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Abstract

Genetically regulated gene expression has helped elucidate the biological mechanisms
underlying complex traits. Improved high-throughput technology allows similar
interrogation of the genetically regulated proteome for understanding complex trait
mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed)
Multi-omics pilot study, which comprises data from Multi-Ethnic Study of
Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for
genetically regulated proteome-wide association studies (PWAS) in diverse populations.
We built predictive models for protein abundances using data collected in TOPMed
MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared
predictive models built via elastic net regression to models integrating posterior
inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to
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investigate the transferability of predictive models across ancestries, we built protein
prediction models in all four of the TOPMed MESA populations, African American
(n=183), Chinese (n=71), European (n=416), and Hispanic/Latino (n=301), as well as
in all populations combined. As expected, fine-mapping produced more significant
protein prediction models, especially in African ancestries populations, potentially
increasing opportunity for discovery. When we tested our TOPMed MESA models in
the independent European INTERVAL study, fine-mapping improved cross-ancestries
prediction for some proteins. Using GWAS summary statistics from the Population
Architecture using Genomics and Epidemiology (PAGE) study, which comprises ∼50,000
Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans,
we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait
associations were discovered, colocalized, and replicated in large independent GWAS
using proteome prediction model training populations with similar ancestries to PAGE.
At current training population sample sizes, performance between baseline and
fine-mapped protein prediction models in PWAS was similar, highlighting the utility of
elastic net. Our predictive models in diverse populations are publicly available for use in
proteome mapping methods at https://doi.org/10.5281/zenodo.4837328.

Author summary

Gene regulation is a critical mechanism underlying complex traits. Transcriptome-wide
association studies (TWAS) have helped elucidate potential mechanisms because each
association connects a gene rather than a variant to the complex trait. Like
genome-wide association studies (GWAS), most TWAS are still conducted exclusively in
populations of European ancestry, which misses the opportunity to test the full
spectrum of human genetic variation for associations with complex traits. Here, move
beyond the transcriptome and because protein measurement assays are growing to allow
interrogation of the proteome, we use data from TOPMed MESA to develop genetic
predictors of protein abundance in diverse ancestry populations. We compare
model-building strategies with the goal of providing the best resource for protein
association discovery with available data. We demonstrate how these prediction models
can be used to perform proteome-wide association studies (PWAS) in diverse
populations. We show the most protein-trait associations were discovered, colocalized,
and replicated in independent cohorts using proteome prediction model training
populations with similar ancestries to individuals in the GWAS. We shared our protein
prediction models and performance statistics publicly to facilitate future proteome
mapping studies in diverse populations.

Introduction 1

Genome-wide association studies (GWAS) have uncovered novel genetic associations 2

underpinning a wide array of complex traits [1–10]. Methods like PrediXcan and 3

FUSION have successfully integrated underlying gene regulation mechanisms in gene 4

mapping studies [11,12]. In these so-called transcriptome-wide association studies 5

(TWAS), reference expression quantitative trait loci (eQTL) data are used to build 6

models that predict gene expression levels from genotypes. The models are integrated 7

with GWAS data to test genes, rather than SNPs, for association with complex traits. 8

TWAS have a lower multiple testing correction burden than GWAS and provide clear 9

gene targets for future investigations [13,14]. In addition, TWAS inherently include 10

information such as direction of effect for a gene on a trait that is not often apparent at 11

the SNP level. 12
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Like polygenic risk scores, the efficacy of predictive models at the transcriptome 13

level is reduced by differences in linkage disequilibrium, allele frequencies, and effect 14

sizes across populations [15–20]. The exclusion of non-European ancestry populations 15

from much of human genetics diminishes the promise of precision medicine and misses 16

opportunities for fine-mapping and locus discovery [21,22]. Population-matched 17

transcriptome prediction increases TWAS discovery and replication rate [23]. Thus, as 18

multi-omics studies increase and methods like PrediXcan expand to include omics traits 19

beyond the transcriptome, inclusion of diverse ancestral populations is crucial. With the 20

advent of high-throughput proteome technologies [24,25], many studies have identified 21

protein QTLs (pQTLs), especially in plasma and European ancestries 22

populations [26–28]. Like eQTLs, GWAS are often enriched in pQTLs, and 23

proteome-wide association studies (PWAS) have been proposed [29,30]. 24

Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot 25

study [25], which comprises data from the Multi-Ethnic Study of Atherosclerosis 26

(MESA) [31], to optimize genetic predictors of the plasma proteome for PWAS. We 27

trained protein prediction models using genotype and plasma proteome data from an 28

aptamer-based assay of 1305 proteins from 971 individuals of African American, 29

Chinese, European, and Hispanic/Latino populations. We compared model building 30

methods that included fine-mapping to baseline elastic net within each population and 31

across all populations. We tested our protein prediction models in the independent 32

INTERVAL study [26] and show that while fine-mapping may improve cross-population 33

prediction performance, larger sample sizes are needed to increase confidence in 34

independent signals. We also applied S-PrediXcan [32] to the PAGE Study GWAS 35

summary statistics [1] to assess model performance in a PWAS framework. 36

PrediXcan [11] requires genotype data to estimate expression levels for use in 37

association testing, but S-PrediXcan [32] requires only GWAS summary statistics to 38

perform TWAS. The linkage disequilibrium (LD) reference information for S-PrediXcan 39

comes from the protein prediction model training population. We show 40

population-matched protein prediction models yield more reliable associations, defined 41

by colocalization and independent replication in large European GWAS, including those 42

available from UKBiobank. We make all protein prediction models publicly available at 43

https://doi.org/10.5281/zenodo.4837328 for use in PrediXcan and S-PrediXcan. 44

Results 45

Fine-mapping integration in protein abundance prediction 46

model training 47

We set out to provide a useful resource for proteome association discovery in diverse 48

populations. We sought a balance between protein prediction model performance and 49

maximizing the number of proteins that can be tested for association with complex 50

traits in PWAS. Using the same thresholds for significance as PrediXcan transcriptome 51

modeling [11,33], we quantified model quality by counting the number of protein models 52

with cross validated ρ > 0.1 and p < 0.05 within each population and model building 53

strategy. We compared baseline and fine-mapped elastic net models predicting protein 54

levels from SNP genotypes in each TOPMed MESA population, which included African 55

Americans (AFA, n=183), Chinese (CHN, n=71), Europeans (EUR, n=416), 56

Hispanic/Latinos (HIS, n=301), and all populations combined (ALL, n=971) (S1 Fig). 57

We tested several posterior inclusion probability (PIP) thresholds and LD cluster 58

filtering decisions to optimize our fine-mapping strategy (S1 Table). At all thresholds, 59

our fine-mapping strategy produced more predictive models compared to baseline, 60

which we expected because we performed SNP-level fine-mapping in the full data set 61
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prior to cross-validated elastic net modeling (Fig 1, S2 Fig). Because all fine-mapped 62

models within a populations showed similar and higher correlation to each other than to 63

baseline (S3 Fig), we chose to focus on one set of fine-mapped models, those with 64

