1	Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-
2	running period and light resetting capacity of the circadian clock
3	
4	Yoshiaki Yamaguchi ^{1,#} Iori Murai ^{1,#} Kaoru Goto ^{1,#} Shotaro Doi ¹ Huihua Zhou ¹
5	Genzui Setsu ¹ Hiroyuki Shimatani ¹ Hitoshi Okamura ^{1,2} Takahito Miyake ¹ Masao Doi ¹
6	
7	¹ Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto
8	University, Sakyō-ku, Kyoto 606-8501, Japan.
9	² Department of Neuroscience, Graduate School of Medicine, Kyoto University, Sakyō-ku,
10	Kyoto 606-8501, Japan.
11	
12	Short title: The orphan GPCR Gpr19 modulates the pace of circadian clock
13	
14	Keywords: Circadian clock, orphan GPCR, suprachiasmatic nucleus, clock gene
15	
16	[#] These authors contributed equally to this work.
17	
18	Correspondence and requests for materials should be addressed to M.D. (email:
19	doimasao@pharm.kyoto-u.ac.jp) or H.O. (email: okamurah@pharm.kyoto-u.ac.jp).
20	
21	Word count: 5539
22	

23 ABSTRACT

24 Background and Purpose

Gpr19 encodes an evolutionarily conserved orphan G-protein-coupled receptor (GPCR) with
no established physiological function in vivo. The purpose of this study was to determine the
role of *Gpr19* in the circadian clock system. **Experimental Approach**We examined whether and how the master circadian clock neurons in the suprachiasmatic

30 nucleus (SCN) express *Gpr19*. By analysing *Gpr19*-deficient (*Gpr19*^{-/-}) mice, we asked

31 whether *Gpr19* has a role in modulating free-running period and light resetting capacity of

32 the circadian clock.

33 Key Results

Compared with the known common core clock genes, *Gpr19* was identified to show several 34 distinct yet limited features related to the circadian clock. Gpr19 mRNA was mainly expressed 35 in the middle-to-dorsal region of the SCN. A conserved cAMP-responsive element within the 36 Gpr19 promoter drove the circadian expression of Gpr19. Gpr19^{-/-} mice exhibited a 37 prolonged circadian period and a delayed initiation of daily locomotor activity in a 12-h 38 light/12-h dark cycle. Gpr19 deficiency caused the downregulation of several genes that 39 normally peak during the night, including *Bmal1* and *Gpr176*. *Gpr19^{-/-}* mice had a reduced 40 capacity for phase shift to early subjective night light. The defect was only observed for 41 phase-delay, but not phase-advance, and accompanied by reduced response of c-Fos 42

- 43 expression in the dorsal region of the SCN, while apparently normal in the ventral part of the
- 44 SCN, in $Gpr19^{-/-}$ mice.

45 **Conclusion and Implications**

- 46 *Gpr19* is an SCN-enriched orphan GPCR with a distinct role in circadian regulation and thus
- 47 may be a potential target for alleviating circadian clock disorders.
- 48 What is already known:
- 49 Gpr19 is an evolutionarily conserved class-A orphan receptor with no established
- 50 physiological role in vivo.
- 51 The SCN is a light-entrainable master circadian pacemaker governing daily
- 52 rhythms of behaviour and physiology.
- 53 What this study adds:
- 54 *Gpr19* is an SCN-enriched orphan GPCR whose levels fluctuate in a circadian fashion.
- 55 *Gpr19* is a functional clock modulator involved in period determination and phase
- 56 resetting.
- 57 Clinical significance:
- 58 Targeting the orphan receptor Gpr19 may provide a therapeutic approach for alleviating
- 59 circadian clock disorders.

60 1 | INTRODUCTION

61	The SCN is the master circadian oscillator and the principal target for light modulation of
62	the circadian rhythm in mammals (Herzog et al., 2017). Approximately 10,000 SCN neurons
63	are clustered near the third ventricle above the optic chiasm, the source of direct retinal input
64	to the SCN. The ventral part of the SCN close to the optic chiasm receives input from the
65	retina, while the dorsal part of the SCN does not. Through communication between its
66	ventral and dorsal parts, the whole SCN is synchronised to the ambient light/dark cycle
67	(LeGates et al., 2014). The cyclic input serves solely to entrain the clock, not to sustain it.
68	The SCN generates endogenous circadian oscillation with a period (or time taken to
69	complete a full cycle) of approximately 24 h. Animals, including human beings, can
70	therefore sustain overt circadian oscillations in behaviour and physiology even under
71	constant conditions, e.g. under constant darkness (Takahashi, 2017).
72	At the molecular level, individual neurons in the SCN act as cell-autonomous oscillators,
73	exhibiting circadian oscillations of firing rate and gene expression. The rhythm-generating
74	mechanism of the cellular clock involves clock genes, which regulate their own transcription
75	in a negative transcription-translation feedback loop (TTFL). Positive regulators Clock and
76	Bmall and negative regulators Per1, Per2, Cry1, and Cry2 constitute the main TTFL
77	(Takahashi, 2017). Besides the clock components directly involved in the TTFL, SCN

4

78	neurons express a number of genes that are involved in the coordination of cellular clocks
79	within the structure. These are exemplified by VIP and its receptor Vipr2 coordinating the
80	SCN circuit and expression of the circadian clock genes in the SCN (Aton et al., 2005;
81	Colwell et al., 2003; Harmar et al., 2002). The AVP receptor V1a/b confers an intrinsic
82	resistance against perturbation such as jet lag (Yamaguchi et al., 2013). The transcription
83	factors Zfhx3 and Lhx1 regulate the expression of distinct neuropeptidergic genes to control
84	circadian locomotor activity (Bedont et al., 2014; Hatori et al., 2014; Parsons et al., 2015).
85	The G-protein signalling regulator RGS16 participates in circadian period determination by
86	modulating cAMP signalling (Doi et al., 2011; Hayasaka et al., 2011). The orphan receptor
87	Gpr176 also modulates the period of the SCN clock through circadian cAMP regulation (Doi
88	et al., 2016). The neurotransmitter GABA has been implicated in synchronising individual
89	cells within the SCN (Albus et al., 2005; Liu & Reppert, 2000). However, compared to the
90	well-understood molecular mechanisms of the TTFL, molecular components involved in the
91	coordination of the whole SCN are still not fully understood.
92	In the entrainment of the clock, phase resetting light pulses increase expression of <i>Per1</i>

In the entrainment of the clock, phase resetting light pulses increase expression of *Per1* as well as other immediate early genes in the SCN. *Per1* induction changes the phase of the
 TTFL. In the SCN, indirect modulators of the TTFL also have a role in modifying the phase
 resetting response of the clock. Blocking the GABA_A receptor leads to increased phase shifts

