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Abstract 

Artificial intelligence (AI) can extract subtle visual information from digitized histopathology 

slides and yield scientific insight on genotype-phenotype interactions as well as clinically 

actionable recommendations. Classical weakly supervised pipelines use an end-to-end 

approach with residual neural networks (ResNets), modern convolutional neural networks 

such as EfficientNet, or non-convolutional architectures such as vision transformers (ViT). In 

addition, multiple-instance learning (MIL) and clustering-constrained attention MIL (CLAM) are 

being used for pathology image analysis. However, it is unclear how these different 

approaches perform relative to each other. Here, we implement and systematically compare 

all five methods in six clinically relevant end-to-end prediction tasks using data from N=4848 

patients with rigorous external validation. We show that histological tumor subtyping of renal 

cell carcinoma is an easy task which approaches successfully solved with an area under the 

receiver operating curve (AUROC) of above 0.9 without any significant differences between 

approaches. In contrast, we report significant performance differences for mutation prediction 

in colorectal, gastric and bladder cancer. Weakly supervised ResNet- and ViT-based 

workflows significantly outperformed other methods, in particular MIL and CLAM for mutation 

prediction. As a reason for this higher performance we identify the ability of ResNet and ViT 

to assign high prediction scores to highly informative image regions with plausible 

histopathological image features. We make all source codes publicly available at 

https://github.com/KatherLab/HIA, allowing easy application of all methods on any end-to-end 

problem in computational pathology.  

Introduction 

Artificial intelligence (AI) methods are widely used for end-to-end analysis of histopathological 

whole slide images (WSI) in the research platform. Classical applications of such end-to-end 

workflows are tumor detection [1], subtyping [2,3] and grading [4] which can recapitulate, 

automate and improve pathologists’ assessment of WSI. However, AI has also been used to 

perform image analysis tasks which exceed human capabilities, including prediction of 

molecular alterations [5], prognostication [6] and prediction of treatment response [7] directly 

from routine WSI. Collectively, these broad applications of AI in WSI image analysis are 

termed “computational pathology” and widespread clinical adoption is ultimately expected 

once routine diagnostic workflows are fully digitalized. [8] As glass slides stained with 

hematoxylin and eosin (H&E) are ubiquitously available for almost every cancer patient, 

uptake of AI methods in clinical routine is expected to integrate in existing diagnostic 

pathways, improve outcomes and provide cost savings. [9] 
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However, a major limitation for the development, validation and commercialization of 

computational pathology methods is the lack of systematic comparison (i.e. benchmarking) of 

different technologies. While the earliest studies in 2018 employed a weakly-supervised 

approach based on a convolutional neural network (CNN) and spatial averaging [10], recent 

studies have proposed conceptually new technologies, including attention-based methods [11] 

and multiple-instance learning [1,2,12]. In addition, computational pathology is an applied field 

which follows trends in basic computer vision research. Thus, it can be anticipated that 

classical CNN architectures such as ResNets (Residual Neural network) will be ultimately 

replaced by more powerful and efficient CNNs such as EfficientNet [13] or non-convolutional 

AI approaches such as Vision Transformers (ViT) [14]. However, for academic and 

commercial actors in the field of computational pathology, choosing the best method for an 

end-to-end problem is currently not possible on a conceptual and practical level. On a 

conceptual level, there is currently no systematic evidence on which methods yield the best 

performance for clinically relevant problems, preventing researchers, pathologists and 

companies from making optimal design choices for a computational pathology application. On 

a practical level, there is currently no implementation of the whole spectrum of AI methods for 

computational pathology.  

In the present study, we systematically collected WSI datasets for six clinically common end-

to-end prediction tasks with diagnostic or therapeutic relevance. In renal cell carcinoma, we 

investigated the classification of morphological subtypes, which is a widely studied problem 

[2]. In colorectal cancer, we investigated AI-based prediction of the immunotherapy biomarker 

microsatellite instability (MSI) [15] and mutations in the BRAF gene, which is a directly 

targetable genetic alteration [16]. In gastric cancer, we investigated prediction of established 

or potential biomarkers for immunotherapy MSI and Epstein-Barr virus (EBV) positivity. Finally, 

in bladder cancer, we investigated prediction of FGFR3 mutational status, which is a clinically 

approved therapeutic target. [17] For each of these tasks, we presented datasets from two 

different institutions, allowing us to benchmark all different AI approaches with external 

validation (Figure 1 A-E).  

Results 

All methods achieve high performance for subtyping of renal cell carcinoma 

Morphological subtyping of renal cell carcinoma (RCC) into clear cell, chromophobe and 

papillary subtypes is a widely-studied and clinically relevant problem. Using the “The Cancer 

Genome Atlas” (TCGA) cohort (TCGA-RCC, N=897 patients, Suppl. Table 1), we 

benchmarked classification performance of end-to-end prediction workflows based on 
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ResNet, EfficientNet and ViT as well as classical MIL and clustering-constrained attention MIL 

(CLAM, Figure 2). We found that in a stratified three-fold cross validation, all methods 

achieved a high classification performance with macro-averaged area under the receiver 

operating curve (AUROC) values above 0.90 (Table 1, Figure 3 A-C). ViT achieved the 

highest absolute performance with AUROCs of 0.984 (with 90% confidence interval of 0.977 

- 0.991), 0.993 (0.988 - 0.997) and 0.988 (0.984 - 0.993) for detection of all three classes. The 

classical ResNet-based approach yielded AUROCs of 0.978 (0.970 - 0.985), 0.986 (0.980 -

0.991) and 0.984 (0.976 - 0.992), demonstrating the efficiency of simple classical methods. 

While MIL-based methods yielded a high absolute performance, this was consistently lowest 

in all target classes, with classical MIL achieving AUROCs of 0.961 (0.947 - 0.973), 0.961 

(0.947 - 0.972) and 0.957 (0.932 - 0.977). Next, we trained classifiers on all TCGA cases and 

validated them on our in-house dataset (N=248 patients). As expected, performance values 

slightly decreased, but ViT remained the highest-scoring approach with AUROCs of 0.973 

(0.958 - 0.985), 0.971 (0.929 - 0.998) and 0.97 (0.952 - 0.984) for all classes (Table 2) and 

high areas under the precision recall curve (AUPRCs, Suppl. Table 2). However, the 

performance differences between all methods compared to Resnet (Suppl. Table 3), 

EfficientNet (Suppl. Table 4), ViT (Suppl. Table 5), MIL (Suppl. Table 6) and CLAM (Suppl. 

Table 7) did not reach statistical significance in the external validation experiments. We 

conclude that AI-based RCC subtyping is achievable with almost perfect accuracy compared 

to the ground truth by any of the tested computational pathology methods. 