PIP>0.001 and filtered LD clusters, to compare with baseline elastic net for the rest of 65

the main text. The PIP>0.001 and filtered LD clusters models, which we will now refer 66

to as our “fine-mapped” models (Fig 1), balance performance with the number of 67

proteins available for PWAS. 68

We found that 1187 unique protein aptamers have a significant prediction model 69

across all training populations and both our baseline and fine-mapped model building 70

strategies. While the smallest training population, CHN, produced the smallest number 71

of models for either strategy, AFA, HIS, and EUR produce comparable numbers of 72

models in spite of sample size differences (Fig 1B). For example, despite being less 73

than half the size of the EUR population, about the same number of fine-mapped 74

protein models were significant in AFA. This is likely due to more SNP variation in 75

African ancestry populations, which leads to more features for prediction. 76

While the ALL combined population produced the most significant protein models 77

in our baseline strategy, fine-mapping in ALL led to fewer protein models than in AFA, 78

HIS, or EUR (Fig1B). Fine-mapping in ALL may home in on cross-population 79

associated variants with similar effect sizes at the expense of population-specific 80

variation. 81

In addition, we determined if any of our significant protein models represented new 82

genes not covered in previous transcriptome prediction modeling. As proteins measured 83

in blood plasma may contain proteins excreted by a number of tissues we compared our 84

protein models to RNA models built in both Whole Blood as well as all 49 GTEx 85

tissues [33]. In total, between both model building strategies and all training 86

populations, we found 372 distinct protein aptamers with at least one predictive model 87

that do not have an RNA equivalent model from GTEx v8 MASHR Whole Blood 88

models, 18 of which do not have an RNA equivalent model in any tissue in GTEx v8 89

MASHR models [33] (S3 Table). 90
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Fig 1. Protein prediction performance in TOPMed MESA populations. A.
Distributions of prediction performance across proteins within each training population
between modeling strategies. ρ is the Spearman correlation between predicted and
observed protein abundance in the cross-validation. Fine-mapping prior to elastic net
modeling produces more significant (ρ > 0.1, vertical dotted line) protein prediction
models than baseline elastic net. B. Significant (ρ > 0.1, p < 0.05) protein model counts
compared to population sample size colored by modeling strategy. TOPMed MESA
populations: CHN, Chinese; AFA, African American; HIS, Hispanic/Latino; EUR,
European; ALL, all populations combined.
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Fine-mapping can improve cross-population protein prediction 91

performance 92

While fine-mapping leads to more models which may allow for more associations to be 93

discovered in PWAS, our strategy could lead to overfitting. Thus, we next assessed 94

model performance by testing our TOPMed MESA models in an independent proteome 95

study. We tested the performance of models trained in the TOPMed MESA populations 96

for predicting protein levels from individual level genotypes using the INTERVAL study 97

(n= 3301 Europeans) [26,34]. We predicted protein abundance in INTERVAL using 98

both fine-mapped and baseline models trained in each TOPMed MESA population, for 99

a total of 10 model sets. Of the 804 protein aptamers measured within INTERVAL that 100

map uniquely to the same aptamer measured in TOPMed MESA, 597 unique protein 101

aptamers had a significant prediction model in at least one model set. 102

We compared the performance of the fine-mapped model set to baseline model set 103

within each training population by comparing the distributions of the Spearman 104

correlations using Wilcoxon signed-rank tests. Fine-mapped models trained in AFA and 105

CHN had significantly better prediction in INTERVAL than baseline elastic net models, 106

fine-mapped models trained in EUR and HIS were not significantly different, while 107

fine-mapped models trained in ALL were significantly worse (Fig 2). Over the range of 108

fine-mapping thresholds we tested, we found similar results. Fine-mapped models in 109

AFA consistently outperformed baseline models, fine-mapped CHN was either 110

significantly better or not different, and fine-mapped ALL, HIS, and EUR were either 111

significantly worse or not different from baseline (S4 Table, S4 Fig). 112

Within each model building strategy, we were interested in comparing protein 113

prediction performance in INTERVAL between the similar ancestries EUR training 114

population and the larger, multi-ancestries ALL population. In order for a protein to be 115

predicted in INTERVAL, at least one SNP in the MESA model must be polymorphic 116

(MAF>0.01) in INTERVAL. Within the baseline models, more proteins were predicted 117

in INTERVAL using the ALL training population (n = 183) compared to EUR (n = 118

149), with 107 shared proteins. However, more proteins were predicted with EUR 119

fine-mapped models (n = 340) compared to ALL fine-mapped models (n = 259), with 120

183 shared proteins. Yet, for the proteins predicted by both training populations in 121

INTERVAL, the ALL population predicted better with both the baseline (Wilcoxon 122

signed-rank test p = 0.0012) and fine-mapped (Wilcoxon signed-rank test p = 0.0064) 123

model building strategies (Fig 3). The mean difference of ALL - EUR prediction 124

performance was larger, but with more variance, using the fine-mapped (mean [95% CI] 125

= 0.018 [0.00070-0.036]) compared to baseline (mean [95% CI] = 0.0074 [0.0027-0.012]) 126

models. Thus, fine-mapping across ancestries can be beneficial to prediction (Fig3B). 127

Fine-mapping across ancestral populations likely leads to better performance when 128

causal SNPs are shared among the populations. We note that without a functional 129

assay, a causal SNP cannot be distinguished from a proxy SNP in high LD. When we 130

compared all five TOPMed MESA training populations within each model building 131

strategy, most prediction performance of common proteins did not vary between 132

populations, with occasional decreased performance in the smaller compared to the 133

larger populations (S5 Fig, S5 Table, S6 Table). As sample sizes in proteomics 134

studies increase, allowing identification of SNPs with higher PIP values, including 135

trans-acting pQTLs, we anticipate increased benefit from multi-ancestries fine-mapping. 136

Population-matched protein prediction models map the most 137

trait associations 138

To test whether fine-mapping prior to model building leads to discovery of more 139

protein-trait associations, we applied S-PrediXcan [32] using our TOPMed MESA 140
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Fig 2. TOPMed MESA protein prediction model performance comparison
in the independent INTERVAL population. Within each training population,
the fine-mapped model performance in INTERVAL (y-axis) is compared to the baseline
elastic net model performance in INTERVAL (x-axis). Each dot represents a protein
that is predicted by both baseline models and fine-mapped models. Performance was
measured as the Spearman ρ between the measured protein aptamer level and the
predicted protein aptamer level. Fine-mapped models performed better than baseline
models in AFA (Wilcoxon signed-rank test, p = 0.0016) and CHN (p = 0.036), were not
significantly different in EUR (p = 0.74) and HIS (p = 0.54), and significantly worse in
ALL (p = 0.0085). TOPMed MESA populations: AFA, African American; ALL, all
populations combined; CHN, Chinese; EUR, European; HIS, Hispanic/Latino.

prediction models to test proteins for association with the 28 phenotypes analyzed in the 141

PAGE GWAS [1,35]. Individuals in the PAGE study self-identified as Hispanic/Latino 142