96	of circadian locomotor activity rhythm in mice (Lall & Biello, 2003). VIP-Vipr2 signalling is
97	not only required for time keeping but is also involved in circadian clock entrainment to the
98	environmental light-dark cycle (Hamnett et al., 2019; Hughes & Piggins, 2008; Mazuski et
99	al., 2018; Patton et al., 2020). Lhx1 mutant mice rapidly phase shift under experimental jet
100	lag conditions (Bedont et al., 2014; Hatori et al., 2014). Synaptic Ras GTPase-activating
101	protein SynGAP and Ras-like G protein Dexras1 are involved in the modulation of light-
102	induced phase shifts (Aten et al., 2021; Cheng et al., 2004). The voltage-gated channel
103	Nav1.1 in the SCN is also required for the full phase-responsiveness of the clock (Han et al.,
104	2012). These accumulating data support the notion of multilayered regulation of the capacity
105	of phase response in the SCN clock, although the components involved are still not fully
106	described.
107	Gpr19 encodes an evolutionarily conserved orphan GPCR (https://www.gpcrdb.org/) first
108	identified from a human genome EST library (O'Dowd et al., 1996). Histological studies
109	previously identified the enrichment of Gpr19 expression in the brain, including the SCN
110	(Doi et al., 2016; Hoffmeister-Ullerich et al., 2004; Lein et al., 2007) ; however, how its
111	expression is controlled in the SCN is not characterized. Moreover, currently, Gpr19 lacks
112	assignment to physiological functions; while a few published research articles reported on its
113	potential association with certain metastatic cancers (Kastner et al., 2012; Rao & Herr, 2017;

6

114	Riker et al., 2008), its distinct role in physiology has been unclear, reflecting the absence of
115	study reporting the phenotype of $Gpr19^{-/-}$ mice.
116	In the present study, we show that Gpr19 is involved in the determination of the
117	circadian period and phase-resetting capacity of the SCN clock. Gpr19 mRNA was mainly
118	expressed in the dorsal part of the SCN, with its expression fluctuating in circadian fashion.
119	We explored the role for <i>Gpr19</i> in the regulation of circadian behaviour.
120	
121	
122	
123	2 METHODS
123 124	2 METHODS 2.1 Mouse strains and behavioural activity monitoring
123 124 125	 2 METHODS 2.1 Mouse strains and behavioural activity monitoring <i>Gpr19^{-/-}</i> mice were obtained from the Mutant Mouse Resource & Research Centers
123 124 125 126	2 METHODS 2.1 Mouse strains and behavioural activity monitoring $Gpr19^{-/-}$ mice were obtained from the Mutant Mouse Resource & Research Centers (MMRRC strain name, $Gpr19^{tm1Dgen}$) with a mixed genetic background involving
123 124 125 126 127	2 METHODS 2.1 Mouse strains and behavioural activity monitoring $Gpr19^{-/-}$ mice were obtained from the Mutant Mouse Resource & Research Centers (MMRRC strain name, $Gpr19^{tm1Dgen}$) with a mixed genetic background involving 129P2/OlaHsd × C57BL/6J and backcrossed to C57BL/6J for ten generations prior to
 123 124 125 126 127 128 	2 METHODS 2.1 Mouse strains and behavioural activity monitoring Gpr19 ^{-/-} mice were obtained from the Mutant Mouse Resource & Research Centers (MMRRC strain name, Gpr19 ^{im1Dgen}) with a mixed genetic background involving 129P2/OlaHsd × C57BL/6J and backcrossed to C57BL/6J for ten generations prior to behavioural assessment. Single-caged adult male mice (8- to 15-week old) were housed
 123 124 125 126 127 128 129 	2 METHODS 2.1 Mouse strains and behavioural activity monitoring <i>Gpr19^{-/-}</i> mice were obtained from the Mutant Mouse Resource & Research Centers (MMRRC strain name, <i>Gpr19^{tm1Dgen}</i>) with a mixed genetic background involving 129P2/OlaHsd × C57BL/6J and backcrossed to C57BL/6J for ten generations prior to behavioural assessment. Single-caged adult male mice (8- to 15-week old) were housed individually in light–tight, ventilated closets within a temperature- and humidity-controlled

131 and transferred to constant darkness (DD). Locomotor activity was detected with passive

132	(pyroelectric) infrared sensors (FA-05 F5B; Omron) and data were analysed with ClockLab
133	software (Actimetrics) developed on MatLab (Mathworks) (Doi et al., 2011). Free-running
134	circadian period was determined with χ^2 periodogram, based on animal behaviors in a 14-day
135	interval taken 3 days after the start of DD condition. For phase shift experiments, mice were
136	exposed to a 15-min light pulse at either CT6, CT14, or CT22 with a light intensity of 20 or
137	200 lux. Phase shifts were quantified as the time difference between regression lines of
138	activity onsets before and after the light stimulation, using ClockLab software. All animal
139	experiments were conducted in compliance with ethical regulations in Kyoto University and
140	performed under protocols approved by the Animal Care and Experimentation Committee of
141	Kyoto University (Approval No. 18-21-4). Animal studies are reported in compliance with
142	the ARRIVE guidelines 2.0 (Percie du Sert et al., 2020) and with the recommendations made
143	by the British Journal of Pharmacology (Lilley et al., 2020).

144 **2.2 | In situ hybridization**

Radioisotopic *in situ* hybridization was performed as described with the following genespecific probes (Shigeyoshi et al., 1997): for *Per1* (nucleotides 812–1651, NM_011065) and
for *Gpr19* (nucleotides 923–1096, NM_008157). Free-floating brain sections (30-µm thick)
containing the SCN were hybridized to anti-sense ³³P-labeled cRNA probes. Quantification
of expression strength was performed by densitometric analysis of autoradiograph films. To

150	detect distribution of <i>Gpr19</i> mRNA expression in the SCN, RNAscope <i>in situ</i> hybridization
151	was performed using 12 pairs of ZZ probe targeting the nucleotides 911–1583 of the mouse
152	<i>Gpr19</i> (NM_008157). This region corresponds to the deleted sequence of the <i>Gpr19</i> ^{tm1Dgen}
153	allele. The ZZ probes were designed and synthesized by Advanced Cell Diagnostics. RNA
154	hybridization signals were visualized with the RNAscope 2-Plex Detection Kit (Advanced
155	Cell Diagnostics) using the Fast Red chromogen according to the manufacturer's protocol.
156	Sections were counterstained with haematoxylin.