ViT and ResNet excel in mutation prediction in colorectal cancer 

Next, we focused on prediction of clinically actionable genetic alterations directly from H&E 

histology WSI: MSI and BRAF in colorectal cancer, MSI and EBV in gastric cancer and FGFR3 

mutations in bladder cancer. In a cross-validated experiment in the large DACHS cohort of 

colorectal cancer, ViT achieved a state-of-the art AUROC of 0.937 (0.919 - 0.953; N=2039 

patients). The classical ResNet-based approach achieved the second-highest performance 

with an AUROC of 0.919 (0.899 - 0.937). Both classifiers generalized well to the external 

validation cohort (TCGA-CRC, N=426 patients) with ViT and ResNet again yielding the highest 

and second-highest performance for MSI prediction with AUROCs of 0.907 (0.873 - 0.941) 

and 0.867 (0.821 - 0.908), respectively. Compared to the other approaches EfficientNet, MIL 

and CLAM, the performance was significantly higher (z>4 and  p<0.0001 for all, Suppl. Table 

5). Although ViT slightly outperformed ResNet (z=1.17), the direct comparison ViT and ResNet 

did not reach statistical significance (p=0.24, Suppl. Table 3). All other methods, in particular 

MIL-based methods reached much lower performances in within-cohort experiments, with 

classical MIL and CLAM yielding AUROC of 0.715 (0.657 - 0.77) and 0.771 (0.716 - 0.825), 
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respectively (Table 1). Likewise, in external validation experiments, MIL and CLAM yielded 

the lowest performance (Table 2) which was statistically significantly inferior to all other 

approaches (p<=0.01, Suppl. Table 6 and 7). Prediction of BRAF mutational status (N=2075 

patients in cross-validation) resulted in the same ranking of algorithms with ViT achieving the 

highest (AUROC 0.83 [0.799 - 0.858]), ResNet the second-highest (AUROC 0.801 [0.772 - 

0.831]) and classical MIL achieving the lowest performance (AUROC 0.661 [0.592 - 0.727]). 

Also in external validation (Table 2), ResNet (AUROC 0.795 [0.739 - 0.848]) and ViT (0.781 

[0.719 - 0.834]) significantly (p<=0.02) outperformed all other approaches (Suppl. Table 3 

and Suppl. Table 5).  

Prediction of molecular alterations in gastric and bladder cancer 

While colorectal cancer is among the most widely studied tumor types in computational 

pathology, it is important to validate computational methods also in rarer tumor types. [7] 

Therefore, we tested all five algorithms on prediction of the clinically relevant alterations MSI 

and Epstein-Barr Virus (EBV) in gastric cancer and FGFR3 mutations in bladder cancer. We 

found that the overall performance in our proprietary datasets (BERN for gastric, AACHEN for 

bladder cancer) was lower than for colorectal cancer, which is in line with previous studies. 

[17,18] The highest AUROCs were 0.785 (0.715 - 0.852) for MSI in gastric cancer (N=302 

patients), 0.831 (0.68 - 0.957) for EBV in gastric cancer (N=304 patients) and 0.748 (0.636 - 

0.85) for FGFR3 in bladder cancer (N=87 patients, Table 1). The highest performance was 

achieved by CLAM in gastric MSI and bladder FGFR3 and by ViT in gastric EBV, while the 

second-highest performance was always achieved by the classical ResNet-based workflow. 

In the external validation experiment for gastric cancer (TCGA-STAD with N=327 patients for 

MSI, N=327 patients for EBV), the resulting performance differences were much less clear-

cut (Table 2), with no consistently best-performing method. However, for external validation 

of FGFR3 analysis in bladder cancer (TCGA-BLCA, N=241 patients), ViT and ResNet again 

outperformed all other approaches, reaching AUROCs of 0.785 (0.719 - 0.84) and 0.782 

(0.704 - 0.849), respectively. The difference between ResNet and MIL and CLAM was 

statistically significant (p<=0.03, Suppl. Table 3).  

Overall assessment of classifier performance for mutation prediction 

Finally, we systematically analyzed performance differences between the five classifiers in all 

five mutation prediction tasks. Each method was compared to the four other methods in five 

tasks, yielding 20 comparisons per method. ResNet significantly (p<0.03, z>2) outperformed 

other methods in 8/20 tasks and was never significantly outperformed by another method 

(Suppl. Table 3). ViT significantly (p<=0.002, z>3) outperformed other methods in 7/20  tasks 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.455633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

and was never significantly outperformed (Suppl. Table 5). EfficientNet outperformed other 

methods in 6/20 tasks, but was outperformed in 3/20 tasks (Suppl. Table 4). MIL 

outperformed other methods in 1/20 tasks but was outperformed in 13/20 tasks (Suppl. Table 

6). Similarly, CLAM outperformed other methods in 1/20 mutation prediction tasks but was 

outperformed in 7/20 tasks (Suppl. Table 7). Overall, we conclude that ViT and ResNet-based 

approaches are reasonable algorithm choices for prediction of molecular alterations from 

routine histology in solid tumors. 

Explainability of the performance differences 

To understand the reason for the observed performance differences of the methods, we 

systematically compared which image tiles were assigned the highest scores by each method, 

in all classification tasks. We found that for renal cell carcinoma subtyping - a task in which all 

methods performed almost equally well - highest scoring tiles showed plausible 

histopathological patterns for all classes for all methods. Consistently, tiles with high prediction 

scores for clear cell RCC showed carcinoma cells with clear cytoplasm; tiles predictive of 

chromophobe RCC showed a perinuclear halo characteristic of this subtype and tiles with high 

scores for papillary RCC showed a papillary tissue architecture (Figure 4). In contrast, for MSI 

prediction in colorectal cancer - a task in which classical end-to-end methods outperformed 

MIL-based methods - the typical MSI-like morphology [19] includes poor differentiation, 

mucinous differentiation and tumor-infiltrating lymphocytes. These patterns were prominently 

visible in highly scoring tiles selected by high-performing methods ResNet, EfficientNet and 

ViT. In contrast, MIL-based methods assigned the highest prediction scores to image tiles at 

the tissue boundary, less than half of which clearly showed MSI-like morphology (Figure 5).  

We conclude that the performance of end-to-end AI methods is directly related to the ability to 

assign high prediction scores to image tiles with informative histopathological patterns and 

thus, performance is directly linked to histopathological phenotype.  