(n = 22,216), African American (n = 17,299), Asian (n = 4,680), Native Hawaiian (n = 143

3,940), Native American (n = 652), or Other (n = 1,052) [1]. We identified a total of 29 144

distinct Bonferroni significant protein-trait associations using baseline elastic net models 145

and 54 using fine-mapped models (p < 1.54e− 06 for baseline, p < 7.60e− 07 for 146

fine-mapped, S7 Table). The most associations were found when applying models built 147

in TOPMed AFA followed by TOPMed HIS, regardless of model building strategy (Fig 148

4A). We observed similar patterns for most fine-mapping thresholds tested (S6 Fig). 149

For protein-trait pairs discovered via S-PrediXcan, we then performed colocalization 150

analysis to provide more evidence the SNPs in the protein region are acting through 151

protein regulation to affect the associated phenotype. Similar numbers of distinct 152

protein-trait associations are both S-PrediXcan significant and colocalized between 153

baseline elastic net models (22) and fine-mapped models (21) (Fig 4B, S7 Table). 154

We then use the UKB+ GWAS summary statistics (see Methods) to survey which 155

protein-trait pairs replicate in independent data. The majority of associations that are 156

both colocalized and S-PrediXcan significant in PAGE replicated with the same 157

direction of effect in the UKB+ data (p < 1.54e− 06 for baseline, p < 9.59e− 07 for 158

fine-mapped; Fig 4C). Baseline elastic net models have the greatest number of 159

protein-trait pairs which meet all three significance criteria (21) compared to 160

fine-mapped models (17). Models trained in HIS and AFA have the most associations 161
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meeting all three significance criteria compared to the other training populations, likely 162

reflective of the similar ancestries between AFA, HIS, and PAGE. Fine-mapped models 163

trained in TOPMed HIS and TOPMed AFA generally have more protein-trait 164

discoveries and replications compared to other training populations across PIP 165

thresholds and clustering strategies (S6 Fig). In total we find 21 protein-trait 166

associations that meet all three significance criteria (Table 1, S7 Table). Even though 167

fine-mapping produced more models to test, a higher proportion of significant 168

baseline-modeled proteins have colocalized SNP signals between protein abundance and 169

traits, with similar numbers of protein-trait associations that replicate in UKB+ studies 170

between fine-mapped and baseline models (Fig 4). 171

Table 1. Significant associations found in PAGE. Each protein-phenotype pair may be present across multiple
populations for different model building strategies. For each distinct protein-phenotype pair we present only the model
association with the lowest p value in PAGE. All significant associations are listed in S7 Table.

Aptamer Protein Phenotype Train Pop Model PAGE β PAGE p UKB+ β UKB+ p PAGE coloc prob
SL000276 Apo E LDL cholesterol AFA Fine-Mapped 15.65 4.22e-218 0.381 1.00e-51 0.991
SL004668 Apo E3 LDL cholesterol AFA Fine-Mapped 16.11 2.42e-217 0.396 1.00e-51 0.993
SL000277 Apo E2 LDL cholesterol HIS Fine-Mapped 19.44 7.77e-206 0.487 9.35e-57 0.991
SL004669 Apo E4 LDL cholesterol HIS Fine-Mapped 23.64 7.77e-206 0.593 9.35e-57 0.954
SL000051 CRP C-reactive protein ALL baseline 1.40 1.41e-122 1.03 3.05e-176 0.989
SL000276 Apo E Total cholesterol AFA Fine-Mapped 12.49 1.77e-114 0.290 1.00e-51 0.992
SL000277 Apo E2 Total cholesterol HIS Fine-Mapped 15.77 4.64e-111 0.371 1.00e-51 0.991
SL004668 Apo E3 Total cholesterol HIS Fine-Mapped 17.45 4.64e-111 0.411 1.00e-51 0.989
SL004669 Apo E4 Total cholesterol HIS Fine-Mapped 19.17 4.64e-111 0.451 1.00e-51 0.950
SL001943 IL-6 sRa C-reactive protein HIS baseline -0.121 1.51e-33 -0.107 2.23e-308 0.996
SL000277 Apo E2 C-reactive protein EUR baseline -0.356 4.89e-27 -0.466 1.82e-267 0.993
SL004669 Apo E4 C-reactive protein EUR Fine-Mapped -0.301 1.06e-26 -0.313 5.68e-73 0.991
SL004669 Apo E4 HDL cholesterol HIS baseline -6.60 4.15e-25 -0.184 6.18e-56 0.950
SL000277 Apo E2 HDL cholesterol HIS Fine-Mapped -2.37 7.29e-25 -0.070 4.25e-59 0.991
SL000276 Apo E HDL cholesterol HIS Fine-Mapped -2.25 7.29e-25 -0.066 4.25e-59 0.996
SL004668 Apo E3 HDL cholesterol HIS Fine-Mapped -2.62 7.29e-25 -0.077 4.25e-59 0.989
SL000276 Apo E C-reactive protein EUR baseline -0.223 1.37e-13 -0.310 9.46e-176 0.993
SL004668 Apo E3 C-reactive protein EUR baseline -0.235 1.28e-12 -0.361 5.25e-161 0.985
SL001990 IL-1Ra C-reactive protein ALL baseline -0.188 1.30e-10 -0.136 5.01e-65 0.981
SL000437 Haptoglobin, Mixed Type LDL cholesterol ALL baseline -1.86 1.11e-9 -0.051 2.03e-114 0.985
SL000437 Haptoglobin, Mixed Type Total cholesterol ALL baseline -2.07 1.79e-9 -0.048 1.90e-105 0.984

1 AFA = TOPMed African American. EUR = TOPMed European. HIS = TOPMed Hispanic/Latino.
ALL = TOPMed multi-ethnic.

We identified 21 distinct protein-phenotype associations which are Bonferroni 172

significant in PAGE, colocalize in PAGE, and replicate with the same direction of effect 173

in UKB+. These associations comprise eight distinct protein targets: total 174

Apolipoprotein E and its three isoforms (Apo E, Apo E2, Apo E3, Apo E4), C-Reactive 175

Protein (CRP), Interleukin-1 receptor antagonist protein (Interleukin-1 receptor 176

antagonist protein), Interleukin-6 receptor subunit alpha (IL-6 sRa), and Haptoglobin 177

(Haptoglobin, Mixed Type). These are corroborated at the gene level by GWAS 178

associations identified at the same locus. Eighteen of these protein-phenotype 179

associations were significant SNP-phenotype associations in the original PAGE 180

GWAS [1]. Matching our results, in other proteome studies using SOMAscan 181

technology, isoforms of Apo E were associated with decreased HDL cholesterol, 182

increased LDL cholesterol, and increased total cholesterol [30, 36]. 183

In addition to the PAGE GWAS, independent GWAS have shown SNPs at the 184

APOE locus associated with C-reactive protein [37–39], HDL cholesterol [37, 38,40–43], 185

