize in PAGE, and replicate with the same direction of effect
in UKB+. These associations comprise eight distinct protein targets: total
Apolipoprotein E and its three isoforms (Apo E, Apo E2, Apo E3, Apo E4), C-Reactive
Protein (CRP), Interleukin-1 receptor antagonist protein (Interleukin-1 receptor
antagonist protein), Interleukin-6 receptor subunit alpha (IL-6 sRa), and Haptoglobin
(Haptoglobin, Mixed Type). These are corroborated at the gene level by GWAS
associations identified at the same locus. Eighteen of these protein-phenotype
associations were significant SNP-phenotype associations in the original PAGE
GWAS [1]. Matching our results, in other proteome studies using SOMAscan
technology, isoforms of Apo E were associated with decreased HDL cholesterol,
increased LDL cholesterol, and increased total cholesterol [30, 36].

In addition to the PAGE GWAS, independent GWAS have shown SNPs at the

APOE locus associated with C-reactive protein [37-39], HDL cholesterol [37,38,40-43],
LDL cholesterol [37,38,40-42,44], and total cholesterol [37,38,40,41,45]. In our study,
increased predicted abundance of CRP associated with increased measured C-reactive
protein, effectively acting as a positive control for our method. Independent GWAS at
the CRP locus show consistent associations with C-reactive protein
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measurement [37-39,46-54]. Increased predicted IL-6 sRa associated with decreased
C-reactive protein and the locus was previously implicated in other
GWAS [37-39,47,48,55].

Three of our protein-trait associations were not found in the original PAGE
GWAS [1], but are still supported by independent GWAS. Increased Haptoglobin,
Mixed Type was associated with decreased LDL cholesterol and decreased total
cholesterol, both of which are corroborated by GWAS at this locus [56]. Increased
IL-1Ra was associated with decreased C-reactive protein. SNPs near IL-1Ra associated
with C-reactive protein in an independent GWAS [48]. The directions of effect for each
protein-phenotype association were consistent between all training populations.

Most proteins remain predictable after adjusting for protein
altering variants

All protein assays that rely on binding, including the SOMAscan assay used here, are
susceptible to the possibility of binding-affinity effects, where protein-altering variants
(PAVs) are associated with protein measurements due to differential binding rather than
differences in protein abundance [26]. While we cannot differentiate these two
possibilities, we can determine if SNP effects on protein abundance are independent of
PAVs. We compared baseline elastic net models before and after adjusting protein
abundance by any PAVs, which include frameshift variants, inframe deletions, inframe
insertions, missense variants, splice acceptor variants, splice donor variants, splice region
variants, start lost, stop gained, or stop lost.

We noted that the majority of results in Table 1 come from isoforms of Apo E, with
replication among isoforms likely owing to known cross-reactivity of Apo E
aptamers [26, 30, 36]. Abundance of each measured Apo E isoform associated with
APOE genotype (Fig 5). Note that within each genotype, the target isoform
abundances from the SOMAscan assay do not vary, indicating cross-reactivity effects
are likely (Fig 5). Previous studies have found that protein levels of Apo E in plasma
are correlated with the €2, €3, e4 haplotypes, but in the opposite direction than we
observed [57-60]. After adjusting for the two missense SNPs (rs429358 and rs7412) that
define these haplotypes, all protein-trait associations with Apo E fail to reach Bonferroni
significance, indicating the well known €2, €3, €4 haplotypes drive the associations.
Binding affinity differences among the haplotypes likely contribute, at least in part, to
these protein-trait associations. Because APOFE is a well known locus associated with
many complex traits, these results demonstrates how SOMAscan-derived PWAS
associations should be interpreted with caution (See Discussion).

Across all proteins, of the 1170 models built across all training populations, 39.8% of
models remained unadjusted because they lacked a PAV in their 1 Mb cis-window
(n=466); 23.3% of models showed only marginal reduction in cross-validated p after
adjustment (Ap < 0.1, n=273); 12.6% of models showed a large decrease in model p,
but retained significance (Ap > 0.1, n=148); and 24.2% of models lost significance after
adjustment and were not included in the final PAV-adjusted model sets (n=283) (S7
Fig).

Among all five TOPMed MESA training populations, 701 protein predictions were
made using baseline models in INTERVAL. Of these, 37.7% of models predicted in
INTERVAL went unadjusted as they lacked a PAV (n=264); 27.8% of models had a
marginal decrease in performance (Ap < 0.1, n=195); 7.0% of models had a larger
decrease in performance, but maintained significance (Ap > 0.1, n=49); and 27.5% of
models lost significance and were not predicted in INTERVAL after adjusting for PAVs
(n=193; S8 Fig).