157 **2.3 | Immunoblot**

Gpr19 antibody was raised in rabbit using a His-tag fused Gpr19 mouse protein fragment 158 (amino acids 333–415). The raised antibodies were affinity-purified using a maltose-binding 159 protein (MBP)-fused Gpr19 fragment (a.a. 333-415). Endogenous Gpr19 proteins were 160 immunoprecipitated from the mouse hypothalamic SCN membrane extracts. The tissues 161 were homogenized with a Dounce tissue grinder in a hypotonic buffer containing 20 mM 162 HEPES (pH7.8), 2 mM EDTA, 1 mM DTT, and 1 × cOmplete Protease Inhibitor cocktail 163 164 (Roche Diagnostics). After centrifugation at $20,400 \times g$ for 30 min, the pellet was resuspended in a high-salt buffer containing 500 mM NaCl, 20 mM HEPES (pH7.8), 2 mM 165 EDTA, 1 mM DTT, and 1 × cOmplete Protease Inhibitor cocktail. The mixture was then 166 centrifuged, and the resultant pellet was solubilized with a detergent-containing buffer (20 167

168	mM HEPES [pH7.8], 150 mM NaCl, 2 mM EDTA, 1 mM DTT, 1% dodecyl-β-d-maltoside,
169	0.2% cholesteryl hemisuccinate, and 1 \times cOmplete Protease Inhibitor). The soluble fractions,
170	collected at either ZT4 or ZT16, were used for Gpr19 immunoprecipitation. Immunoblotting
171	was performed using our standard method (Doi et al., 2011) with the same Gpr19 antibody.

172 2.4 | 5' Rapid amplification of cDNA ends

173	Total RNA was purified from laser-microdissected mouse SCN using the RNeasy Micro Kit
174	(Qiagen) according to the manufacturer's instructions. The single strand cDNA for 5'RACE
175	was prepared by in vitro reverse transcription with avian myeloblastosis virus reverse
176	transcriptase XL (Takara Bio) using total RNA (0.5 μ g) and the primer RT (5'-AGG ATG
177	GAG GGA ATC-3') and digestion of the template RNA with RNase H. 5'RACE was carried
178	out using a 5' Full RACE Core Set (Takara Bio). The first PCR was performed using the
179	single strand cDNAs concatenated by T4 RNA ligase and primers S1 (5'-TTC TAT ACC
180	ATC GTC TAC CCG CTG AGC TTC-3') and A1 (5'- TTC AGC TCG TAC TGA AGC TCT
181	GTC CTG TTG-3') through a 25 cycle-amplification (94°C for 15 s, 45°C for 30 s, and
182	68°C for 2 min). Then, a nested PCR was applied to the first PCR products under the same
183	condition using primers S2 (5'-GGG AAC TGC CTA TAC CGT CAT CCA CTT C-3') and
184	A2 (5'-CTC CTC ATG CAA TCC CAT CAG GCC ATG-3'). The resultant product of the
185	nested PCR was cloned into pCR-Blunt II-TOPO vector for DNA sequencing.

10

2.5 | Promoter activity reporter assay

187	We constructed a <i>piggyBac</i> (<i>PB</i>) transposon-based plasmid DNA containing <i>luciferase</i> (<i>luc</i>)
188	reporter to ensure long-term transgene expression (Nakanishi et al., 2010). The following
189	PB-based reporter plasmids were constructed: (i) pIR Gpr19 promoter-Luc2P
190	(-1083CREwt), in which a 1309-bp genomic DNA fragment of the murine Gpr19 (-1083 to
191	+226)-luciferase reporter (luc2P, Promega) was cloned into a vector engineered to contain
192	the PB IRs and internal sequences necessary for efficient chromosomal integration
193	(Nakanishi et al., 2010); (ii) pIR Gpr19 promoter-Luc2P (-1083CREmut), which is the same
194	as (i) except that the CRE was mutated to 5'-GCACAAAA-3'; (iii) pIR Gpr19 promoter-
195	Luc2P (-915CREwt), in which a 1141-bp genomic fragment of the Gpr19 (-915 to +226)
196	was cloned into the vector; (iv) pIR Gpr19 promoter-Luc2P (-915CREmut), which is the
197	same as (iii) except that the CRE was mutated to 5'-GCACAAAA-3'; (v) pIR Gpr19
198	promoter-Luc2P (-514), which contains the -514 to +226 fragment of the Gpr19; and (vi)
199	pIR Gpr19 promoter-Luc2P (-242), which contains the -242 to +226 fragment of the
200	Gpr19. For the analysis of isolated CRE activity, we used (vii) pGL4.23[luc2/minP]
201	(Promega); (viii) pGL4.23 Gpr19 3×CREwt-Luc2, in which a tandem repeat of the sequence
202	corresponding to the Gpr19 CRE with its flanking sequences (positions -874 to -853) was
203	cloned into the pGL4.23; and (ix) pGL4.23 Gpr19 3×CREmut-Luc2, which is the same as
204	(viii) except that the CRE sequences were mutated to 5'-GCACAAAA-3'. All the plasmids

205	were verified by DNA sequencing. MEF cells were uniformly plated in a 35-mm dish at a
206	density of $3-4 \times 10^5$ cells per dish and cultured for 1 day. Then, cells were transfected with a
207	selected reporter plasmid using the Lipofectamine LTX/Plus reagent (Thermo Fisher
208	Scientific). Where required, PB transposase-expressing vector (pFerH-PBTP) (Nakanishi et
209	al., 2010) was co-transfected. Three days after transfection, culture medium was refreshed to
210	the medium containing 1mM luciferin. On the following day, cells were treated with FSK
211	(20 μ M) or DMSO (1%). Luminescence was measured using a dish-type luminometer
212	(Kronos Dio, ATTO). The average fold increase was determined by dividing the luciferase
213	activity at 4–7 h post FSK or DMSO treatment with the average basal activity, which is 3-h
214	reporter activity before FSK/DMSO treatment.
214	reporter activity before FSK/DMSO treatment.
214 215	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture
214 215 216	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture A luciferase reporter driven by a tandem repeat of the <i>Gpr19</i> CRE sequence (3×CRE- <i>Luc2P</i>)
214215216217	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture A luciferase reporter driven by a tandem repeat of the <i>Gpr19</i> CRE sequence (3×CRE- <i>Luc2P</i>) was inserted between the ITR sequences of pAAV-MCS vector (Cell Biolabs Inc) to obtain
 214 215 216 217 218 	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture A luciferase reporter driven by a tandem repeat of the <i>Gpr19</i> CRE sequence (3×CRE- <i>Luc2P</i>) was inserted between the ITR sequences of pAAV-MCS vector (Cell Biolabs Inc) to obtain pAAV-3×CRE- <i>Luc2P</i> . HEK293T cells cultured in dish were co-transfected with pAAV-
 214 215 216 217 218 219 	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture A luciferase reporter driven by a tandem repeat of the <i>Gpr19</i> CRE sequence (3×CRE- <i>Luc2P</i>) was inserted between the ITR sequences of pAAV-MCS vector (Cell Biolabs Inc) to obtain pAAV-3×CRE- <i>Luc2P</i> . HEK293T cells cultured in dish were co-transfected with pAAV- 3×CRE- <i>Luc2P</i> , pAAV-DJ, and pHelper according to the manufacturer's instructions (Cell
 214 215 216 217 218 219 220 	reporter activity before FSK/DMSO treatment. 2.6 Viral transduction and bioluminescence recording of organotypic SCN slice culture A luciferase reporter driven by a tandem repeat of the <i>Gpr19</i> CRE sequence (3×CRE- <i>Luc2P</i>) was inserted between the ITR sequences of pAAV-MCS vector (Cell Biolabs Inc) to obtain pAAV-3×CRE- <i>Luc2P</i> . HEK293T cells cultured in dish were co-transfected with pAAV- 3×CRE- <i>Luc2P</i> , pAAV-DJ, and pHelper according to the manufacturer's instructions (Cell Biolabs Inc). Three days after transfection, cells were harvested and resuspended in 1 ml of