LDL cholesterol [37, 38,40–42,44], and total cholesterol [37, 38,40,41,45]. In our study, 186

increased predicted abundance of CRP associated with increased measured C-reactive 187

protein, effectively acting as a positive control for our method. Independent GWAS at 188

the CRP locus show consistent associations with C-reactive protein 189
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measurement [37–39,46–54]. Increased predicted IL-6 sRa associated with decreased 190

C-reactive protein and the locus was previously implicated in other 191

GWAS [37–39,47,48,55]. 192

Three of our protein-trait associations were not found in the original PAGE 193

GWAS [1], but are still supported by independent GWAS. Increased Haptoglobin, 194

Mixed Type was associated with decreased LDL cholesterol and decreased total 195

cholesterol, both of which are corroborated by GWAS at this locus [56]. Increased 196

IL-1Ra was associated with decreased C-reactive protein. SNPs near IL-1Ra associated 197

with C-reactive protein in an independent GWAS [48]. The directions of effect for each 198

protein-phenotype association were consistent between all training populations. 199

Most proteins remain predictable after adjusting for protein 200

altering variants 201

All protein assays that rely on binding, including the SOMAscan assay used here, are 202

susceptible to the possibility of binding-affinity effects, where protein-altering variants 203

(PAVs) are associated with protein measurements due to differential binding rather than 204

differences in protein abundance [26]. While we cannot differentiate these two 205

possibilities, we can determine if SNP effects on protein abundance are independent of 206

PAVs. We compared baseline elastic net models before and after adjusting protein 207

abundance by any PAVs, which include frameshift variants, inframe deletions, inframe 208

insertions, missense variants, splice acceptor variants, splice donor variants, splice region 209

variants, start lost, stop gained, or stop lost. 210

We noted that the majority of results in Table 1 come from isoforms of Apo E, with 211

replication among isoforms likely owing to known cross-reactivity of Apo E 212

aptamers [26,30,36]. Abundance of each measured Apo E isoform associated with 213

APOE genotype (Fig 5). Note that within each genotype, the target isoform 214

abundances from the SOMAscan assay do not vary, indicating cross-reactivity effects 215

are likely (Fig 5). Previous studies have found that protein levels of Apo E in plasma 216

are correlated with the ε2, ε3, ε4 haplotypes, but in the opposite direction than we 217

observed [57–60]. After adjusting for the two missense SNPs (rs429358 and rs7412) that 218

define these haplotypes, all protein-trait associations with Apo E fail to reach Bonferroni 219

significance, indicating the well known ε2, ε3, ε4 haplotypes drive the associations. 220

Binding affinity differences among the haplotypes likely contribute, at least in part, to 221

these protein-trait associations. Because APOE is a well known locus associated with 222

many complex traits, these results demonstrates how SOMAscan-derived PWAS 223

associations should be interpreted with caution (See Discussion). 224

Across all proteins, of the 1170 models built across all training populations, 39.8% of 225

models remained unadjusted because they lacked a PAV in their 1 Mb cis-window 226

(n=466); 23.3% of models showed only marginal reduction in cross-validated ρ after 227

adjustment (∆ρ < 0.1, n=273); 12.6% of models showed a large decrease in model ρ, 228

but retained significance (∆ρ > 0.1, n=148); and 24.2% of models lost significance after 229

adjustment and were not included in the final PAV-adjusted model sets (n=283) (S7 230

Fig). 231

Among all five TOPMed MESA training populations, 701 protein predictions were 232

made using baseline models in INTERVAL. Of these, 37.7% of models predicted in 233

INTERVAL went unadjusted as they lacked a PAV (n=264); 27.8% of models had a 234

marginal decrease in performance (∆ρ < 0.1, n=195); 7.0% of models had a larger 235

decrease in performance, but maintained significance (∆ρ > 0.1, n=49); and 27.5% of 236

models lost significance and were not predicted in INTERVAL after adjusting for PAVs 237

(n=193; S8 Fig). 238

Before PAV adjustment, we found 21 distinct associations that met all three 239
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significance criteria of Bonferroni significance, colocalization, and replication in UKB+ 240

(Table 1). All of the non-Apo E associations, including the CRP, IL-6 sRa, IL-1Ra 241

associations with C-reactive protein and the Haptoglobin, Mixed Type associations with 242

LDL and total cholesterol, remain significant after PAV adjustment. Thus, these 243

protein-trait associations are not due to PAV binding-affinity effects (Table 1, S7 244

Table). 245

Discussion 246

We built models for predicting protein abundances from genotypes in nearly 1000 247

African American, Chinese, European, and Hispanic/Latino individuals from TOPMed 248

MESA for use in the PrediXcan framework. Protein abundances were measured on the 249

SOMAscan platform using aptamer binding. We compared two strategies for 250

constructing protein models, preliminary fine-mapping followed by elastic net and 251

baseline elastic net regression. Across all training populations and both model building 252

strategies, 1187 unique protein aptamers have a significant prediction model (ρ > 0.1 253

and p < 0.05). We assessed model performance in the independent INTERVAL 254

proteome population and in protein PrediXcan using GWAS summary statistics from 255

the PAGE Study. Fine-mapping can improve cross-population prediction and maintains 256

reliable replication of protein-trait pairs in PrediXcan compared to baseline elastic net 257

proteome prediction. We found the most discoveries and reliable replications using 258

ancestries-matched protein prediction models. 259

The ancestries of PAGE study participants most closely matched the ancestries of 260

the TOPMed MESA AFA and HIS populations [1, 23]. We see increased discovery, 261

colocalization, and replication when AFA and HIS protein models are used in 262

S-PrediXcan compared to the larger EUR population protein models (Fig 4). Notably, 263

all 3 populations, AFA, HIS, and EUR have similar numbers of significant protein 264

models, especially after fine-mapping, even though the EUR population is 127% larger 265

than AFA and 38% larger than HIS (Fig 1). Recent African ancestries populations like 266

AFA and HIS have more SNPs and smaller LD blocks, which leads to both increased 267

discovery and better fine mapping of the most likely causal SNPs [21,22]. GWAS-based 268

fine mapping from the PAGE Study demonstrated the value of leveraging diverse 269

ancestries populations to improve causal SNP resolution prior to costly functional 270

assays [1]. In our study, fine-mapping significantly improved the accuracy of 271

cross-population prediction of protein abundance when training in AFA or CHN and 272

testing in the European INTERVAL population (Fig 2). Models built in ALL 273

performed better in INTERVAL than EUR-trained models for both fine-mapping and 274

baseline strategies (Fig 3). However, fine-mapping in EUR did lead to more proteins 275

that were predicted in INTERVAL than fine-mapping in ALL (340 vs. 259). Thus, a 276

combination of cross-ancestries and ancestries-matched fine-mapping will likely be 277

necessary to optimize omics trait prediction in a locus-dependent manner. 278

Across all training populations, fine-mapped model building produced more models 279

that passed our significance threshold of ρ > 0.1 and p < 0.05. We expected this result 280

because we fine-mapped with all data and weighted SNPs by their posterior inclusion 281

probabilities (PIPs) prior to cross-validated elastic net modeling, i.e. ‘double-dipping’. 282