Before PAV adjustment, we found 21 distinct associations that met all three
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significance criteria of Bonferroni significance, colocalization, and replication in UKB+
(Table 1). All of the non-Apo E associations, including the CRP, IL-6 sRa, IL-1Ra
associations with C-reactive protein and the Haptoglobin, Mixed Type associations with
LDL and total cholesterol, remain significant after PAV adjustment. Thus, these
protein-trait associations are not due to PAV binding-affinity effects (Table 1, S7
Table).

Discussion

We built models for predicting protein abundances from genotypes in nearly 1000
African American, Chinese, European, and Hispanic/Latino individuals from TOPMed
MESA for use in the PrediXcan framework. Protein abundances were measured on the
SOMAscan platform using aptamer binding. We compared two strategies for
constructing protein models, preliminary fine-mapping followed by elastic net and
baseline elastic net regression. Across all training populations and both model building
strategies, 1187 unique protein aptamers have a significant prediction model (p > 0.1
and p < 0.05). We assessed model performance in the independent INTERVAL
proteome population and in protein PrediXcan using GWAS summary statistics from
the PAGE Study. Fine-mapping can improve cross-population prediction and maintains
reliable replication of protein-trait pairs in PrediXcan compared to baseline elastic net
proteome prediction. We found the most discoveries and reliable replications using
ancestries-matched protein prediction models.

The ancestries of PAGE study participants most closely matched the ancestries of
the TOPMed MESA AFA and HIS populations [1,23]. We see increased discovery,
colocalization, and replication when AFA and HIS protein models are used in
S-PrediXcan compared to the larger EUR population protein models (Fig 4). Notably,
all 3 populations, AFA, HIS, and EUR have similar numbers of significant protein
models, especially after fine-mapping, even though the EUR population is 127% larger
than AFA and 38% larger than HIS (Fig 1). Recent African ancestries populations like
AFA and HIS have more SNPs and smaller LD blocks, which leads to both increased
discovery and better fine mapping of the most likely causal SNPs [21,22]. GWAS-based
fine mapping from the PAGE Study demonstrated the value of leveraging diverse
ancestries populations to improve causal SNP resolution prior to costly functional
assays [1]. In our study, fine-mapping significantly improved the accuracy of
cross-population prediction of protein abundance when training in AFA or CHN and
testing in the European INTERVAL population (Fig 2). Models built in ALL
performed better in INTERVAL than EUR-trained models for both fine-mapping and
baseline strategies (Fig 3). However, fine-mapping in EUR did lead to more proteins
that were predicted in INTERVAL than fine-mapping in ALL (340 vs. 259). Thus, a
combination of cross-ancestries and ancestries-matched fine-mapping will likely be
necessary to optimize omics trait prediction in a locus-dependent manner.

Across all training populations, fine-mapped model building produced more models
that passed our significance threshold of p > 0.1 and p < 0.05. We expected this result
because we fine-mapped with all data and weighted SNPs by their posterior inclusion
probabilities (PIPs) prior to cross-validated elastic net modeling, i.e. ‘double-dipping’.
As our overall goal of building these models is the ability to test as many proteins as
possible in PWAS, this double-dipping could be justified if it increased our ability to
discover true associations, as was shown for TWAS [33]. Given that we tested more
proteins with our fine-mapped model set, this technique did increase our ability to
discover associations with S-PrediXcan compared to baseline (Fig 4A). However, when
we assessed the reliability of these associations via colocalization and replication in
independent studies, fine-mapped models did not outperform baseline models and thus
we recommend using our baseline models in PWAS (Fig 4B-C). Because most
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fine-mapped PIPs were near zero (S9 Fig), this recommendation could change if larger
pQTL population sample sizes result in more SNPs with larger PIPs.

All protein assays that rely on binding are susceptible to the possibility of
binding-affinity effects. A strong example of this issue is represented by Apo E, which
has multiple isoforms measured in TOPMed MESA. SOMAscan aptamers that target
isoforms of Apo E were previously shown to display cross-reactivity [26,30,36]. Thus,
the aptamers do not distinguish among the Apo E isoforms and instead might represent
total Apo E abundance. But even if the isoform-derived aptamers are treated as total
Apo E abundance measurements, inconsistencies with previous work arise.