Luc2P and 3×CREmut-*Luc2P* virus solutions were $\sim 8 \times 10^{12}$ genome copies/mL. The SCN

223	slices were prepared according to our standard method (Doi et al., 2019). Two days after the
224	preparation of SCN slices, the AAV solution (3 μ L per slice) was inoculated on the surface of
225	the SCN slices. Infected slices were further cultured for ~14 days. Thereafter, luminescence
226	from the culture was measured with a dish-type luminometer (Kronos Dio, ATTO) at 35°C
227	using 1 mM luciferin (Doi et al., 2019). The luminescence was monitored for 2 min at 20-
228	min intervals for each slice. The raw data were smoothed using a 1-h moving average and
229	further detrended by subtracting a 24 h running average.

230 2.7 | Laser microdissection and qRT-PCR analysis

Animals were sacrificed by cervical dislocation under a safety red light at the indicated time 231 points in DD. Coronal brain section (30-µm thick) containing the SCN was prepared using a 232 cryostat microtome (CM3050S, Leica) and mounted on POL-membrane slides (Leica). 233 Sections were fixed in ice-cold ethanol-acetic acid mixture (19:1) for 2 min and stained with 234 0.05% toluidine blue. SCN were then excised using a LMD7000 device (Leica) and lysed 235 into Trizol reagent (Invitrogen). Total RNA was purified using the RNeasy micro kit 236 237 (Qiagen) and converted to cDNA with SuperScript VILO cDNA Synthesis kit (Invitrogen). gPCR was run on a BioMark HD System (Fluidigm) with a 48.48 Fluidigm BioMark 238 Dynamic Array chip (Fluidigm) as described (Doi et al., 2019). The primer sets used for 239 Per1, Per2, Per3, Cry1, Cry2, Clock, Bmal1, Nr1d1, Dbp, E4bp4 and Rplp0 were already 240

241	reported elsewhere (Doi et al., 2019). The TaqMan probe and primers used for the other
242	genes are listed in Table S1. The data were normalized with <i>Rplp0</i> . Hierarchical clustering
243	was performed with Ward's method by calculating Euclidean distances among the time-
244	series data using scikit-learn (version 0.23.1) in Python. In this cluster analysis, the values of
245	each mRNA expression were transformed by linear-scaling: the highest and lowest values
246	were adjusted to 1 and 0, respectively. The resultant tree-diagram was further converted into
247	an unrooted circular dendrogram, whose branch length reflects the degree of similarity
248	between the genes, using the application Phylodendron software (http://iubio.bio.
249	indiana.edu/ treeapp/treeprint-form.html).

250 **2.8 | c-Fos immunolabeling**

251	Free-floating immunohistochemistry was performed with 30-µm-thick serial coronal brain
252	sections. To minimize technical variations in immunostaining, different tissue sections to be
253	compared were immunolabelled simultaneously in a single staining mixture. c-Fos antibody
254	(Abcam, ab7963, RRID:AB_306177, 1:10000 dilution) and biotinylated anti-rabbit IgG
255	antibody (Vector Laboratories, BA-1000, RRID:AB_2313606, 1:1000 dilution) were used.
256	Immunoreactivities were visualized with a peroxidase-based Vectorstain Elite ABC kit
257	(Vector Laboratories) using diaminobenzidine as a chromogen. The number of c-Fos-
258	positive cells in the SCN was counted with NIH ImageJ software. We used a rolling ball

259	algorithm to correct uneven background in each photomicrograph. Nine SCN sections were
260	examined per mouse. To measure c-Fos expression in the dorsal and ventral SCN, the SCN
261	was divided into two regions in equal proportions along the vertical axis (from the dorsal-
262	most to the ventral-most) for non-biased definition of the regions of interest. Three coronal
263	SCN sections with characteristic dorsal and ventral subregions were used for counting.

264

2.9 | Data and statistical analysis

The data and statistical analysis comply with the recommendations on experimental design 265 and analysis in pharmacology (Curtis et al., 2018). All experiments were designed to 266 generate groups of equal size, using randomization and blinded analysis. The statistical 267 analysis was undertaken only for experiments where each group size was at least n = 5 of 268 independent values and performed using these independent values. The group sizes for the in 269 vivo experiments were chosen according to previous studies (Doi et al., 2016; Doi et al., 270 2019). Statistically significant differences between means of two groups were analysed by 271 using unpaired Student's *t*-test. For comparisons involving more than two groups, when F 272 was significant, one-way or two-way ANOVA followed by Bonferroni's post hoc test was 273 performed. P values < 0.05 were considered significant. Outliers were included in data 274 analysis and presentation. All statistical analysis was calculated using GraphPad Prism 8 275 (GraphPad Software, RRID:SCR 002798). 276