As our overall goal of building these models is the ability to test as many proteins as 283

possible in PWAS, this double-dipping could be justified if it increased our ability to 284

discover true associations, as was shown for TWAS [33]. Given that we tested more 285

proteins with our fine-mapped model set, this technique did increase our ability to 286

discover associations with S-PrediXcan compared to baseline (Fig 4A). However, when 287

we assessed the reliability of these associations via colocalization and replication in 288

independent studies, fine-mapped models did not outperform baseline models and thus 289

we recommend using our baseline models in PWAS (Fig 4B-C). Because most 290
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fine-mapped PIPs were near zero (S9 Fig), this recommendation could change if larger 291

pQTL population sample sizes result in more SNPs with larger PIPs. 292

All protein assays that rely on binding are susceptible to the possibility of 293

binding-affinity effects. A strong example of this issue is represented by Apo E, which 294

has multiple isoforms measured in TOPMed MESA. SOMAscan aptamers that target 295

isoforms of Apo E were previously shown to display cross-reactivity [26,30,36]. Thus, 296

the aptamers do not distinguish among the Apo E isoforms and instead might represent 297

total Apo E abundance. But even if the isoform-derived aptamers are treated as total 298

Apo E abundance measurements, inconsistencies with previous work arise. 299

In non-SOMAscan studies, the haplotype that determines the isoforms of Apo E was 300

correlated with abundance of total Apo E in plasma, with ε2 > ε3 > ε4 [57–60]. This is 301

the opposite of what we observed here where individuals with the ε4 allele have a greater 302

measured abundance of Apo E than individuals with the ε2 allele in both TOPMed 303

MESA and INTERVAL (Fig 5). Other proteome studies using SOMAscan technology 304

matched our results in that multiple aptamers of Apo E were associated with decreased 305

HDL cholesterol, increased LDL cholesterol, and increased total cholesterol [30, 36]. 306

However, APOE genotypes were not compared to protein abundance in the other 307

SOMAscan studies [30,36]. One possible explanation for our observed protein 308

abundance vs. haplotye trend is that the E4 isoform has a greater binding affinity with 309

all aptamers derived from Apo E proteins, possibly due to decreased glycosylation of 310

the E4 isoform [58]. Additionally, the protein-trait associations we identified for Apo E 311

proteins are driven by rs429358 and rs7412, indicating that differential abundance of 312

these haplotypes is responsible for the associations found. It is not currently possible to 313

differentiate between true differences in abundance of Apo E from differences in binding 314

affinity among isoforms. The protein abundance mechanisms underlying the well 315

established APOE genetic associations [1, 37–41,45] remain to be elucidated. 316

Among other proteins, common (MAF>0.01) PAVs tend to be relatively rare. The 317

majority of models we built either lack a PAV in their 1Mb cis-acting window or show 318

only moderate changes in abundance due to PAVs. In addition, only 3.9% of proteins 319

measured in TOPMed MESA share a genetic locus. This includes isoforms of the same 320

protein as well as downstream products of the same precursor. A loss of association 321

after PAV adjustment does not prove a false positive association due to PAV binding 322

affinity effects. While possible, a loss of association after PAV adjument could also 323

mean the PAVs are linked to a SNP functioning to affect protein abundance. However, 324

if the association remains after PAV adjustment, we know binding affinity effects due to 325

common PAVs are unlikely. Here, the CRP, IL-6 sRa, IL-1Ra associations with 326

C-reactive protein and the Haptoglobin, Mixed Type associations with LDL and total 327

cholesterol in PAGE and UKB+ remained significant after PAV adjustment. Thus, 328

these protein-trait associations are not due to PAV binding-affinity effects. Follow up 329

measurements of associated proteins with antibody-based assays would provide further 330

independent validation of PWAS discoveries. While protein models can present unique 331

challenges in interpretation, they are useful for discovery. 332

In addition to binding-affinity confounding, there are other limitations to our 333

approach. The SOMAscan platform interrogates a subset of plasma proteins, and thus 334

applying PrediXcan is not yet truly a proteome-wide association study. Protein 335

measurement in other tissues is likely more appropriate than plasma for 336

non-blood-related phenotypes. Proteins with low heritability or levels that fluctuate 337

greatly in response to environmental stimuli are not well suited to the PWAS approach. 338

Additionally, trans-acting SNPs were not included in this analysis, but may be useful for 339

prediction, especially as proteome sample sizes increase. We demonstrated 340

population-matched baseline protein prediction models map the most trait associations 341

that replicate in larger populations. More genomes and proteomes in African ancestries 342
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and admixed populations are needed to improve fine-mapping protein model 343

development and to better understand the mechanisms underlying complex traits in all 344

populations. 345

Materials and methods 346

Ethics statement 347

This work was approved by the Loyola University Chicago Institutional Review Board 348

(Project numbers 2014 and 2829). All data were previously collected and analyzed 349

anonymously. 350

Training data 351

TOPMed MESA 352

The Trans Omics for Precision Medicine (TOPMed) Consortium seeks to further 353

elucidate the genetic architecture of several complex diseases including heart, lung, and 354

sleep disorders through whole-genome sequencing, additional omics integration, and 355

clinical phenotyping [61]. TOPMed includes data from a number of studies including 356

the Multi-Ethnic Study of Atherosclerosis (MESA) [31]. Samples from MESA were used 357

to measure multiple omics traits in the TOPMed MESA Multi-omics Pilot Study [25]. 358

Here, we used the TOPMed MESA proteomics data to train protein prediction models 359

from genotypes. Protein levels were previously measured using a SOMAscan HTS Assay 360

1.3K for plasma proteins. The SOMAscan Assay is an aptamer based multiplex protein 361

assay which measures protein levels by the number of protein specific aptamers which 362

successfully bind to their target protein, though some proteins may be targeted by 363

multiple aptamers [24,25]. When more than one aptamer targets the same protein, each 364

aptamer typically targets different isoforms of the same protein. In this study, each 365

aptamer-based measurement is considered an independent protein. The TOPMed 366

MESA training data we used includes genotypes and protein level measurements for 367

four populations: African American (AFA, n = 183), Chinese (CHN, n = 71), European 368

(EUR, n = 416), and Hispanic/Latino (HIS, n = 301). In addition to these we also 369

consider a multi-ethnic population comprised of all four populations combined (ALL, 370

n = 971). 371

Test data 372

INTERVAL 373

Our test data come from the INTERVAL study, comprised of 3,301 individuals of 374

European ancestries with both genotype (EGAD00010001544) and blood plasma 375

aptamers levels as measured by a SOMAscan assay (EGAD00001004080) [26,34,62]. 376

The SOMAscan assay employed by INTERVAL measured 3,622 proteins measured [62]. 377

Data generation and quality control have been previously described in detail [26, 34]. 378

Genotyping was performed using an Affymetrix Axiom UK Biobank genotyping array 379

and imputed on the Sanger imputation server using a combined 1000 Genomes Phase 380