In non-SOMAscan studies, the haplotype that determines the isoforms of Apo E was
correlated with abundance of total Apo E in plasma, with €2 > €3 > e4 [57-60]. This is
the opposite of what we observed here where individuals with the €4 allele have a greater
measured abundance of Apo E than individuals with the €2 allele in both TOPMed
MESA and INTERVAL (Fig 5). Other proteome studies using SOMAscan technology
matched our results in that multiple aptamers of Apo E were associated with decreased
HDL cholesterol, increased LDL cholesterol, and increased total cholesterol [30, 36].
However, APOE genotypes were not compared to protein abundance in the other
SOMAscan studies [30,36]. One possible explanation for our observed protein
abundance vs. haplotye trend is that the E4 isoform has a greater binding affinity with
all aptamers derived from Apo E proteins, possibly due to decreased glycosylation of
the E4 isoform [58]. Additionally, the protein-trait associations we identified for Apo E
proteins are driven by rs429358 and rs7412, indicating that differential abundance of
these haplotypes is responsible for the associations found. It is not currently possible to
differentiate between true differences in abundance of Apo E from differences in binding
affinity among isoforms. The protein abundance mechanisms underlying the well
established APOF genetic associations [1,37-41,45] remain to be elucidated.

Among other proteins, common (MAF>0.01) PAVs tend to be relatively rare. The
majority of models we built either lack a PAV in their 1Mb cis-acting window or show
only moderate changes in abundance due to PAVs. In addition, only 3.9% of proteins
measured in TOPMed MESA share a genetic locus. This includes isoforms of the same
protein as well as downstream products of the same precursor. A loss of association
after PAV adjustment does not prove a false positive association due to PAV binding
affinity effects. While possible, a loss of association after PAV adjument could also
mean the PAVs are linked to a SNP functioning to affect protein abundance. However,
if the association remains after PAV adjustment, we know binding affinity effects due to
common PAVs are unlikely. Here, the CRP, IL-6 sRa, IL-1Ra associations with
C-reactive protein and the Haptoglobin, Mixed Type associations with LDL and total
cholesterol in PAGE and UKB+ remained significant after PAV adjustment. Thus,
these protein-trait associations are not due to PAV binding-affinity effects. Follow up
measurements of associated proteins with antibody-based assays would provide further
independent validation of PWAS discoveries. While protein models can present unique
challenges in interpretation, they are useful for discovery.

In addition to binding-affinity confounding, there are other limitations to our
approach. The SOMAscan platform interrogates a subset of plasma proteins, and thus
applying PrediXcan is not yet truly a proteome-wide association study. Protein
measurement in other tissues is likely more appropriate than plasma for
non-blood-related phenotypes. Proteins with low heritability or levels that fluctuate

greatly in response to environmental stimuli are not well suited to the PWAS approach.

Additionally, trans-acting SNPs were not included in this analysis, but may be useful for
prediction, especially as proteome sample sizes increase. We demonstrated

population-matched baseline protein prediction models map the most trait associations
that replicate in larger populations. More genomes and proteomes in African ancestries
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and admixed populations are needed to improve fine-mapping protein model
development and to better understand the mechanisms underlying complex traits in all
populations.

Materials and methods

Ethics statement

This work was approved by the Loyola University Chicago Institutional Review Board
(Project numbers 2014 and 2829). All data were previously collected and analyzed
anonymously.

Training data
TOPMed MESA

The Trans Omics for Precision Medicine (TOPMed) Consortium seeks to further
elucidate the genetic architecture of several complex diseases including heart, lung, and
sleep disorders through whole-genome sequencing, additional omics integration, and
clinical phenotyping [61]. TOPMed includes data from a number of studies including
the Multi-Ethnic Study of Atherosclerosis (MESA) [31]. Samples from MESA were used
to measure multiple omics traits in the TOPMed MESA Multi-omics Pilot Study [25].
Here, we used the TOPMed MESA proteomics data to train protein prediction models
from genotypes. Protein levels were previously measured using a SOMAscan HTS Assay
1.3K for plasma proteins. The SOMAscan Assay is an aptamer based multiplex protein
assay which measures protein levels by the number of protein specific aptamers which
successfully bind to their target protein, though some proteins may be targeted by
multiple aptamers [24,25]. When more than one aptamer targets the same protein, each
aptamer typically targets different isoforms of the same protein. In this study, each
aptamer-based measurement is considered an independent protein. The TOPMed
MESA training data we used includes genotypes and protein level measurements for
four populations: African American (AFA, n = 183), Chinese (CHN, n = 71), European
(EUR, n = 416), and Hispanic/Latino (HIS, n = 301). In addition to these we also
consider a multi-ethnic population comprised of all four populations combined (ALL,
n =971).

Test data

INTERVAL

Our test data come from the INTERVAL study, comprised of 3,301 individuals of
European ancestries with both genotype (EGAD00010001544) and blood plasma
aptamers levels as measured by a SOMAscan assay (EGADO00001004080) [26, 34, 62].