277 **3 | RESULTS**

278 **3.1 | Expression of** *Gpr19* **in the SCN**

We performed in situ hybridisation using a radioisotope-labelled probe for Gpr19. Coronal 279 brain sections from wild-type (WT) mice confirmed the enrichment of Gpr19 transcript in 280 the SCN, while no signal was observed for Gpr19-deficient ($Gpr19^{-/-}$) mice (Figure 1a). To 281 detect distribution of Gpr19 mRNA expression in the SCN, we next performed RNAscope in 282 situ hybridization (Figure 1b). Coarse-grained RNA signals for Gpr19 were mainly observed 283 in the middle-to-dorsal region of the SCN in WT mice. Corresponding signals were not 284 observed for Gpr19^{-/-} mice (Figure 1b). To test the possibility that Gpr19 mRNA expression is 285 regulated by the endogenous clock, we performed quantitative in situ hybridisation using 286 samples from mice housed under constant dark conditions (DD). After entrainment on a 287 regular 12-h light:12-h dark cycle (LD), mice were dark-adapted for 2 days before being 288 sacrificed at 4-h intervals starting at circadian time (CT) 0 (Figure 1c, CT12 corresponds to 289 locomotor activity onset). Gpr19 mRNA was highest in the subjective day at CT4 and lowest 290 in the subjective night at CT16, with an amplitude of ~ 2.75 -fold (P < 0.05, CT4 vs CT16, 291 one-way ANOVA with Bonferroni's post hoc test, Figure 1c). These data demonstrate that 292 the circadian clock regulates Gpr19 expression in the SCN. We generated an anti-Gpr19 293 antibody. This antibody was unfortunately not useful for immunohistochemistry, but we 294

confirmed its ability to specifically immunoprecipitate Gpr19 protein from WT mice but not *Gpr19^{-/-}* mice (Figure 1d). In this analysis we also noted a higher protein level of Gpr19 at
daytime (ZT4, ZT represents Zeitgeber time; ZT0 denotes lights-on) than at night (ZT16)
(Figure 1d). Thus, Gpr19 abundance appears to fluctuate at both mRNA and protein level.

300	3.2 CRE sequence in <i>Gpr19</i> promoter generates circadian oscillation in the SCN
301	To investigate the mechanism of circadian Gpr19 expression, we performed sequence
302	conservation analysis of the Gpr19 promoter region among different mammalian species
303	using the UCSC Genome Browser on Mouse (GRCm38/mm10, Figure 2). We identified the
304	transcription start site by 5'RACE using total RNA isolated from the SCN (Figure S1) and
305	found a major site of initiation of $Gpr19$, which we designated as base pair +1 (Figure 2a).
306	This analysis revealed two conserved segments, one of which was located near the
307	transcription start site, including exon 1 (-194 to $+232$), while the other was located
308	approximately 900-bp upstream of the gene (-1071 to -826). There were no consensus
309	sequences matching the canonical circadian cis-elements E-box or D-box in these regions
310	(Figure 2a). Instead, we identified a potential cAMP-responsive element (CRE) (-867 to
311	-860) in the distal region. Of note, this conserved CRE sequence was functionally
312	responsive, as revealed by the forskolin (cAMP enhancer)-dependent increase in reporter

313	activity of Gpr19 promoter-luciferase constructs that harbour the Gpr19 CRE (-915CREwt
314	and -1083CREwt, Figure 2b) but not of those with mutated CRE (-915CREmut or
315	-1083CREmut) or shortened promoter constructs devoid of the CRE sequence (-514 and
316	-242) (Figure 2b; see also Figure S2a-c). Vehicle treatment had no effect on the <i>Gpr19</i>
317	promoter regardless of the presence of the CRE sequence (Figure S2d-f). Similar results
318	were obtained with a reporter construct containing the isolated Gpr19 CRE sequence (Figure
319	2a,b, 3×CREwt or 3×CREmut). With these results, we next moved to test whether the <i>Gpr19</i>
320	CRE sequence is able to produce circadian transcriptional rhythm in the SCN. We performed
321	long-term reporter recording using cultured SCN slices (Figure. 2c). Adeno-associated virus
322	(AAV)-mediated 3×CREwt-luc expression in the SCN slice exhibited persistent circadian
323	rhythms of bioluminescence over multiple cycles under constant culture conditions. In
324	contrast, all tested slices expressing 3×CREmut-luc did not display detectable circadian
325	luminescence expression (Figure 2c). The Gpr19 CRE sequence, thus, has the ability to
326	generate autonomous circadian expression in the SCN.

327

328 **3.3** | *Gpr19* deficiency lengthens the period of circadian locomotor activity rhythm

329 To assess the in vivo function of Gpr19, we monitored daily locomotor activity of $Gpr19^{-/-}$

330 mice, which had been backcrossed to the C57BL/6J genetic background over 10 generations.

331	Our initial survey using mice of a mixed background (75% C57BL/6J and 25% 129P2/
332	OlaHsd) suggested a trend towards prolonged periods of circadian locomotor activity for
333	$Gpr19^{-/-}$ mice compared to WT mice (free-running period (h), mean ± SEM; WT, 23.79 ±
334	0.04; $Gpr19^{-t/-}$, 23.92 ± 0.07, $P=0.1$, <i>t</i> -test) (Doi et al., 2016). C57BL/6J-backcrossed mutant
335	mice displayed an entrainment to a 12-h light:12-h dark (LD) cycle, although the phase of
336	activity onset of Gpr19 ^{-/-} mice under LD conditions was delayed relative to that of WT mice
337	(Figure 3a,b). On transfer of animals into constant darkness (DD), <i>Gpr19^{-/-}</i> mice showed a
338	free-running period significantly longer than the WT period (WT, 23.77 ± 0.02 ; <i>Gpr19</i> ^{-/-} ,
339	24.18 \pm 0.03, <i>P</i> < 0.05, Student's <i>t</i> -test, Figure 3c) and significantly longer than 24 h (95%)
340	confidence interval = 24.11, 24.25). These results indicate that Gpr19 is involved in the
341	determination of circadian period length.
342	
343	3.4 Gpr19 participates in maintaining proper circadian gene expression in the SCN
344	To identify potential molecular mediators of the effects of <i>Gpr19</i> deficiency in the SCN, we
345	examined expression of representative clock and clock-related genes in the SCN of Gpr19 ^{-/-} .
346	The SCN of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice housed in DD were micro-dissected every 4 h.
347	Then, a customised panel of 41 SCN genes, which include representative core clock genes,
348	clock-controlled genes, and circadian clock-related neurotransmitters and receptors, were