3-UK10K reference panel [26,63]. We used genotypes with MAF >0.01, R2 > 0.8. 381

Protein abundances were previously log transformed, adjusted for age, sex, duration 382

between blood draw and processing (binary, ≤ 1 day/>1 day) and the first three 383

genetic principal components [26]. We used the rank normalized residuals from this 384

linear regression as our measure of protein abundance. 385
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TOPMed genotype QC 386

Genotypes and measured protein aptamer levels were available for 971 individuals. 387

Genotype data were accessed via the MESA SHARe study (phs000420.v6.p3) and were 388

imputed on the Michigan imputation server (Minimac4.v1.0.0) using the 1000 Genomes 389

reference panel [15]. Genotypes in each individual population were filtered for 390

imputation R2 > 0.8, MAF > 0.01. The multiethnic ALL population genotypes were 391

filtered to the intersection of SNPs with imputation R2 > 0.8 in all four individual 392

populations and MAF > 0.01 across all 971 individuals. We used the genotype dosages 393

as predictors in our regression analyses [64–66]. 394

We used PCAIR as implemented in the GENESIS library in R to calculate robust 395

estimates of principal components in the presence of cryptic relatedness [67,68]. Prior 396

to calculating principal components, the KING algorithm makes robust estimates of the 397

pairwise kinship matrix within a population [69,70]. Then, the PCAIR algorithm 398

partitions data into a set of mutually unrelated individuals used to estimate principal 399

components and a set of related individuals whose eigenvectors are imputed on the basis 400

of kinship measures. We calculated principal components within each population and in 401

the ALL population for use in protein prediction model building. The partition of 402

related individuals contained 1 person within AFA, 2 people within CHN, 5 in EUR, 403

and 25 in HIS. Within the ALL population 44 people were contained within the related 404

partition. We also calculated principal components including ALL and 1000 Genomes 405

reference populations to visualize population structure across MESA (S1 Fig). 406

TOPMed protein aptamer level QC 407

Protein levels were measured at two time points, Exam 1 and Exam 5 of MESA. Similar 408

to a previous SOMAscan protein study [26], we log transformed each time point and 409

then adjusted for age and sex. We then took the mean of the two time points (if a 410

participant was not measured at both time points then we treated the measured time 411

point as their mean), performed rank inverse normalization, and adjusted for the first 412

ten genotypic principal components prior to downstream modeling. 413

pQTL fine mapping 414

We used Matrix eQTL [71] to perform a genome wide cis-acting protein QTL (pQTL) 415

analysis in each population (AFA, CHN, EUR, and HIS) as well as in all four 416

populations combined (ALL). We performed association testing using the protein 417

aptamer level adjusted for age, sex, and 10 genotypic principal components as the 418

response and SNPs as the predictors. We defined the cis-acting SNPs as those within 1 419

Mb of the transcriptional start site (TSS) of the gene corresponding to the aptamer. 420

Aptamers may map to more than one gene as in the case the aptamer binds to a protein 421

complex. However, for all analyses done here, we treated these multiple cis-windows as 422

independent loci and estimate these cis-effects separately for each gene to which an 423

aptamer maps. For those aptamers which map to multiple genes, each aptamer-gene 424

pair is treated as an independent phenotype with identical values. 425

We performed fine mapping using the software tool DAP-G [72,73]. After identifying 426

cis-pQTLs, prior probabilities are estimated from pQTL data using the software tool 427

torus [74]. These priors are then used by the DAP-G algorithm to estimate the 428

posterior inclusion probability (PIP) of a given SNP within a particular cis-window as 429

likely causal (or tightly linked to the causal SNP) for the protein in question. We note 430

that without a functional assay, a causal SNP cannot be distinguished from a proxy 431

SNP. As in pQTL discovery, fine mapping is done independently for each gene to which 432

August 4, 2021 12/29

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.11.455912doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455912


an aptamer maps. Aptamer level annotations were created by mapping proteins to 433

genomic coordinates using GENCODE (GRCh38), version 32 (Ensembl 98) [75]. 434

Elastic net regression 435

In all five training populations (AFA, ALL, CHN, EUR, and HIS) we performed nested 436

cross-validated elastic net regression [76] with mixing parameter α = 0.5 using genotype 437

dosages within the 1 Mb cis-window as predictors and the adjusted protein aptamer 438

levels as response. Models were trained using the ’glmnet’ package in R [77]. We used 439

nested cross-validation to calculate cross validated Spearman correlation (ρ) between 440

predicted and observed protein levels as our metric of model performance using 5 folds 441

in our outer loop with the λ that minimizes the cross validated error estimated by 442

10-fold cross validation in our inner loop. The final model for testing in INTERVAL and 443

use in PWAS is then fit on all data with lambda chosen by 10-fold cross validation. As 444

a measure of model quality, using the same thresholds used in PrediXcan transcriptome 445

modeling [11,33], we filtered each model set to include those protein models with a 446

cross-validated ρ > 0.1 and p < 0.05. We term models built in this manner as “baseline” 447

elastic net models. 448

In addition to the baseline elastic net models, we trained elastic models using the 449

fine-mapped PIPs as penalty factors as described in Barbeira et al. 2020 [33]. A penalty 450

factor of 0 for a particular SNP will result in that SNP always being kept in the model 451

while a higher penalty factor will result in that SNP being less likely to be included in 452

the model. We use 1 − PIP as penalty factors for elastic net regression. The higher the 453

PIP, the more likely the SNP associates with protein and the lower the penalty factor, 454

or the more likely that SNP is kept in the regression model. We test three thresholds of 455

minimum PIP for each SNP to be considered as a predictor for a protein: PIP > 0, 456

PIP > 0.001, and PIP > 0.01. In each case, we only included those SNPs with a PIP 457

higher than the given threshold as predictors for a given protein. Additionally, DAP-G 458

assigns SNPs to clusters based on linkage disequilibrium. We employ two strategies for 459

handling these clusters. First, as SNPs within a cluster are correlated, we filter these 460

clusters to only include the SNP with the highest PIP. These SNPs which pass our PIP 461

threshold are then used for elastic net regression. Second, we do no filtering based on 462

cluster and use all SNPs that pass the PIP threshold are then used for elastic net 463

regression. See S1 Table for a summary of all the model sets built as well as notation. 464

Protein altering variants 465

Protein assays that rely on binding are susceptible to the possibility of binding-affinity 466

effects. SNPs in a protein’s aptamer binding site may affect subsequent protein level 467

measurement. Following the convention of Sun et al., we term Protein Altering Variants 468