The SOMAscan assay employed by INTERVAL measured 3,622 proteins measured [62].

Data generation and quality control have been previously described in detail [26, 34].
Genotyping was performed using an Affymetrix Axiom UK Biobank genotyping array
and imputed on the Sanger imputation server using a combined 1000 Genomes Phase
3-UK10K reference panel [26,63]. We used genotypes with MAF >0.01, R? > 0.8.
Protein abundances were previously log transformed, adjusted for age, sex, duration
between blood draw and processing (binary, < 1 day/>1 day) and the first three
genetic principal components [26]. We used the rank normalized residuals from this
linear regression as our measure of protein abundance.
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TOPMed genotype QC

Genotypes and measured protein aptamer levels were available for 971 individuals.
Genotype data were accessed via the MESA SHARe study (phs000420.v6.p3) and were
imputed on the Michigan imputation server (Minimac4.v1.0.0) using the 1000 Genomes
reference panel [15]. Genotypes in each individual population were filtered for
imputation R? > 0.8, MAF > 0.01. The multiethnic ALL population genotypes were
filtered to the intersection of SNPs with imputation R? > 0.8 in all four individual
populations and M AF > 0.01 across all 971 individuals. We used the genotype dosages
as predictors in our regression analyses [64—66].

We used PCAIR as implemented in the GENESIS library in R to calculate robust
estimates of principal components in the presence of cryptic relatedness [67,68]. Prior
to calculating principal components, the KING algorithm makes robust estimates of the
pairwise kinship matrix within a population [69,70]. Then, the PCAIR algorithm
partitions data into a set of mutually unrelated individuals used to estimate principal
components and a set of related individuals whose eigenvectors are imputed on the basis
of kinship measures. We calculated principal components within each population and in
the ALL population for use in protein prediction model building. The partition of
related individuals contained 1 person within AFA, 2 people within CHN, 5 in EUR,
and 25 in HIS. Within the ALL population 44 people were contained within the related
partition. We also calculated principal components including ALL and 1000 Genomes
reference populations to visualize population structure across MESA (S1 Fig).

TOPMed protein aptamer level QC

Protein levels were measured at two time points, Exam 1 and Exam 5 of MESA. Similar
to a previous SOMAscan protein study [26], we log transformed each time point and
then adjusted for age and sex. We then took the mean of the two time points (if a
participant was not measured at both time points then we treated the measured time
point as their mean), performed rank inverse normalization, and adjusted for the first
ten genotypic principal components prior to downstream modeling.

pQTL fine mapping

We used Matrix eQTL [71] to perform a genome wide cis-acting protein QTL (pQTL)
analysis in each population (AFA, CHN, EUR, and HIS) as well as in all four
populations combined (ALL). We performed association testing using the protein
aptamer level adjusted for age, sex, and 10 genotypic principal components as the
response and SNPs as the predictors. We defined the cis-acting SNPs as those within 1
Mb of the transcriptional start site (TSS) of the gene corresponding to the aptamer.
Aptamers may map to more than one gene as in the case the aptamer binds to a protein
complex. However, for all analyses done here, we treated these multiple cis-windows as
independent loci and estimate these cis-effects separately for each gene to which an
aptamer maps. For those aptamers which map to multiple genes, each aptamer-gene
pair is treated as an independent phenotype with identical values.

We performed fine mapping using the software tool DAP-G [72,73]. After identifying
cis-pQTLs, prior probabilities are estimated from pQTL data using the software tool
torus [74]. These priors are then used by the DAP-G algorithm to estimate the
posterior inclusion probability (PIP) of a given SNP within a particular cis-window as
likely causal (or tightly linked to the causal SNP) for the protein in question. We note
that without a functional assay, a causal SNP cannot be distinguished from a proxy
SNP. As in pQTL discovery, fine mapping is done independently for each gene to which
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an aptamer maps. Aptamer level annotations were created by mapping proteins to
genomic coordinates using GENCODE (GRCh38), version 32 (Ensembl 98) [75].

Elastic net regression

In all five training populations (AFA, ALL, CHN, EUR, and HIS) we performed nested
cross-validated elastic net regression [76] with mixing parameter o = 0.5 using genotype
dosages within the 1 Mb cis-window as predictors and the adjusted protein aptamer
levels as response. Models were trained using the ’glmnet’ package in R [77]. We used
nested cross-validation to calculate cross validated Spearman correlation (p) between
predicted and observed protein levels as our metric of model performance using 5 folds
in our outer loop with the A that minimizes the cross validated error estimated by
10-fold cross validation in our inner loop. The final model for testing in INTERVAL and
use in PWAS is then fit on all data with lambda chosen by 10-fold cross validation. As
a measure of model quality, using the same thresholds used in PrediXcan transcriptome
modeling [11,33], we filtered each model set to include those protein models with a
cross-validated p > 0.1 and p < 0.05. We term models built in this manner as “baseline’
elastic net models.