350 v 351 g 352 s	were hierarchically aligned (Figure 3d) (see also plots in Figure S3). The core oscillatory gene <i>Per2</i> was basically circadian in the SCN of $Gpr19^{-/-}$ mice, although the peak was slightly delayed, which was consistent with the prolonged circadian period of $Gpr19^{-/-}$ mice (Figure 3e). Similarly, the genes with peak expression during daytime (e.g. <i>Per1</i> , <i>Cry1</i> ,
351 g 352 s	gene <i>Per2</i> was basically circadian in the SCN of $Gpr19^{-/-}$ mice, although the peak was slightly delayed, which was consistent with the prolonged circadian period of $Gpr19^{-/-}$ mice (Figure 3e). Similarly, the genes with peak expression during daytime (e.g. <i>Per1</i> , <i>Cry1</i> ,
352 s	slightly delayed, which was consistent with the prolonged circadian period of <i>Gpr19^{-/-}</i> mice (Figure 3e). Similarly, the genes with peak expression during daytime (e.g. <i>Per1</i> , <i>Cry1</i> ,
	(Figure 3e). Similarly, the genes with peak expression during daytime (e.g. Per1, Cry1,
353 (
354 <i>I</i>	Nr1d1, Rora, Bhlhe41, Prok2, Avp, Rasl11b, and Rgs16) were apparently normal, except
355 /	<i>Nmu</i> , whose expression was up-regulated in the SCN of <i>Gpr19^{-/-}</i> mice (Figure 3d,e; Figure
356 \$	S3). In contrast, a certain number of genes that show peak expression during the nighttime
357 ((CT12-16) in WT mice, including Bmal1, Clock, Npas2, Vip, Lhx1, Nmur2, Sstr1, Gpr176,
358 a	and Prokr2, were consistently downregulated in the Gpr19 ^{-/-} SCN (Figure 3d,e), suggesting
359 t	that Gpr19 is involved in the maintenance of proper gene expression peaking in the night.
360	

361 **3.5** | *Gpr19* deficiency alters entrainment capacity

Next, we investigated the possible involvement of Gpr19 in entrainment of the clock. Light resets the phase of circadian rhythms in a phase-dependent and light-intensity-dependent manner, with delays dominating the early subjective night, advances dominating the late subjective night, and minimal phaseshifts during the subjective day. We illuminated mice with a short light pulse of 20 or 200 lux at CT14, CT22, or CT6 (Figure 4). In both WT and

367	<i>Gpr19^{-/-}</i> mice, light at CT14 and CT22 caused the phase delay and advance, respectively,
368	while light administered at CT6 had little effect (Figure 4). In addition, we observed that
369	200-lux light caused larger phaseshifts than 20 lux in both WT and $Gpr19^{-/-}$ mice (Figure
370	4a,b). However, significant quantitative differences were detected in the magnitude of phase
371	delays. Exposure to a 20-lux light at CT14 caused a delay of 1.90 ± 0.11 h in WT mice,
372	whereas the phase-shifting response of $Gpr19^{-/-}$ mice was only 0.71 ± 0.12 h ($P < 0.05$, two-
373	way ANOVA with Bonferroni's <i>post hoc</i> test) (Figure 4b,d). A 200-lux light pulse applied at
374	CT14 resulted in a phase delay of 2.04 ± 0.12 h in WT and 1.16 ± 0.16 h in <i>Gpr19</i> ^{-/-} mice (<i>P</i>
375	< 0.05) (Figure 4a,c). In contrast, a light pulse given at CT22 led to comparable phase
376	advances in WT and $Gpr19^{-/-}$ mice at both 20 lux (0.36 ± 0.14 h for WT, 0.30 ± 0.09 h for
377	<i>Gpr19</i> ^{-/-}) and 200 lux (0.72 ± 0.15 h for WT, 0.60 ± 0.16 h for <i>Gpr19</i> ^{-/-}). These results
378	indicate that Gpr19 is involved in determining the magnitude of phase delay of the circadian
379	locomotor activity rhythm in mice.
380	

381 **3.6** | *Gpr19* deficiency alters light-evoked *Per1* and c-Fos expression in the SCN

To gain insight into decreased capacity of phase-shift of $Gpr19^{-/-}$ mice, we examined the magnitude and location of *Per1* and c-Fos expression in the SCN of mice after light illumination. Mice were illuminated at CT14 or CT22 with 20 lux light, the intensity with

385	which the difference in phase delay between WT and $Gpr19^{-/-}$ mice was profound, and
386	distribution of light-induced Per1 and c-Fos expression in the SCN was examined either
387	using radioisotopic in situ hybridization (for Per1) or immunohistochemistry (for c-Fos).
388	<i>Per1</i> expression in the <i>Gpr19^{-/-}</i> SCN had a lower fold-induction ratio than that had in the
389	WT SCN, at both CT14 and CT22 (CT14: 4.90 \pm 0.09 for WT, 3.80 \pm 0.04 for <i>Gpr19</i> ^{-/-} , <i>P</i> <
390	0.05; CT22: 3.60 ± 0.06 for WT, 3.15 ± 0.15 for <i>Gpr19^{-/-}</i> , <i>P</i> < 0.05, two-way ANOVA with
391	Bonferroni's post hoc test), with apparently reduced Per1-positive-area in the SCN (Figure
392	5a). The number of c-Fos-immunopositive cells was decreased at CT14, but not CT22
393	(CT14: 999 ± 97 for WT, 625 ± 108 for <i>Gpr19^{-/-}</i> , <i>P</i> < 0.05; CT22: 936 ± 224 for WT, 965 ±
394	160 for $Gpr19^{-/-}$, $P > 0.05$, two-way ANOVA with Bonferroni's <i>post hoc</i> test, Figure 5b).
395	Within the ventral SCN, the increase in the number of c-Fos-positive cells was almost
396	equivalent between the genotypes. Crucially, however, at CT14, the increased number of c-
397	Fos-positive cells in the dorsal region was significantly reduced in the $Gpr19^{-/-}$ SCN,
398	compared to that in the WT SCN (c-Fos numbers in ventral: 286 ± 22 for WT, 245 ± 40 for
399	<i>Gpr19</i> ^{-/-} , $P > 0.05$, in dorsal: 130 ± 15 for WT, 47 ± 7 for <i>Gpr19</i> ^{-/-} , $P < 0.05$, two-way
400	ANOVA with Bonferroni's <i>post hoc</i> test, Figure 5c-e), demonstrating an impaired
401	expressional response of c-Fos in the dorsal part of the SCN in $Gpr19^{-/-}$ mice.

403 4 | DISCUSSION

404	Besides clock components directly involved in the TTFL, SCN bears a number of additional
405	genes implicated in modifying the length of circadian period and phase resetting capacity of
406	the circadian clock (Herzog et al., 2017). A complete understanding of these additional
407	modifiers of the SCN clock, however, still necessitate yet-unidentified related factors to be
408	studied. In the present study, we demonstrate that the orphan G-protein coupled receptor
409	Gpr19, whose mRNA expression exhibits circadian oscillation in the mid-to-dorsal region of
410	the SCN, modulates the period and phase response of the circadian clock (a model, Figure 6).
411	We show that $Gpr19^{-/-}$ mice exhibit a circadian period longer than 24 h under constant
412	darkness. Under normal LD cycle conditions, these mice also show a delayed onset of
413	locomotor activity compared to WT mice. The mechanism of this phase angle change is
414	unknown, but a change from a circadian period shorter than 24 h to one longer than 24 h
415	might be related to the observed phase angle phenotype of $Gpr19^{-/-}$ mice (Johnson et al.,
416	2003). A similar phase angle alteration was also reported in delayed sleep phase disorder
417	patients (Micic et al., 2016) as well as several animal models, including Neuropeptide Y-
418	deficient mice (Harrington et al., 2007), Nav1.1 channel mutant mice (Han et al., 2012), and
419	lithium-treated mice (Iwahana et al., 2004).