(PAVs) as SNPs which may result in differential binding to the target aptamer [26]. We 469

use the the Ensembl VEP v100.2 tool to annotate variants using the “per gene” 470

option [78,79]. PAVs are variants annotated as one of the following: consequence in 471

coding sequence variant, frameshift variant, inframe deletion, inframe insertion, 472

missense variant, protein altering variant, splice acceptor variant, splice donor variant, 473

splice region variant, start lost, stop gained, or stop lost. To address the possibility of 474

binding affinity effects we built additional models that adjust for PAVs. For each 475

protein, we extracted the matrix of PAV genotypes and used this to perform principal 476

component analysis. We use the number of PCs which account for 95% of variance in 477

the matrix of PAV genotypes to adjust the protein abundance. We used the residuals of 478

this linear regression as the adjusted protein abundance. We removed the PAVs from 479

the genotype matrix and then performed elastic net regression on the adjusted protein 480

abundance. If no PAVs that pass genotype QC were in the 1Mb cis-window, we made 481
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no adjustment and reran the baseline elastic net regression. We compared adjusted 482

models to unadjusted models to determine if the prediction was driven by the PAVs 483

(reduced correlation) or SNPs independent of the PAVs (similar correlation). Reduced 484

correlation in the adjusted model could be due to binding affinity effects or could mean 485

the PAVs are linked to a SNP functioning to affect protein abundance. 486

Adjustment for Apo E haplotypes 487

The PAVs which define isoforms of Apo E (rs429358 and rs7412) are well known loci 488

which associate with Alzheimer’s Disease and cholesterol 489

phenotypes [1, 37, 38, 40–43,80–82]. The ε2 allele is defined by the T-T haplotype, ε3 by 490

T-C, and ε4 by C-C at rs429358 and rs7412, respectively. Because rs429358 and rs7412 491

did not pass genotype QC in all training populations due to imputation R2 < 0.8, they 492

were not included in our elastic net modeling and fine-mapping. However, both SNPs 493

had imputation R2 > 0.4 in all populations, so we used the imputed genotypes to 494

examine the effect of of PAV adjustment at this important locus. 495

Out of sample testing in INTERVAL 496

We obtained measurements of protein abundance that were previously natural 497

log-transformed; adjusted for age, sex, duration between blood draw and processing, 498

and the first 3 genetic principal components; and rank-inverse normalized [26]. We 499

predicted protein abundance in the INTERVAL cohort using models built in each 500

TOPMed MESA population. We used the Spearman correlation between the predicted 501

abundance for a protein and the observed abundance for a protein as our measure of 502

prediction accuracy. Of the proteins measured in INTERVAL, 804 protein aptamers 503

mapped uniquely to an aptamer measured in TOPMed. 504

Proteome-wide association studies 505

To study the utility of our protein predictive models for association studies, we ran 506

S-PrediXcan using GWAS summary statistics derived from the Population Architecture 507

using Genomics and Epidemiology (PAGE) study [1, 32,35]. PAGE is a large cohort of 508

multi-ethnic, non-European ancestries comprising 49,839 individuals with summary 509

statistics available from the GWAS Catalog for 28 clinical and behavioral phenotypes. 510

Individuals in PAGE self-identified as African American/Afro-Caribbean, 511

Hispanic/Latin American, Oceanian, Hawaiian, and Native American [1, 35]. We 512

performed S-PrediXcan the find protein associations with the PAGE 28 phenotypes 513

using protein prediction models from each TOPMed MESA population. We considered 514

protein-trait associations significant if they met the Bonferroni significance threshold 515

calculated by counting all association tests performed for a given model, i.e., baseline or 516

fine-mapped. For example, for the baseline model sets, all association tests for all 517

populations and all phenotypes were pooled, and the Bonferroni threshold was 518

calculated as 0.05/ntests. This threshold was calculated independently for each model 519

building strategy (p < 1.54e− 06 for baseline, p < 9.59e− 07 for fine-mapped). 520

Colocalization 521

We applied the software COLOC [32,83–85] to our TOPMed pQTL summary statistics 522

and PAGE GWAS summary statistics [1] to determine if pQTLs and GWAS hits are 523

colocalized. We used COLOC version 4.0-4 [85], which allows user inputted LD 524

correlation matrices for interpreting LD patterns at certain loci. Using SNPs within 525

1Mb of the transcription start and end sites of each protein-coding gene, we built LD 526
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correlation matrices from TOPMed MESA for our COLOC analyses using 527

PLINK [65,66]. COLOC outputs posterior probabilities (P) for each of their five 528

hypotheses. A high P4 probability (P4 > 0.5) suggests that the pQTL and GWAS 529

signals are colocalized while a P3 probability greater than 0.5 indicates likely 530

independent pQTL and GWAS signals. P0, P1, and P2 values greater than 0.5 indicate 531

an unknown association [32,85]. COLOC version 4.0-4 allows users to relax the 532

assumption that there is only a single independent association for each phenotype tested 533

and outputs SNP-level results for multiple variants. For this analysis, each protein-level 534

needs only one set of variants to have P4 > 0.5 for it to be considered significantly 535

colocalized with a phenotype. We determined if a protein-level has colocalized or 536

independent signals by looking at the highest P4 value. 537

Replication 538

To test protein-trait associations discovered in PAGE for replication, we performed 539

S-PrediXcan with GWAS summary statistics from the UKBiobank with the same or 540

similar phenotypes as those included in PAGE [1,2]. However, some PAGE phenotypes 541

were not tested in the available UKBiobank GWAS 542

(http://www.nealelab.is/uk-biobank/) [2], thus we performed S-PrediXcan in an 543

available GWAS with a large European sample size for the same or similar trait as the 544

PAGE phenotype (S2 Table) [3–10]. For this reason, we refer to this set of GWAS as 545

UKB+. 546

We examine only our colocalized, S-PrediXcan significant associations in PAGE for 547

replication in UKB+. We define an association as replicated if the same association is 548

also S-PrediXcan Bonferroni significant (p < 1.54e− 06 for baseline, p < 9.59e− 07 for 549

fine-mapped) in UKB+ and has the same direction of effect. 550

Supplemental Data 551

Supplemental data include eight figures and seven tables. 552
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Supporting information captions

S1 Fig. Genotype principal component analysis. Biplot of the first two
principal components of TOPMed MESA populations with 1000 Genomes reference
populations. Genetic PCs of TOPMed participants with both genomic and proteomic
data were estimated with PCAIR. Pop codes: TOPMed African American (AFA),
TOPMed Chinese (CHN), TOPMed European (EUR), TOPMed Hispanic (HIS), 1000
Genomes East Asians from Beijing, China and Tokyo, Japan (ASN), 1000G European
ancestry from Utah (CEU), and 1000G Yoruba from Ibadan, Nigeria (YRI).

S2 Fig. Protein prediction model counts. In total 1238 unique protein aptamers
have significant prediction models (ρ >0.1, p <0.05) across all strategies and training
populations. Number of significant protein models scales approximately with sample
size of the training population, with the exception of ALL fine-mapped models.

S3 Fig. Protein prediction model performance correlations. The pairwise
Pearson correlations between prediction performance of each model building strategy
trained in each TOPMed MESA population. Prediction performance is the Spearman
correlation between observed and predicted expression in the independent INTERVAL
study. Note, most fine-mapped models within a population had high correlation, with
slightly reduced correlations between fine-mapped (LD cluster filtered true) and
baseline models. See S1 Table for model notations.