Discussion 

In this study, we provide a systematic benchmark for five AI algorithms applied to six clinical 

problems in computational pathology. We chose these particular six problems because they 

were previously addressed in one or several publications and are of direct diagnostic or 

therapeutic relevance. [2,5,17,18,20] We demonstrate that morphological subtyping of renal 

cell carcinoma (RCC) is an easy task which can be solved by any common computational 

pathology method with high performance (Table 1 and Table 2), without significant differences 

between methods (Suppl. Tables 3, 4, 5, 6 and 7).  
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However, prediction of clinically targetable molecular alterations directly from histology 

uncovered pronounced differences between different approaches: Overall, classical weakly 

supervised workflows (in which all tiles inherit the slide label) markedly outperformed MIL-

based workflows (in which labels are only defined for bags of tiles). While classical approaches 

are being used since 2018 [10,18], MIL has been first used in a large-scale computational 

pathology study in 2019 [1] Because the classical MIL is highly susceptible to artifacts and 

classifier instability, the newer MIL-based variant CLAM has been shown to be more robust 

and powerful than classical MIL. [2] CLAM performs well for morphological subtyping of lung 

cancer and renal cell carcinoma [2] as well as for prediction of primary tumor type from 

metastatic tissue [2,12] However, our data demonstrate that researchers should choose 

classical weakly supervised workflows rather than MIL-based workflows for mutation 

prediction tasks. Although the classical end-to-end approaches investigated in this study suffer 

from label noise (they assign the label to all tiles generated from a slide, not just the tumor 

tissue), this does not seem to impair performance when a large portion of the slide is tumor, 

as in the surgical resection specimen in this study. It is possible that such label noise will lead 

to a lower performance in needle-in-a-haystack problems such as detection of small nests of 

tumor cells in biopsy tissue [1] or in lymph nodes. [21] Another possibility for lower 

performance of MIL/CLAM than the classical weakly supervised approach is that a pre-trained 

network was used for feature extraction in MIL/CLAM whereas networks were trained directly 

on images in the classical weakly supervised approach. However, during training of the 

classical weakly supervised approach, we only trained the deepest 50% of all layers, 

essentially using shallow network layers as a pre-trained feature extractor. Also, previous 

studies have demonstrated that pre-trained features can in principle be used for high-

performing mutation prediction in cancer.[22] In summary, our benchmark study provides 

important actionable advice for future studies and real-world applications of computational 

pathology, in particular by showing that label noise does not impair performance for mutation 

prediction tasks on surgical resection tissue.  

 

Within weakly supervised workflows, ResNet or ViT are the model architectures of choice. 

ResNet is the de facto standard in computational pathology because of its high efficiency with 

comparatively few parameters. ViT performed on par with but never significantly outperformed 

ResNet (Suppl. Table 5). This finding is of high practical relevance for academic and 

commercial actors in computational pathology, as ViTs represent a relatively novel technology, 

which has been broadly applied outside of medicine but is still new to computational pathology. 

More generally, these data show that new AI approaches which were established in non-
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medical fields of research can be applied relatively easily to the domain of pathology, provided 

that clinically relevant benchmark tasks are analyzed. 

 

There are multiple limitations of our study: it is in the nature of technical benchmarks that 

neither all possible technical approaches nor all possible applications can be evaluated. In this 

study, we selected five technical approaches and six previously studied applications of clinical 

relevance. In a recent systematic analysis [7], we found that classical weakly-supervised 

workflows and MIL-based approaches account for almost all deep learning studies in tumor 

subtyping and prediction of molecular alterations. Regarding the clinical applications, we 

investigate molecular subtyping in colorectal, gastric and bladder cancer, i.e. a very common 

and two less common tumor types. In addition, our colorectal cancer cohorts comprised more 

patients than the gastric and bladder cancer cohort (Suppl. Table 1). Importantly, as part of 

our study we release an open-source workflow that includes all five approaches: the histology 

image analysis package (HIA). HIA is a comprehensive PyTorch-based library which enables 

academic and commercial researchers to easily benchmark all tested methods on their own 

datasets, using just a single implementation.  HIA allows to apply all methods to other clinical 

tasks and also extend the toolkit by plugging in new classifiers, but using the existing pre/post- 

processing pipeline. We expect that our findings and this tool can help computational 

pathology to reach clinical-grade performance and ultimately have a positive impact on 

treatment selection and resource saving in the healthcare system.  

Methods 

Ethics statement and patient cohorts 

All experiments were conducted in accordance with the Declaration of Helsinki. For this study 

we used anonymized H&E stained slides obtained from formalin-fixed paraffin-embedded 

(FFPE) material from the “The Cancer Genome Atlas” (TCGA) archive (available at 

https://portal.gdc.cancer.gov), a large, multi-centric collection of tissue specimen obtained 

from multiple hospitals across different countries. From this cohort, we only used “diagnostic 

slides”, i.e. digitized images of glass slides which were used by the respective medical center 

to make the diagnosis of cancer. In addition, we used four proprietary datasets: the DACHS 

study (“Darmkrebs: Chancen der Verhütung durch Screening”), a large population-based 

case-control and patient cohort study on CRC, including samples of patients with stages I-IV 

from different laboratories in southwestern Germany coordinated by the German Cancer 

Research Center (Heidelberg, Germany) [23,24]. The DACHS study was approved by the 

ethics committees of the University of Heidelberg and of the Medical Chambers of Baden‐
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Württemberg and Rhineland‐Palatinate, and all participants signed an informed consent. The 

BERN dataset is a single-center dataset collected from clinical routine samples at the 

pathology archive at Inselspital, University of Bern (Bern, Switzerland) [25]. Use of this data 

set was approved by the local ethics commission, specifically granting the use of archival 

tissue for molecular and immunohistochemical analysis as well as tissue microarray 

construction (University of Bern, Switzerland, no. 200/14). The use of archival tissue from this 

cohort for molecular analysis was approved by the local ethical commission (Technical 

University of Munich, No. 2136/08). Similarly, the AACHEN-RCC dataset and the AACHEN-

BLADDER datasets originated from a single high-volume medical center, the pathology 

archive at RWTH Aachen University Hospital (Aachen, Germany). The collection of patient 

samples from Aachen was approved by the local Ethics board (AACHEN-RCC: EK315/19, 

AACHEN-BLADDER: EK455/20). All cohorts were anonymized at the time of analysis. Suppl. 

Table 1 shows patient numbers and a clinico-pathological description of all cohorts.  