420 Although the underlying molecular mechanism(s) of the lengthened circadian period of

421	$Gpr19^{-/-}$ mice is still unclear, we found a group of downregulated genes in $Gpr19^{-/-}$ mice,
422	the majority of which exhibit night-time peak mRNA expression in the SCN of WT mice.
423	Thus, it is plausible to suggest that these alterations in gene expression may, at least in part,
424	explain the phenotype of <i>Gpr19^{-/-}</i> mice. For example, <i>Bmal1</i> deficiency in SCN neurons has
425	been previously reported to prolong the circadian period of locomotor activity rhythm
426	(Mieda et al., 2015; Shan et al., 2020), consistent with the overall downregulation of <i>Bmall</i>
427	mRNA expression in the Gpr19 ^{-/-} SCN. Clock, Npas2, Lhx1, Sst, and Gpr176, which were
428	also downregulated in the Gpr19 ^{-/-} SCN, are also involved in modulating the circadian
429	period of locomotor activity rhythm (DeBruyne et al., 2007; Doi et al., 2016; Fukuhara et al.,
430	1994; Hatori et al., 2014). The gene encoding Neuromedin U (Nmu) was, on the other hand,
431	up-regulated in <i>Gpr19^{-/-}</i> mice, suggesting the possibility of a compensatory relationship
432	between Gpr19 and Nmu. These complex changes in mRNA expression of circadian clock-
433	related genes might be part of mechanism explaining the phenotype of $Gpr19^{-/-}$ mice.
434	A reduced magnitude of phase response to an early subjective night light pulse was also
435	observed in <i>Gpr19^{-/-}</i> mice. In WT mice, a light pulse at CT14, of either 20 lux or 200 lux,
436	caused a phase-delay of locomotor activity rhythm of approximately 2 hours. A reducing
437	effect of the ablation of <i>Gpr19</i> on the magnitude of phase delay was more severe at a lower
438	light-intensity condition: 20- and 200-lux light pulses caused phase delays of 0.71 and 1.16

h, respectively, in *Gpr19^{-/-}* mice. *Gpr19* is therefore likely to be required to induce the
maximal phase delay response towards a light pulse of relatively low intensity.

441	Currently, we could not address the molecular mechanism of the reduced capacity of
442	phase delaying in $Gpr19^{-/-}$ mice. We observed that, in the $Gpr19^{-/-}$ SCN, light-induced
443	induction of Per1 mRNA and c-Fos expression was attenuated in the dorsal region of the
444	SCN. Thus, it is tempting to speculate that Gpr19 may function as an upstream regulator of
445	Per1 and c-Fos expression in the dorsal SCN. However, together with this interpretation, it
446	can also be possible that Gpr19 may exert its indirect influence on the expression of Per1
447	and c-Fos through affecting, for example, the gene expression required for the control of the
448	circadian clock in the SCN. In this respect, the mRNA expression of <i>Lhx1</i> and <i>Sst</i> , both
449	previously shown to play a role in circadian entrainment (Bedont et al., 2014; Hamada et al.,
450	1993; Hatori et al., 2014), are downregulated in the SCN of <i>Gpr19^{-/-}</i> mice. It is also
451	interesting to note that a similar ventral/dorsal phenotype, that is, a rather normal response in
452	the ventral SCN but an impaired response in the dorsal SCN, has been previously described
453	in Nav1.1 channel mutant mice (Han et al., 2012) and Sox2-deficient mice (Cheng et al.,
454	2019). It is not known whether Gpr19 has an association with these genes.
455	Our knockout study identified the role of orphan GPCR Gpr19 in the circadian clock

457	studies have been performed via several means, including Tango assay (Kroeze et al., 2015)
458	and other β -arrestin recruitment-based assays (Colosimo et al., 2019; Foster et al., 2019).
459	However, no cognate ligand has been determined for Gpr19 to date, hampering its further
460	study in vivo using pharmacology. While adropin is considered a possible ligand for Gpr19
461	(Rao & Herr, 2017; Stein et al., 2016), its expression in the SCN has not been identified and
462	the coupling between adropin and Gpr19 remains controversial (Foster et al., 2019). Apart
463	from the SCN, Gpr19 is also expressed in the testis, heart, liver, and kidney (Hoffmeister-
464	Ullerich et al., 2004; O'Dowd et al., 1996) as well as certain cancer cell types (Kastner et al.,
465	2012; Rao & Herr, 2017; Riker et al., 2008). The physiological role of Gpr19 in vivo,
466	however, has not been well studied. Only a few published research articles suggest a role for
467	Gpr19 in the regulation of cell cycle (Kastner et al., 2012) and MAPK signalling (Hossain et
468	al., 2016; Thapa et al., 2018), using mRNA knockdown in in vitro cultured cells. In the
469	present study, we provided the first report describing the role of Gpr19 in vivo, using Gpr19
470	knockout mice. Our animal behavioural data demonstrate that Gpr19 is a functional
471	component involved in the circadian clock. Pharmacological interventions targeting this
472	orphan receptor may provide a potential therapeutic approach that modulates the circadian
473	clock.