In addition to the baseline elastic net models, we trained elastic models using the
fine-mapped PIPs as penalty factors as described in Barbeira et al. 2020 [33]. A penalty
factor of 0 for a particular SNP will result in that SNP always being kept in the model
while a higher penalty factor will result in that SNP being less likely to be included in
the model. We use 1 — PIP as penalty factors for elastic net regression. The higher the
PIP, the more likely the SNP associates with protein and the lower the penalty factor,
or the more likely that SNP is kept in the regression model. We test three thresholds of
minimum PIP for each SNP to be considered as a predictor for a protein: PIP > 0,
PIP > 0.001, and PIP > 0.01. In each case, we only included those SNPs with a PIP
higher than the given threshold as predictors for a given protein. Additionally, DAP-G
assigns SNPs to clusters based on linkage disequilibrium. We employ two strategies for
handling these clusters. First, as SNPs within a cluster are correlated, we filter these
clusters to only include the SNP with the highest PIP. These SNPs which pass our PIP
threshold are then used for elastic net regression. Second, we do no filtering based on
cluster and use all SNPs that pass the PIP threshold are then used for elastic net
regression. See S1 Table for a summary of all the model sets built as well as notation.

i

Protein altering variants

Protein assays that rely on binding are susceptible to the possibility of binding-affinity
effects. SNPs in a protein’s aptamer binding site may affect subsequent protein level
measurement. Following the convention of Sun et al., we term Protein Altering Variants
(PAVs) as SNPs which may result in differential binding to the target aptamer [26]. We
use the the Ensembl VEP v100.2 tool to annotate variants using the “per gene”
option [78,79]. PAVs are variants annotated as one of the following: consequence in
coding sequence variant, frameshift variant, inframe deletion, inframe insertion,
missense variant, protein altering variant, splice acceptor variant, splice donor variant,
splice region variant, start lost, stop gained, or stop lost. To address the possibility of
binding affinity effects we built additional models that adjust for PAVs. For each
protein, we extracted the matrix of PAV genotypes and used this to perform principal
component analysis. We use the number of PCs which account for 95% of variance in
the matrix of PAV genotypes to adjust the protein abundance. We used the residuals of
this linear regression as the adjusted protein abundance. We removed the PAVs from
the genotype matrix and then performed elastic net regression on the adjusted protein
abundance. If no PAVs that pass genotype QC were in the 1Mb cis-window, we made
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no adjustment and reran the baseline elastic net regression. We compared adjusted
models to unadjusted models to determine if the prediction was driven by the PAVs
(reduced correlation) or SNPs independent of the PAVs (similar correlation). Reduced
correlation in the adjusted model could be due to binding affinity effects or could mean
the PAVs are linked to a SNP functioning to affect protein abundance.

Adjustment for Apo E haplotypes

The PAVs which define isoforms of Apo E (rs429358 and 1rs7412) are well known loci
which associate with Alzheimer’s Disease and cholesterol

phenotypes [1,37,38,40-43,80-82]. The €2 allele is defined by the T-T haplotype, €3 by
T-C, and €4 by C-C at rs429358 and rs7412, respectively. Because rs429358 and rs7412
did not pass genotype QC in all training populations due to imputation R? < 0.8, they
were not included in our elastic net modeling and fine-mapping. However, both SNPs
had imputation R? > 0.4 in all populations, so we used the imputed genotypes to
examine the effect of of PAV adjustment at this important locus.

Out of sample testing in INTERVAL

We obtained measurements of protein abundance that were previously natural
log-transformed; adjusted for age, sex, duration between blood draw and processing,
and the first 3 genetic principal components; and rank-inverse normalized [26]. We
predicted protein abundance in the INTERVAL cohort using models built in each
TOPMed MESA population. We used the Spearman correlation between the predicted
abundance for a protein and the observed abundance for a protein as our measure of
prediction accuracy. Of the proteins measured in INTERVAL, 804 protein aptamers
mapped uniquely to an aptamer measured in TOPMed.