Prediction tasks and experimental design 

In this study, we benchmarked technical approaches in six end-to-end prediction tasks, i.e. we 

trained AI algorithms to predict each of these targets from raw histological whole slide images: 

(1) Diagnosis of renal cell carcinoma subtype (clear cell RCC, chromophobe RCC and 

Papillary RCC); (2) prediction of microsatellite instability (MSI) or mismatch repair deficiency 

(dMMR) in colorectal cancer; (3) prediction of BRAF mutation in colorectal cancer; (4) 

prediction of microsatellite instability (MSI) or mismatch repair deficiency (dMMR) in gastric 

cancer; (5) detection of Epstein-Barr Virus (EBV) presence in gastric cancer and (6) prediction 

of FGFR3 point mutations in bladder cancer. MSI and dMMR have a very high degree of 

overlap and are interchangeably used in clinical routine. [26] Here, we use the term “MSI” 

throughout the study. 

We pre-defined the following experimental design: First, for each prediction task, we used one 

cohort for within-cohort experiments by patient-level three-fold cross-validation. For this 

experiment, we used the following cohorts: DACHS-CRC, BERN-Gastric, Aachen-Bladder, 

TCGA-RCC. Subsequently, we re-trained a classifier for each prediction task on the training 

cohorts and externally validated it in a separate patient cohort. For external validation, we 

used the following cohorts: TCGA-CRC, TCGA-Gastric, TCGA-Bladder, Aachen-RCC. The 

validation cohorts were not used for any other purpose except for validation of the final model. 

We did not perform any hyperparameter tuning but used a pre-defined set of hyperparameters 

for each method (Table 3). 
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Ground truth for prediction tasks 

The ground truth for the prediction targets were obtained as follows: For TCGA-CRC and 

TCGA-STAD, MSI and EBV status were obtained from a public source [27] as described 

before [5]. For TCGA-RCC, images from the three morphological subtypes were obtained 

separately from the GDC data portal (TCGA-KIRP for papillary, KIRC for clear cell and KICH 

for chromophobe tumors). In DACHS, MSI status was obtained by 3-plex PCR and BRAF 

V600E mutational status was obtained by immunohistochemistry on tissue microarrays and 

by Sanger sequencing as described before [28,29] For the BERN gastric cancer cohort, 

MSI/dMMR status was obtained with immunohistochemistry for DNA repair enzymes and EBV 

status was obtained by Epstein-Barr virus (EBV)-encoded RNA (EBER) in-situ hybridization. 

AACHEN-BLADDER comprised bladder carcinomas from a real-world cohort [17] and FGFR3 

mutational status was obtained by whole exome sequencing or identified using the SNaPshot 

method. [30] In the AACHEN-RCC cohort, morphological subtype was retrieved from the 

routine pathology report.  

Image preprocessing 

The input images for all the methods were preprocessed based on the “Aachen protocol for 

Deep Learning histopathology” [31]. Based on this protocol, the digitized whole slide images 

were tessellated into smaller image tiles of (512 ×512) pixels at a resolution of 0.5 micrometers 

per pixel (MPP). During this process, tiles containing background and artifacts were removed 

from the data set (using canny edge detection in Python’s OpenCV package). Extracted tiles 

were color normalized using the Macenko method to reduce the inter-cohort color bias [32]. 

No manual annotations were applied to the whole slide images and all subsequent AI methods 

were trained exclusively with slide-level labels.  

Artificial intelligence methods 

For our benchmarking task, we implemented and systematically compared five different 

methods for end-to-end artificial intelligence on WSI (Table 3). 

For “classical” methods, we followed a workflow established previously for lung cancer [10] 

and colorectal cancer [5,18]. Briefly, this algorithm is based on the assumption that all tiles 

from a given slide inherit the slide label for classification. AI algorithms are trained on N 

randomly selected tiles per WSI and tile-level predictions are averaged to obtain patient-level 

predictions. WSIs contain tumor and non-tumor tissue and only tumor tissue and tumor-

adjacent normal tissue is expected to reflect the target label. However, empirically, such 

weakly supervised methods can yield clinical-grade performance despite weak labels. [15,33] 
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Three different AI models were used within this classical approach: ResNet, EfficientNet and 

Vision Transformers (ViT).  

1. ResNets are currently the de-facto standard for supervised transfer learning due to 

their higher performance and efficiency when compared to other CNN models [34]. In 

this study, we used a ResNet18 model with only the 50% deepest layers as trainable 

layers. The model was pre-trained on ImageNet and fine-tuned by transfer learning on 

each benchmark task separately.  

2. EfficientNet aims to scale up the baseline convolutional network which has been 

referred to as EfficientNet-B0 [35]. The common approach in designing any ConvNet 

is to develop a smaller version of the network and then scale it up to reach the higher 

performance. EfficientNet scales the width, depth and resolution of the network using 

the compound scaling method, which achieves state-of-the-art accuracies on smaller 

and therefore faster networks. 

3. ViT is the most modern AI architecture analyzed within the classical workflows. Since 

2017, attention-based models have become the dominant selection in natural 

language processing (NLP) [36]. In 2020, a high performance of transformers in visual 

tasks has been demonstrated [14]. The input to the vision transformer are flattened 2D 

patches extracted from the original image. All the layers of the transformer use a 

constant latent vector size (D). Through a patch embedding block, the flattened 

patches get mapped to D dimensions using a trainable linear projection. This step is 

followed by a position embedding block which adds positional information to each 

patch. The encoder of the transformer consists of alternating layers of self-attention, 

multilayer perceptron (MLP), layer norm (LN) before each block and residual 

connections after each block. Although ViTs showed very good performance on 

ImageNet data set, its performance on histopathological images with smaller size has 

not been systematically investigated before this study. 

The conceptual limitations of the classical weakly-supervised computational pathology 

workflow are addressed by multiple instance learning (MIL). MIL does not simply cast the slide 

label on each tile, but rather groups tiles in “bags”. While the label of instances is not clear for 

the model, the label of the bag is positive, if there is at least one positive instance within that 

bag. Otherwise, the label of the bag would be negative, if all the instances are negative. Thus, 

MIL is in theory well suited to handle a heterogenous set of tiles obtained from different regions 

in a WSI. In this study, we tested two established MIL methods. 

4. Classical MIL has been used diversely in processing of histopathological images due 

to the lack of annotation for the tiles extracted from whole slide images [37–40] The 

basic framework of MIL is creating bags containing different number of instances and 
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was in the past successfully applied to large-scale image classification tasks in 

histopathology [1] 

5. Clustering constrained Attention Multiple instance learning (CLAM) has been designed 

initially to overcome the challenges in the standard MIL approaches [2]. By using 

attention-based deep learning methods, it is able to detect the most informative regions 

on a WSI which was empirically shown to outperform classical MIL in some 

classification tasks [2]. Compared to standard MIL methods, which use the gradient 

signal only from one single instance from each bag to update the learning parameters, 

CLAM aggregates patch-level features into slide-level information required for 

classification, thus achieving higher robustness. CLAM uses low-dimensional features 

extracted from the input tiles (which is computationally expensive), but the actual 

training only uses feature vectors and the required computational power and time for 

training of this model is very low. The source code for CLAM and MIL  methods are 

taken from https://github.com/mahmoodlab/CLAM  and were modified based on our 

workflow. Figure 2 shows the workflow for each model.  