S4 Fig. Fine-mapped to baseline model comparisons. Vertical axis is the fine
mapped model performance when predicting in INTERVAL. Horizontal axis is the
baseline elastic net model performance when predicting in INTERVAL. Each dot
represents a protein that is predicted by both baseline models and fine mapped models.
Performance is measured as the Spearman correlation between the measured protein
aptamer level and the predicted protein aptamer level.

S5 Fig. Population specific performance in an independent cohort. We
compare the performance of our different training populations at predicting in
INTERVAL, a predominantly European cohort. For a particular model building
strategy we first take the intersection of proteins that are predicted by all five training
populations and then test for differences in the distribution of Spearman correlations by
ANOVA and permuted F-test. We find a significant difference among training
populations for our baseline elastic net models (30 proteins, F=13.30, p=5.93e-09),
0.001 F models (61 proteins, F=3.41, p=0.0098), and 0 F models (59 proteins, F=3.54,
p=0.0080).
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S6 Fig. Significant PWAS association counts in PAGE. Fine-mapped model
sets consistently have a greater number of Bonferroni significant associations than
baseline model sets. However when including significant evidence of colocalization by
COLOC and replication status as additional significance criteria, baseline has a higher
number of significant associations.

S7 Fig. Comparison of protein altering variant (PAV) adjusted baseline
models to unadjusted baseline models. Cross-validated rho within each TOPMed
MESA population is plotted on both axes. PAV adjusted model sets are on the Y axis,
while standard model sets are plotted on the X axis. Most models were unadjusted for
PAVs as the protein does not contain a PAV (yellow points).

S8 Fig. Performance of PAV adjusted model sets vs unadjusted model
sets in INTERVAL. Prediction performance rho in INTERVAL using models built in
each TOPMed MESA population is plotted. PAV adjusted model sets are on the Y axis,
while standard model sets are plotted on the X axis. Most models were unadjusted for
PAVs as the protein does not contain a PAV (yellow points). Most models are either
unadjusted (yellow) or have only a small decrease in performance. 7.0% of models had a
larger decrease in performance (change in rho¿0.1), but maintained significance. Not
plotted here is the 23.6% of models which are significant in our unadjusted regression,
but are no longer significant in our PAV adjusted regression.

S9 Fig. Distribution of protein-associated SNP posterior inclusion
probabilities (PIPs). The vast majority of PIPs used to calculate penalty factors in
our fine-mapped models are near 0. A) Distribution of PIPs >0 B) PIPs >0.001 C)
PIPs >0.01.

S1 Table. Protein prediction model notation. For each training population, we
built seven types of model for comparison. One standard elastic net regression, and six
fine-mapped model sets with variable PIP (posterior inclusion probability) threshold
and LD filtering strategies. For fine-mapped models, SNPs must meet the minimum
PIP threshold specified to be included as predictors. Additionally as our fine mapping
software, DAP-G, clusters SNPs according to LD, we optionally filter clusters to only
include the SNP with the highest PIP.

S2 Table. UKB+ data. Sources for GWAS summary statistics comprising our
UKB+ data. Where possible we use GWAS summary statistics generated using the
UKB. However, when a phenotype is not available, we sourced data from the GWAS
catalogue for other large European GWAS.

S3 Table. Proteins not in MASHR summaries. Model summaries for all
proteins that do not have an RNA equivalent model for either Whole Blood models or
any tissue as published in Barbeira et al 2020 GTEx v8 MASHR models. In total 19
distinct protein aptamers do not have an RNA equivalent model across any tissue model
from Barbeira et al. 2020 GTEx v8 MASHR models. 424 aptamers do not have an
RNA equivalent model in Whole Blood models from Barbeira et al. 2020 GTEx v8
MASHR models.

S4 Table. Fine-mapped to baseline paired t-test statistics. Test statistics
and p values for model comparisons between fine-mapping strategies and baseline elastic
net models. Fine-mapped models in AFA consistently outperformed baseline models.
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Fine-mapped CHN was either significantly better or not different. Fine-mapped ALL,
HIS, and EUR were either significantly worse or not different.

S5 Table. Population specific performance comparison statistics. Test
statistics for ANOVA and permuted F test comparing the predictive performance of
different training populations for a particular model building strategy. ANOVA is run
using the training population and the aptamer model id as factors and Spearman
Correlation as response. For our permuted F test the aptamer model id is treated as a
blocking factor for permutation.

S6 Table. Tukey’s HSD for population differences. Results of Tukey’s HSD
for model building strategies that showed a significant difference in training populations
by ANOVA. For baseline elastic net models, EUR, HIS, and ALL were all significantly
greater than CHN and AFA with all other pairs not significantly different. For 0.001 F
models only HIS was greater than CHN with all other pairs not significantly different.
For 0 F models both HIS and ALL were significantly greater than CHN with all other
pairs not significantly different.

S7 Table. List of Colocalized, S-PrediXcan significant associations in
PAGE. Across all model building strategies and training populations we identify 27
distinct associations that are both S-PrediXan significant and with significant evidence
of colocalization. This spans 11 unique protein models and 8 phenotypes.
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Fig 3. Protein prediction performance between training populations within
each model building strategy. We compare the performance of TOPMed MESA
ALL and EUR training populations in the INTERVAL study, a European population.
For each model building strategy we first take the intersection of proteins that are
predicted by both training populations and then test for differences in the distributions
of Spearman correlation (ρ) by a Wilcoxon signed-rank test. INTERVAL ρ was
significantly higher when we used the ALL training population in both our baseline
(p = 0.0012) and fine-mapped (p = 0.0064) modeling strategies. (A) The distributions of
INTERVAL ρ are plotted in each training population and modeling strategy. (B) The
pairwise performance comparisons between ALL and EUR training populations are
shown, each point represents a protein. The blue contour lines from two-dimensional
kernel density estimation help visualize where the points are concentrated.
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Fig 4. Predicted protein-trait association results summary. (A) Bonferroni
significant (baseline p < 1.54e− 06; fine-mapped p < 7.60e− 07) protein-trait
association counts when we applied S-PrediXcan to 28 traits in PAGE using protein
prediction models from each TOPMed MESA population and model building strategy.
(B) Protein-trait pairs from A that also have a COLOC colocalization probability >0.5.
(C) Protein-trait pairs from B that replicate (baseline p < 1.54e− 06; fine-mapped
p < 9.59e− 07) in independent studies from the UKBioBank or other large, European
ancestries cohorts. Bonferroni threshold for fine-mapped models is calculated separately
from the Bonferroni threshold for baseline models.
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Fig 5. Distribution of adjusted protein abundance. We observe a linear
association between APOE genotype and mean abundance of each Apo E isoform. Note
that within a genotype, the target isoforms from the SOMAscan assay do not vary,
indicating epitope cross-reactivity effects are likely. Top: Association in TOPMed ALL
β = 0.498, p = 4.60e− 27. Bottom: Association in INTERVAL β = 0.295,
p = 1.98e− 35. Only two isoforms were available in the INTERVAL dataset.
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