Proteome-wide association studies

To study the utility of our protein predictive models for association studies, we ran
S-PrediXcan using GWAS summary statistics derived from the Population Architecture
using Genomics and Epidemiology (PAGE) study [1,32,35]. PAGE is a large cohort of
multi-ethnic, non-European ancestries comprising 49,839 individuals with summary
statistics available from the GWAS Catalog for 28 clinical and behavioral phenotypes.
Individuals in PAGE self-identified as African American/Afro-Caribbean,
Hispanic/Latin American, Oceanian, Hawaiian, and Native American [1,35]. We
performed S-PrediXcan the find protein associations with the PAGE 28 phenotypes
using protein prediction models from each TOPMed MESA population. We considered
protein-trait associations significant if they met the Bonferroni significance threshold
calculated by counting all association tests performed for a given model, i.e., baseline or
fine-mapped. For example, for the baseline model sets, all association tests for all
populations and all phenotypes were pooled, and the Bonferroni threshold was
calculated as 0.05/nests. This threshold was calculated independently for each model
building strategy (p < 1.54e — 06 for baseline, p < 9.59¢ — 07 for fine-mapped).

Colocalization

We applied the software COLOC [32,83-85] to our TOPMed pQTL summary statistics
and PAGE GWAS summary statistics [1] to determine if pQTLs and GWAS hits are
colocalized. We used COLOC version 4.0-4 [85], which allows user inputted LD
correlation matrices for interpreting LD patterns at certain loci. Using SNPs within
1Mb of the transcription start and end sites of each protein-coding gene, we built LD
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correlation matrices from TOPMed MESA for our COLOC analyses using

PLINK [65,66]. COLOC outputs posterior probabilities (P) for each of their five
hypotheses. A high P4 probability (P4 > 0.5) suggests that the pQTL and GWAS
signals are colocalized while a P3 probability greater than 0.5 indicates likely
independent pQTL and GWAS signals. PO, P1, and P2 values greater than 0.5 indicate
an unknown association [32,85]. COLOC version 4.0-4 allows users to relax the
assumption that there is only a single independent association for each phenotype tested
and outputs SNP-level results for multiple variants. For this analysis, each protein-level
needs only one set of variants to have P4 > 0.5 for it to be considered significantly
colocalized with a phenotype. We determined if a protein-level has colocalized or
independent signals by looking at the highest P4 value.

Replication

To test protein-trait associations discovered in PAGE for replication, we performed
S-PrediXcan with GWAS summary statistics from the UKBiobank with the same or
similar phenotypes as those included in PAGE [1,2]. However, some PAGE phenotypes
were not tested in the available UKBiobank GWAS
(http://www.nealelab.is/uk-biobank/) [2], thus we performed S-PrediXcan in an
available GWAS with a large European sample size for the same or similar trait as the
PAGE phenotype (S2 Table) [3-10]. For this reason, we refer to this set of GWAS as
UKB+.

We examine only our colocalized, S-PrediXcan significant associations in PAGE for
replication in UKB+. We define an association as replicated if the same association is
also S-PrediXcan Bonferroni significant (p < 1.54e — 06 for baseline, p < 9.59¢ — 07 for
fine-mapped) in UKB+ and has the same direction of effect.

Supplemental Data

Supplemental data include eight figures and seven tables.
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Web Resources

PrediXcan/S-PrediXcan https://github.com/hakyimlab/MetaXcan
GENESIS
https://bioconductor.org/packages/release/bioc/html/GENESIS.html
MatrixeQTL https://github.com/andreyshabalin/MatrixEQTL
COLOC https://github.com/chriswallace/coloc
DAP-G https://github.com/xqwen/dap

August 4, 2021

16/29

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623


https://doi.org/10.1101/2021.08.11.455912

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455912; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC

105 and is also made available for use under a CCO license.

glmnet https://cran.r-project.org/web/packages/glmnet/index.html
torus https://github.com/xqwen/torus

plink1.9 https://www.cog-genomics.org/plink/1.9/

plink2 https://www.cog-genomics.org/plink/2.0/

beftools http://samtools.github.io/bcftools/beftools.html

veftools https://vcftools.github.io/man_latest.html

Data and Code Availability

Models presented in the main text are available at
https://doi.org/10.5281/zenodo.4837328 and will be available at predictdb.org
upon publication.

Code for supporting figures and analysis are available here
https://github.com/RyanSchu/TOPMed_protein_prediction

UKB GWAS summary statistics can be accessed via
http://www.nealelab.is/uk-biobank/. All other large European GWAS can be
accessed through the GWAS catalog. A list of studies can be found in ?7?.