Statistics 

The primary statistical endpoint was the area under the receiver operating curve (AUROC) 

calculated on the level of patients. Confidence intervals were obtained by 1000 bootstrapping 

the AUC computation. For this purpose, we sampled with replacement from the original ground 

truth labels and the predictions and recomputed the new AUC value. 90% confidence interval 

is selected from the sorted AUC values. For binary classification tasks, AUROCs were 

identical for both groups and therefore, only the AUROC for the positive group (mutated, 

MSI/dMMR) is reported. For multiclass classification tasks, we binarized the ground truth 

labels (for each class) and calculated the AUROC for the prediction scores of the same class 

(Macro-averaging). To quantify whether performance differences between models were 

statistically significant, we used  DeLong’s method. This method tests whether two models 

have a significant difference in their performance and accounts for the role of randomness in 

the finite datasets [41]. The output of this method is the z score (difference of AUROC of the 

output performance of two models divided by its standard error) and the p value.  

Code availability 

All methods are implemented using Python 3.8 with PyTorch and all source codes for 

preprocessing are available at https://github.com/KatherLab/preProcessing and all codes for 

training and evaluating the models with the Histology Image Analysis package are available 

at https://github.com/KatherLab/HIA under an open source license.  
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Tables 

 

Renal Cell Ca. 
subtype 

TCGA 
N= 897 

Colorectal 
MSI 

DACHS 
N=2039 

Colorectal 
BRAF 

DACHS 
N=2075 

Gastric 
MSI 

BERN 
N=302 

Gastric 
EBV 

BERN 
N=304 

Bladder 
FGFR3 

AACHEN 
N=87  

ResNet 

0.978 
(0.970 - 0.985) 

 
0.986 

(0.980 -0.991) 

 
0.984 

(0.976 - 0.992) 

0.919 
(0.899 - 
0.937) 

0.801 
(0.772 - 
0.831) 

0.755 
(0.693 - 
0.821) 

0.814 
(0.671 - 
0.939) 

0.640 
(0.469 - 

0.79) 

EfficientNet 

0.965 
(0.955 - 0.974) 

 
0.970 

(0.958 - 0.980) 

 
0.963 

(0.953 - 0.972) 

0.853 
(0.826 - 
0.878) 

0.754 
(0.721 - 

0.785 

0.731 
(0.664 - 
0.796) 

0.584 
(0.36 - 
0.806) 

0.587 
(0.436 - 
0.752) 

ViT 

0.984 
(0.977 - 0.991) 

 
0.993 

(0.988 - 0.997) 

 
0.988 

(0.984 - 0.993) 

0.937 
(0.919 - 
0.953) 

0.83 
(0.799 - 
0.858) 

0.724 
(0.657 - 
0.788) 

0.831 
(0.68 - 
0.957) 

0.611 
(0.464 - 

0.75) 

MIL 

0.961 
(0.947 - 0.973) 

 
0.961 

(0.947 - 0.972) 

 
0.957 

(0.932 - 0.977) 

0.715 
(0.657 - 

0.77) 

0.661 
(0.592 - 
0.727) 

0.577 
(0.474 - 
0.676) 

0.623 
(0.258 - 

1.0) 

0.614 
(0.513 - 
0.713) 

CLAM 

0.967 
(0.955 - 0.978) 

 
0.982 

(0.973 - 0.990) 

 
0.972 

(0.961 - 0.982) 

0.771 
(0.716- 
0.825) 

0.689 
(0.623 - 
0.757) 

0.785 
(0.715 - 
0.852) 

0.544 
(0.374 - 
0.793) 

0.748 
(0.636 - 
0.850) 

 

Table 1: Performance statistics for within-cohort experiments. Performance was 

assessed by stratified three-fold patient-level cross-validation. Performance is reported as 

patient-level area under the receiver operating curve (AUROC) with a 90% confidence interval 

obtained by 1000x bootstrapping. Pink = best, yellow = second-best. For RCC subtyping, 

AUROCs from top to bottom refer to clear cell, chromophobe and papillary RCC.  
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Renal Cell Ca. 
subtype 
AACHEN 
N=248 

Colorectal 
MSI 

TCGA 
N=426 

Colorectal 
BRAF 
TCGA 

N=500 

Gastric 
MSI 

TCGA 
N=327 

Gastric 
EBV 

TCGA 
N=327 

Bladder 
FGFR3 
TCGA 

N=241 

ResNet 

0.955 
(0.929 - 0.978) 

 
0.964 

(0.935 - 0.988) 

 
0.952 

(0.928 - 0.982) 

0.867 
(0.821 - 
0.908) 

0.795 
(0.739 - 
0.848) 

0.68 
(0.611 - 
0.746) 

0.764 
(0.674 - 
0.852) 

0.782 
(0.704 - 
0.849) 

EfficientNet 

0.969 
(0.952 - 0.982) 

 
0.908 

(0.819 - 0.972) 

 
0.945 

(0.915 - 0.969) 

0.764 
(0.702 - 
0.818) 

0.744 
(0.677- 
0.802) 

0.742 
(0.685 - 
0.801) 

0.629 
(0.554 - 
0.703) 

0.746 
(0.683 -
0.809) 

ViT 

0.973 
(0.958 - 0.985) 

 
0.971 

(0.929 - 0.998) 

 
0.97 

(0.952 - 0.984) 

0.907 
(0.873 - 
0.941) 

0.781 
(0.719 - 
0.834) 

0.73 
(0.671 - 
0.789) 

0.721 
(0.619 - 
0.820) 

0.785 
(0.719 - 

0.84) 

MIL 

0.961 
(0.942 - 0.977) 

 
0.969 

(0.951 - 0.984) 

 
0.912 

(0.875 - 0.948) 

0.586 
(0.523 - 
0.647) 

0.559 
(0.492 - 
0.624) 

0.498 
(0.433 - 
0.565) 

0.789 
(0.715 - 
0.857) 

0.584 
(0.501 - 
0.662) 

CLAM 

0.964 
(0.945 - 0.980) 

 
0.957 

(0.905 - 0.994) 

 
0.96 

(0.936 - 0.981) 

0.614 
(0.545 - 
0.682) 

0.622 
(0.553 - 
0.688) 

0.712 
(0.650 - 
0.776) 

0.727 
(0.637 - 
0.808) 

0.644 
(0.542 - 

0.74) 

 

Table 2: Performance statistics for external validation experiments. Performance is 

reported as patient-level area under the receiver operating curve (AUROC) with a 90% 

confidence interval obtained by 1000x bootstrapping. Pink = best, yellow = second-best 

method. For RCC subtyping, AUROCs from top to bottom refer to clear cell, chromophobe 

and papillary RCC. Statistical significance is reported in Suppl. Tables 3-7. 
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 Hyperparameters and architecture 
Reference, 
technical 

Reference, 
medical 

ResNet 

● Resnet-18 pre-trained on ImageNet (18 
layers, the last layer was changed from 1000 
output neurons to N output neurons for N 
classes) 

● Epochs = 8 (batch size = 128) 
● Maximum number of tiles = 512 
● Optimizer = Adam 
● learning rate = 1e-4 (weight decay = 1e-5) 
● Freeze ratio of layers =0.5 (weights and 

biases in the first 9 layers were not trainable, 
weights and biases in the last 9 layers were 
trainable) 

[34] [5,22] 

EfficientNet 

● Pre-trained on ImageNet 
(efficientnet-b7) 

● Epochs = 8 (batch size = 128) 
● Maximum number of tiles = 512 
● Optimizer = Adam 
● learning rate = 1e-4 (weight decay = 1e-5) 
● Freeze ratio of layers =0.5 

[42] [43] 

ViT 

● Pre-trained on ImageNet (B_32_imagenet1k, 
24 layers, the last layer was changed from 
1000 output neurons to N output neurons for 
N classes) 

● Epochs = 8 (batch size = 128) 
● Maximum number of tiles = 512 
● Optimizer = Adam 
● learning rate = 1e-4 (weight decay = 1e-5) 
● Freeze ratio of layers =0.5 

[14,44] N/A 

MIL 

● Extract features using a Resnet-50 (which is 
pre-trained on ImageNet) for all the tiles of a 
slide 

● Epochs = 50 (batch size = 1) 
● Optimizer = Adam 
● learning rate = 1e-4 (weight decay = 1e-5) 
● dropout = True 

[45] [1] 

CLAM 

● Extract features using a Resnet-50 (which is 
pre-trained on ImageNet) for all the tiles of a 
slide 

● Epochs = 50 (batch size = 1) 
● Optimizer = Adam 
● learning rate = 1e-4  (weight decay = 1e-5) 
● Model size = small 
● Bag loss = Cross Entropy 
● Instance Loss = SmoothTop1SVM[46] 
● dropout = True 

[2] [2] 

 

Table 3: Hyperparameters and technical details for all approaches.  
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Figures 

 

 

Figure 1. Outline of this study. A) End-to-end artificial intelligence (AI) methods in 

computational pathology are used to predict a range of features. B) Patient cohorts for renal 

cell carcinoma, C) for colorectal cancer, D) for gastric cancer and E) for bladder cancer. F) 

Country of origin of all cohorts. G) Experimental design in this study.  
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Figure 2. Schematic workflow of the methods. ResNet (RES) and EfficientNet (EFF) as 

well as Vision Transformers (ViT) were used for weakly supervised end-to-end prediction 

benchmark tasks. In addition, clustering-constrained attention multiple-instance learning 

(CLAM) and classical multiple instance learning (MIL) were used for the same tasks. While 

classical workflows use different models (RES, EFF, ViT), they all cast slide labels to image 

tiles. In contrast, CLAM and classical MIL cast slide labels to bags of image tiles without 

assuming that every single tile reflects the target of interest.    
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Figure 3. Benchmarking results. A) Cross-validation area under the receiver operating curve 

(AUROC) for each method. B) External validation AUROC, C) Receiver operating curves show 

that RCC subtyping is almost perfectly solved by all methods while molecular subtyping tasks 

are solved best by ViT and ResNet.  
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Figure 4. Explainability of subtyping of renal cell carcinoma (RCC). The three highest 

scoring tiles for the three highest scoring patients in the external validation experiment as 

selected by each method are displayed. For this benchmark task, all six methods achieved a 

high performance. Correspondingly, all methods succeeded in selecting image tiles with 

patterns representative of known features of RCC subtypes.  
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Figure 5. Explainability of microsatellite instability (MSI) prediction in colorectal cancer 

(CRC). The five highest scoring tiles for the three highest scoring patients in the external 

validation experiment are displayed. Resnet, EfficientNet and ViT achieved the highest 

performance. This corresponds to a selection of biologically plausible tiles, showing poorly 

differentiated, mucinous tumors for MSI. Conversely, MIL and CLAM selected tiles with tissue 

edges and other artifacts, corresponding to their poor performance.  
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Supplementary Tables 

 TCGA 
CRC 

DACHS 
CRC 

TCGA 
STAD 

BERN 
STAD 

TCGA 
BLCA 

AC 
BLCA 

TCGA 
RCC 

AC 
RCC 

N total 500 2244 327 304 241 87 897 248 

female 245 
 (49%) 

931 
 (42%) 

107 
(33%) 

110 
(36%) 

57  
(24%) 

42  
(48%) 

N/A N/A 

male 253 
(51%) 

1313 
 (59%) 

220 
(67%) 

194 
(64%) 

184  
(76%) 

45 
 (52%) 

N/A N/A 

Stage I 71  
(14%) 

406  
(18%) 

42 
 (13%) 

35  
(12%) 

0 
 (0%) 

N/A N/A N/A 

Stage II 152 
(30%) 

765 
 (34%) 

101 
(31%) 

41 
 (14%) 

80  
(33%) 

N/A N/A N/A 

Stage III 134 
(27%) 

757  
(34%) 

150 
(46%) 

116 
(38%) 

82 
 (34%) 

N/A N/A N/A 

Stage IV 58 
(12%) 

315 
 (14%) 

32  
(10%) 

1 (0.33%) 77 
(32%) 

N/A N/A N/A 

MSI 61 
(12%) 

210 
 (9%) 

57 
 (17%) 

42 
 (14%) 

N/A N/A N/A N/A 

MSS 365 
(73%) 

1829 
 (82%) 

270 
(83%) 

260 
(86%) 

N/A N/A N/A N/A 

BRAF m 59  
(12%) 

151  
(7%) 

N/A N/A N/A N/A N/A N/A 

BRAF 
wt 

441 
(88%) 

1924  
(86%) 

N/A N/A N/A N/A N/A N/A 

EBV+ N/A N/A 26 
 (8%) 

8 
 (3%) 

N/A N/A N/A N/A 

EBV- N/A N/A 301 
(92%) 

296 
(97%) 

N/A N/A N/A N/A 

FGFR3 
m 

N/A N/A N/A N/A 3(15%) 13  
(15%) 