Data from INTERVAL are under controlled access via the European
Genome-phenome Archive https://ega-archive.org/ for both genotypes
(EGAD00010001544) and blood plasma aptamers levels as measured by a SOMAscan
assay (EGAD00001004080)

PAGE GWAS summary statistics are available in the GWAS Catalog at
https://www.ebi.ac.uk/gwas/publications/31217584.

MESA data are under controlled access in dbGaP
https://www.ncbi.nlm.nih.gov/gap/. Genotypes are available through accession
phs000420.v6.p3 and protein data will be available through accession phs001416.v2.p1.
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Supporting information captions

S1 Fig. Genotype principal component analysis. Biplot of the first two
principal components of TOPMed MESA populations with 1000 Genomes reference
populations. Genetic PCs of TOPMed participants with both genomic and proteomic
data were estimated with PCAIR. Pop codes: TOPMed African American (AFA),
TOPMed Chinese (CHN), TOPMed European (EUR), TOPMed Hispanic (HIS), 1000
Genomes East Asians from Beijing, China and Tokyo, Japan (ASN), 1000G European
ancestry from Utah (CEU), and 1000G Yoruba from Ibadan, Nigeria (YRI).

S2 Fig. Protein prediction model counts. In total 1238 unique protein aptamers
have significant prediction models (p >0.1, p <0.05) across all strategies and training
populations. Number of significant protein models scales approximately with sample
size of the training population, with the exception of ALL fine-mapped models.

S3 Fig. Protein prediction model performance correlations. The pairwise
Pearson correlations between prediction performance of each model building strategy
trained in each TOPMed MESA population. Prediction performance is the Spearman
correlation between observed and predicted expression in the independent INTERVAL
study. Note, most fine-mapped models within a population had high correlation, with
slightly reduced correlations between fine-mapped (LD cluster filtered true) and
baseline models. See S1 Table for model notations.

S4 Fig. Fine-mapped to baseline model comparisons. Vertical axis is the fine
mapped model performance when predicting in INTERVAL. Horizontal axis is the
baseline elastic net model performance when predicting in INTERVAL. Each dot
represents a protein that is predicted by both baseline models and fine mapped models.
Performance is measured as the Spearman correlation between the measured protein
aptamer level and the predicted protein aptamer level.

S5 Fig. Population specific performance in an independent cohort. We
compare the performance of our different training populations at predicting in
INTERVAL, a predominantly European cohort. For a particular model building
strategy we first take the intersection of proteins that are predicted by all five training
populations and then test for differences in the distribution of Spearman correlations by
ANOVA and permuted F-test. We find a significant difference among training
populations for our baseline elastic net models (30 proteins, F=13.30, p=5.93¢-09),
0.001_F models (61 proteins, F=3.41, p=0.0098), and 0_F models (59 proteins, F=3.54,
p=0.0080).
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S6 Fig. Significant PWAS association counts in PAGE. Fine-mapped model
sets consistently have a greater number of Bonferroni significant associations than
baseline model sets. However when including significant evidence of colocalization by
COLOC and replication status as additional significance criteria, baseline has a higher
number of significant associations.

S7 Fig. Comparison of protein altering variant (PAV) adjusted baseline
models to unadjusted baseline models. Cross-validated rho within each TOPMed
MESA population is plotted on both axes. PAV adjusted model sets are on the Y axis,
while standard model sets are plotted on the X axis. Most models were unadjusted for
PAVs as the protein does not contain a PAV (yellow points).

S8 Fig. Performance of PAV adjusted model sets vs unadjusted model
sets in INTERVAL. Prediction performance rho in INTERVAL using models built in
each TOPMed MESA population is plotted. PAV adjusted model sets are on the Y axis,
while standard model sets are plotted on the X axis. Most models were unadjusted for
PAVs as the protein does not contain a PAV (yellow points). Most models are either
unadjusted (yellow) or have only a small decrease in performance. 7.0% of models had a
larger decrease in performance (change in rho;0.1), but maintained significance. Not
plotted here is the 23.6% of models which are significant in our unadjusted regression,
but are no longer significant in our PAV adjusted regression.

S9 Fig. Distribution of protein-associated SNP posterior inclusion
probabilities (PIPs). The vast majority of PIPs used to calculate penalty factors in
our fine-mapped models are near 0. A) Distribution of PIPs >0 B) PIPs >0.001 C)
PIPs >0.01.

S1 Table. Protein prediction model notation. For each training population, we
built seven types of model for comparison. One standard elastic net regression, and six
fine-mapped model sets with variable PIP (posterior inclusion probability) threshold
and LD filtering strategies. For fine-mapped models, SNPs must meet the minimum
PIP threshold specified to be included as predictors. Additionally as our fine mapping
software, DAP-G, clusters SNPs according to LD, we optionally filter clusters to only
include the SNP with the highest PIP.