N/A N/A 

FGFR3 
wt 

N/A N/A N/A N/A 204  
(85%) 

74 
 (85%) 

N/A N/A 

subtype 
KIRP 

N/A N/A N/A N/A N/A N/A 275 
 (31%) 

44 
 (18%) 

subtype 
KIRC 

N/A N/A N/A N/A N/A N/A 512  
(57%) 

184 
(74%) 
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subtype 
KICH 

N/A N/A N/A N/A N/A N/A 109 
(12.15%) 

20 
(8.06%) 

Ref. [47] [48] [49] [25] [50] [17] [51] N/A 

 

Suppl. Table 1: Clinico-pathological features of all cohorts. N/A not applicable.  
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Renal Cell Ca. 
subtype 
AACHEN 
N=248 

Colorectal 
MSI 

TCGA 
N=426 

Colorectal 
BRAF 
TCGA 

N=500 

Gastric 
MSI 

TCGA 
N=327 

Gastric 
EBV 

TCGA 
N=327 

Bladder 
FGFR3 
TCGA 

N=241 

ResNet 

0.982 
(0.969 - 0.993 

 
0.727 

(0.548 - 0.874) 

 
0.886 

(0.807 - 0.957) 

0.615 
(0.502 -

0.718 

0.362 
(0.268 - 
0.474) 

0.310 
(0.229 - 
0.409) 

0.294 
(0.164 - 
0451) 

0.436 
(0.303 - 
0564) 

EfficientNet 

0.989 
(0.984 - 0.994) 

 
0.713 

(0.525 - 0.844) 

 
0.792 

(0.682 - 0.871) 

0.397 
(0.292 - 
0.520) 

0.311 
(0.229 - 
0.409) 

0.342 
(0.260 - 
0.452) 

0.101 
(0.07 - 
0.148) 

0.280 
(0.198 - 
0.385) 

ViT 

0.991 
(0.986 - 0.995) 

 
0.885 

(0.753 - 0.983) 

 
0.879 

(0.804 - 0.938) 

0.712 
(0.622 - 
0.795) 

0.377 
80.28 - 
0.476) 

0.362 
(0.266 - 
0.477) 

0.293 
(0.159 - 
0.446) 

0.433 
(0.289 - 
0.563) 

MIL 

0.987 
(0.980 - 0.993’) 

 
0.575 

(0.397 - 0.735) 

 
0.877 

(0.801 - 0.94) 

0.193 
(0.14 - 
0.257) 

0.174 
(0.115 - 
0.245) 

0.164 
(0.128 - 
0.207) 

0.219 
(0.139 - 
0.380) 

0.185 
(0.134 - 
0.266) 

CLAM 

0.988 
(0.981 - 0.994) 

 
0.840 

(0.699 - 0.943) 

0.835 
(0.741 - 0.919) 

 

0.282 
(0.199 - 
0.382) 

0.171 
(0.126 - 
0.225) 

0.403 
(0.287 - 
0.502) 

0.171 
(0.107 - 
0.274) 

0.306 
(0.202 - 
0.442) 

 

Suppl. Table 2: Area under the precision recall curve (AUPRC) for all external validation 

experiments.  
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 EfficientNet ViT MIL CLAM 

morpho- 
logical 

subtyping 

ResNet 
RCC-cc 

z = -0.82 
p = 0.41 

z = -1.02 
p = 0.31 

z = -0.34 
p = 0.73 

z = -0.49 
p = 0.62 

ResNet 
RCC-ch 

z = 0.90 
p = 0.37 

z = -0.59 
p = 0.56 

z = 1.13 
p = 0.26 

z = -0.13 
p = 0.89 

ResNet 
RCC-pap 

z = 0.85 
p = 0.39 

z = -0.32 
p =0.75 

z = -0.28 
p = 0.78 

z = 0.19 
p = 0.85 

predicting 
molecular 
alterations 

ResNet 
CRC-MSI 

z = 2.27 
p = 0.02 

z = -1.17 
p = 0.24 

z = 5.93 
p < 0.0001  

z = 5.24 
p < 0.0001  

ResNet 
CRC-BRAF 

z = 0.97 
p = 0.33 

z = 0.29 
p = 0.77 

z = 4.24 
p < 0.0001  

z = 3.24 
p = 0.001 

ResNet 
Gastric-MSI 

z = -1.16 
p = 0.24 

z = -0.99 
p = 0.32 

z = 3.36 
p = 0.0007 

z = -0.54 
p = 0.59 

ResNet 
Gastric-EBV 

z = 1.86 
p = 0.06 

z = 0.58 
p = 0.56 

z =0.340 
p = 0.69 

z = 0.51 
p =0.61 

ResNet 
Bladder-
FGFR3 

z = 0.56 
p = 0.58 

z = -0.05 
p = 0.96 

z = 3.20 
p = 0.001 

z = 2.11 
p = 0.03 

 

Suppl. Table 3: Pairwise comparison of classifier performance, relative to ResNet. Z 

scores and p values were obtained with DeLong’s test. p<0.05 was considered statistically 

significant and all respective cells are highlighted (yellow: ResNet is significantly better, blue: 

ResNet is significantly worse compared to the reference method).  
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 ResNet ViT MIL CLAM 

morpho- 
logical 

subtyping 

EfficientNet 
RCC-cc 

z = 0.82 
p = 0.41 

z = -0.32 
p = 0.74 

z = 0.64 
p = 0.52 

z = 0.40 
p = 0.69 

EfficientNet 
RCC-ch 

z = -0.90 
p = 0.37 

z = -1.20 
p = 0.23 

z = -0.08 
p = 0.93 

z = -0.85 
p = 0.39 

EfficientNet 
RCC-pap 

z = -0.85 
p = 0.39 

z = - 1.27 
p = 0.20 

z = -1.19 
p = 0.23 

z = -0.67 
p = 0.50 

predicting 
molecular 
alterations 

EfficientNet 
CRC-MSI 

z = -2.27 
p = 0.02 

z = -4.20 
p < 0.0001 

z = 3.54 
p = 0.0004 

z = 2.66 
p = 0.007 

EfficientNet 
CRC-BRAF 

z = -0.97 
p = 0.33 

z = -0.76 
p = 0.45 

z = 3.41 
p = 0.0006 

z = 2.56 
p = 0.01 

EfficientNet 
Gastric-MSI 

z = 1.16 
p = 0.24 

z = 0.22 
p = 0.82 

z = 4.98 
p  < 0.0001 

z = 0.51 
p = 0.61 

EfficientNet 
Gastric-EBV 

z = -1.86 
p = 0.06 

z = -1.32 
p = 0.19 

z = -2.38 
p = 0.02 

z = -1.31 
p = 0.19 

EfficientNet 
Bladder-
FGFR3 

z = -0.56 
p = 0.58 

z = -0.80 
p = 0.42 

z = 2.27 
p = 0.02 

z = 1.47 
p = 0.14 

 

Suppl. Table 4: Pairwise comparison of classifier performance, relative to EfficientNet. 