S2 Table. UKB+ data. Sources for GWAS summary statistics comprising our
UKB+ data. Where possible we use GWAS summary statistics generated using the
UKB. However, when a phenotype is not available, we sourced data from the GWAS
catalogue for other large European GWAS.

S3 Table. Proteins not in MASHR summaries. Model summaries for all
proteins that do not have an RNA equivalent model for either Whole Blood models or
any tissue as published in Barbeira et al 2020 GTEx v8 MASHR models. In total 19
distinct protein aptamers do not have an RNA equivalent model across any tissue model
from Barbeira et al. 2020 GTEx v8 MASHR models. 424 aptamers do not have an
RNA equivalent model in Whole Blood models from Barbeira et al. 2020 GTEx v8
MASHR models.

S4 Table. Fine-mapped to baseline paired t-test statistics. Test statistics
and p values for model comparisons between fine-mapping strategies and baseline elastic
net models. Fine-mapped models in AFA consistently outperformed baseline models.
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Fine-mapped CHN was either significantly better or not different. Fine-mapped ALL,
HIS, and EUR were either significantly worse or not different.

S5 Table. Population specific performance comparison statistics. Test
statistics for ANOVA and permuted F test comparing the predictive performance of
different training populations for a particular model building strategy. ANOVA is run
using the training population and the aptamer model id as factors and Spearman
Correlation as response. For our permuted F test the aptamer model id is treated as a
blocking factor for permutation.

S6 Table. Tukey’s HSD for population differences. Results of Tukey’s HSD
for model building strategies that showed a significant difference in training populations
by ANOVA. For baseline elastic net models, EUR, HIS, and ALL were all significantly
greater than CHN and AFA with all other pairs not significantly different. For 0.001_F
models only HIS was greater than CHN with all other pairs not significantly different.
For 0_F models both HIS and ALL were significantly greater than CHN with all other
pairs not significantly different.

S7 Table. List of Colocalized, S-PrediXcan significant associations in
PAGE. Across all model building strategies and training populations we identify 27
distinct associations that are both S-PrediXan significant and with significant evidence
of colocalization. This spans 11 unique protein models and 8 phenotypes.
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Fig 3. Protein prediction performance between training populations within
each model building strategy. We compare the performance of TOPMed MESA
ALL and EUR training populations in the INTERVAL study, a European population.
For each model building strategy we first take the intersection of proteins that are
predicted by both training populations and then test for differences in the distributions
of Spearman correlation (p) by a Wilcoxon signed-rank test. INTERVAL p was
significantly higher when we used the ALL training population in both our baseline

(p = 0.0012) and fine-mapped (p = 0.0064) modeling strategies. (A) The distributions of
INTERVAL p are plotted in each training population and modeling strategy. (B) The
pairwise performance comparisons between ALL and EUR training populations are
shown, each point represents a protein. The blue contour lines from two-dimensional
kernel density estimation help visualize where the points are concentrated.
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Fig 4. Predicted protein-trait association results summary. (A) Bonferroni
significant (baseline p < 1.54e — 06; fine-mapped p < 7.60e — 07) protein-trait
association counts when we applied S-PrediXcan to 28 traits in PAGE using protein
prediction models from each TOPMed MESA population and model building strategy.
(B) Protein-trait pairs from A that also have a COLOC colocalization probability >0.5.
(C) Protein-trait pairs from B that replicate (baseline p < 1.54e — 06; fine-mapped

p < 9.59¢ — 07) in independent studies from the UKBioBank or other large, European
ancestries cohorts. Bonferroni threshold for fine-mapped models is calculated separately
from the Bonferroni threshold for baseline models.

August 4, 2021 28/29


https://doi.org/10.1101/2021.08.11.455912

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455912; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

TOPMed ALL

INTERVAL

Normalized Protein Abundance

I
|

E2/E3 E3/E3 E3/E4
APOE Genotype

T
E4/E4

Target
Isoform

- Apo E
B3 ApoE2
E3 ApoE3
E3 ApoE4

Fig 5. Distribution of adjusted protein abundance. We observe a linear
association between APOF genotype and mean abundance of each Apo E isoform. Note
that within a genotype, the target isoforms from the SOMAscan assay do not vary,
indicating epitope cross-reactivity effects are likely. Top: Association in TOPMed ALL
6 =0.498, p = 4.60e — 27. Bottom: Association in INTERVAL 8 = 0.295,

p = 1.98¢ — 35. Only two isoforms were available in the INTERVAL dataset.
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