Z scores and p values were obtained with DeLong’s test. p<0.05 was considered statistically 

significant and all respective cells are highlighted (yellow: EfficientNet is significantly better, 

blue: EfficientNet is significantly worse compared to the reference method).  
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 ResNet EfficientNet MIL CLAM 

morpho- 
logical 

subtyping 

ViT 
RCC-cc 

z = 1.02 
p = 0.31 

z = 0.32 
p = 0.74 

z = 0.91 
p = 0.36 

z = 0.68 
p = 0.49 

ViT 
RCC-ch 

z = 0.59 
p = 0.56 

z = 1.20 
p = 0.23 

z = 1.65 
p = 0.10 

z = 0.35 
p = 0.73 

ViT 
RCC-pap 

z = 0.32 
p =0.75 

z = 1.27 
p = 0.20 

z = 0.06 
p = 0.95 

z = 0.57 
p = 0.57 

predicting 
molecular 
alterations 

ViT 
CRC-MSI 

z = 1.17 
p = 0.24 

z = 4.20 
p < 0.0001 

z = 7.70 
p < 0.0001 

z = 5.96 
p < 0.0001 

ViT 
CRC-BRAF 

z = -0.29 
p = 0.77 

z = 0.76 
p = 0.45 

z = 4.50 
p < 0.0001 

z = 3.12 
p = 0.002 

ViT 
Gastric-MSI 

z = 0.99 
p = 0.32 

z =- 0.22 
p = 0.82 

z = 3.37 
p = 0.0007 

z = -0.54 
p = 0.59 

ViT 
Gastric-EBV 

z = -0.58 
p = 0.56 

z = 1.32 
p = 0.19 

z = -0.40 
p = 0.69 

z = 0.51 
p = 0.61 

ViT 
Bladder-
FGFR3 

z = 0.05 
p = 0.96 

z = 0.80 
p = 0.42 

z = 3.18 
p = 0.001 

z = 1.90 
p = 0.06 

 

Suppl. Table 5: Pairwise comparison of classifier performance, relative to ViT.  Z scores 

and p values were obtained with DeLong’s test. p<0.05 was considered statistically significant 

and all respective cells are highlighted (yellow: ViT is significantly better, blue: ViT is 

significantly worse compared to the reference method).  
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 ResNet EfficientNet ViT CLAM 

morpho- 
logical 

subtyping 

MIL 
RCC-cc 

z = 0.34 
p = 0.73 

z = -0.64 
p = 0.52 

z = -0.91 
p = 0.36 

z = -0.18 
p = 0.85 

MIL 
RCC-ch 

z =- 1.13 
p = 0.26 

z = 0.08 
p = 0.93 

z = -1.65 
p = 0.10 

z = -1.27 
p = 0.20 

MIL 
RCC-pap 

z = 0.28 
p = 0.78 

z = 1.19 
p = 0.23 

z =- 0.06 
p = 0.95 

z = 0.55 
p = 0.58 

predicting 
molecular 
alterations 

MIL 
CRC-MSI 

z = -5.93 
p < 0.0001  

z = -3.54 
p = 0.0004 

z = -7.70 
p < 0.0001 

z = -0.49 
p = 062 

MIL 
CRC-BRAF 

z = -4.24 
p < 0.0001  

z = -3.41 
p = 0.0006 

z = -4.50 
p < 0.0001 

z = -1.17 
p = 0.24 

MIL 
Gastric-MSI 

z = -3.36 
p = 0.0007 

z =-4.98 
p  < 0.0001 

z = -3.37 
p = 0.0007 

z = -3.43 
p < 0.0001 

MIL 
Gastric-EBV 

z = -0.340 
p = 0.69 

z = 2.38 
p = 0.02 

z = 0.40 
p = 0.69 

z = 0.96 
p = 0.34 

MIL 
Bladder-
FGFR3 

z = -3.20 
p = 0.001 

z = -2.27 
p = 0.02 

z = -3.18 
p = 0.001 

z = -0.79 
p = 0.43 

 

Suppl. Table 6: Pairwise comparison of classifier performance, relative to MIL. Z scores 

and p values were obtained with DeLong’s test. p<0.05 was considered statistically significant 

and all respective cells are highlighted (yellow: MIL is significantly better, blue: MIL is 

significantly worse compared to the reference method).  
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 ResNet EfficientNet ViT MIL 

morpho- 
logical 

subtyping 

CLAM 
RCC-cc 

z = 0.49 
p = 0.62 

z = -0.40 
p = 0.69 

z =- 0.68 
p = 0.49 

z = 0.18 
p = 0.85 

CLAM 
RCC-ch 

z = 0.13 
p = 0.89 

z = 0.85 
p = 0.39 

z = -0.35 
p = 0.73 

z = 1.27 
p = 0.20 

CLAM 
RCC-pap 

z = -0.19 
p = 0.85 

z = 0.67 
p = 0.50 

z = -0.57 
p = 0.57 

z = -0.55 
p = 0.58 

predicting 
molecular 
alterations 

CLAM 
CRC-MSI 

z = -5.24 
p < 0.0001  

z = -2.66 
p = 0.007 

z = -5.96 
p < 0.0001 

z = 0.49 
p = 0.62 

CLAM 
CRC-BRAF 

z = -3.24 
p = 0.001 

z = -2.56 
p = 0.01 

z = -3.12 
p = 0.002 

z = 1.17 
p = 0.24 

CLAM 
Gastric-MSI 

z = 0.54 
p = 0.59 

z = -0.51 
p = 0.61 

z = 0.54 
p = 0.59 

z = 3.43 
p < 0.0001 

CLAM 
Gastric-EBV 

z = -0.51 
p =0.61 

z = 1.31 
p = 0.19 

z = -0.51 
p = 0.61 

z = -0.96 
p = 0.34 

CLAM 
Bladder-
FGFR3 

z = -2.11 
p = 0.03 

z = -1.47 
p = 0.14 

z = -1.90 
p = 0.06 

z = 0.79 
p = 0.43 

 

Suppl. Table 7: Pairwise comparison of classifier performance, relative to CLAM. Z 

scores and p values were obtained with DeLong’s test. p<0.05 was considered statistically 

significant and all respective cells are highlighted (yellow: CLAM is significantly better, blue: 

CLAM is significantly worse compared to the reference method). 
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