475 ACKNOWLEDGMENTS

476	The authors thank Ichie Nishimura for technical support. This work was supported in part by
477	research grants from the Project for Elucidating and Controlling Mechanisms of Ageing and
478	Longevity of the Japan Agency for Medical Research and Development (JP20gm5010002),
479	the Ministry of Education, Culture, Sports, Science and Technology of Japan (17H01524,
480	18H04015, 20B307), the Kobayashi Foundation, and the Kusunoki 125 of Kyoto University
481	125th Anniversary Fund.
482	
483	AUTHOR CONTRIBUTIONS
484	M.D. conceived the project; M.D. and H.O. designed the research; Y.Y., I.M., and K.G.
485	performed experiments in collaboration with S.D., H.Z., G.S., H.S., and T.M.; M.D. and Y.Y.
486	wrote the paper with input from all authors.
487	
488	CONFLICT OF INTEREST
489	The authors declare no competing interests.
490	
491	DECLARATION OF TRANSPARENCY AND SCIENTIFIC RIGOUR
492	This Declaration acknowledges that this paper adheres to the principles for transparent

493	reporting and scientific rigour of preclinical research as stated in the BJP guidelines for
494	Design and Analysis, Immunoblotting and Immunochemistry, and Animal Experimentation,
495	and as recommended by funding agencies, publishers, and other organizations engaged with
496	supporting research.
497	
498	DATA AVAILABILITY STATEMENT
498 499	DATA AVAILABILITY STATEMENT All data generated or analysed during this study are included in this published article (and its
498 499 500	DATA AVAILABILITY STATEMENT All data generated or analysed during this study are included in this published article (and its supplementary information files). The data that support the findings of this study are
498 499 500 501	DATA AVAILABILITY STATEMENT All data generated or analysed during this study are included in this published article (and its supplementary information files). The data that support the findings of this study are available from the corresponding author upon reasonable request.

503 **REFERENCES**

- Albus, H., Vansteensel, M. J., Michel, S., Block, G. D., & Meijer, J. H. (2005). A GABAergic
 mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators
 within the circadian clock. *Current Biology*, 15(10), 886-893.
- 507 Aten, S., Kalidindi, A., Yoon, H., Rumbaugh, G., Hoyt, K. R., & Obrietan, K. (2021). SynGAP
- is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated
 locomotor activity and light-entrainment capacity. *Eur J Neurosci, 53*(3), 732-749.
- 510 Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive
- 511 intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian
 512 clock neurons. *Nat Neurosci, 8*(4), 476-483.
- 513 Bedont, Joseph L., LeGates, Tara A., Slat, Emily A., Byerly, Mardi S., Wang, H., Hu, J., ...
- 514 Blackshaw, S. (2014). Lhx1 Controls Terminal Differentiation and Circadian Function
 515 of the Suprachiasmatic Nucleus. *Cell Rep*, 7(3), 609-622.
- 516 Cheng, A. H., Bouchard-Cannon, P., Hegazi, S., Lowden, C., Fung, S. W., Chiang, C.-K., ...
- 517 Cheng, H.-Y. M. (2019). SOX2-Dependent Transcription in Clock Neurons Promotes
- the Robustness of the Central Circadian Pacemaker. *Cell Rep, 26*(12), 31913202.e3198.
- Cheng, H. Y., Obrietan, K., Cain, S. W., Lee, B. Y., Agostino, P. V., Joza, N. A., ... Penninger,
 J. M. (2004). Dexras1 potentiates photic and suppresses nonphotic responses of the
 circadian clock. *Neuron*, 43(5), 715-728.
- 523 Colosimo, D. A., Kohn, J. A., Luo, P. M., Piscotta, F. J., Han, S. M., Pickard, A. J., ... Brady,
- 524 S. F. (2019). Mapping Interactions of Microbial Metabolites with Human G-Protein-

525	Coupled Receptors.	Cell Host Microbe,	26(2).	273-282.e277.
			/ - / 2	

526 Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., ... Waschek, J. A. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol 527 Regul Integr Comp Physiol, 285(5), R939-949. 528 Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., ... 529 Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: updated 530 531 and simplified guidance for authors and peer reviewers. Br J Pharmacol, 175(7), 987-532 993. DeBruyne, J. P., Weaver, D. R., & Reppert, S. M. (2007). CLOCK and NPAS2 have 533 534 overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci, 10(5), 543-545. 535 Doi, M., Ishida, A., Miyake, A., Sato, M., Komatsu, R., Yamazaki, F., ... Okamura, H. (2011). 536 Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat Commun, 2, 327. 537 Doi, M., Murai, I., Kunisue, S., Setsu, G., Uchio, N., Tanaka, R., ... Okamura, H. (2016). 538 539 Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of 540 circadian behaviour. Nat Commun, 7, 10583. Doi, M., Shimatani, H., Atobe, Y., Murai, I., Hayashi, H., Takahashi, Y., ... Okamura, H. 541 (2019). Non-coding cis-element of Period2 is essential for maintaining organismal 542 circadian behaviour and body temperature rhythmicity. Nat Commun, 10(1), 2563. 543 Foster, S. R., Hauser, A. S., Vedel, L., Strachan, R. T., Huang, X. P., Gavin, A. C., ... Gloriam, 544 545 D. E. (2019). Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 179(4), 895-908.e821. 546

547	Fukuhara, C., Hamada, T., Shibata, S., Watanabe, S., Aoki, K., & Inouye, S. I. (1994). Phase
548	advances of circadian rhythms in somatostatin depleted rats: effects of cysteamine on
549	rhythms of locomotor activity and electrical discharge of the suprachiasmatic nucleus.
550	J Comp Physiol A, 175(6), 677-685.
551	Hamada, T., Shibata, S., Tsuneyoshi, A., Tominaga, K., & Watanabe, S. (1993). Effect of
552	somatostatin on circadian rhythms of firing and 2-deoxyglucose uptake in rat
553	suprachiasmatic slices. Am J Physiol, 265(5 Pt 2), R1199-1204.
554	Hamnett, R., Crosby, P., Chesham, J. E., & Hastings, M. H. (2019). Vasoactive intestinal
555	peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4
556	signalling. Nat Commun, 10(1), 542.
557	Han, S., Yu, F. H., Schwartz, M. D., Linton, J. D., Bosma, M. M., Hurley, J. B., de la Iglesia,
558	H. O. (2012). Na(V)1.1 channels are critical for intercellular communication in the
559	suprachiasmatic nucleus and for normal circadian rhythms. Proc Natl Acad Sci USA,
560	<i>109</i> (6), E368-377.
561	Harmar, A. J., Marston, H. M., Shen, S., Spratt, C., West, K. M., Sheward, W. J., Hastings,
562	M. H. (2002). The VPAC(2) receptor is essential for circadian function in the mouse
563	suprachiasmatic nuclei. Cell, 109(4), 497-508.
564	Harrington, M., Molyneux, P., Soscia, S., Prabakar, C., McKinley-Brewer, J., & Lall, G. (2007)
565	Behavioral and neurochemical sources of variability of circadian period and phase:
566	studies of circadian rhythms of npy-/- mice. Am J Physiol Regul Integr Comp Physiol,
567	<i>292</i> (3), R1306-1314.

568 Hatori, M., Gill, S., Mure, L. S., Goulding, M., O'Leary, D. D., & Panda, S. (2014). Lhx1

569	maintains synchrony among circadian oscillator neurons of the SCN. Elife, 3, e03357.
570	Hayasaka, N., Aoki, K., Kinoshita, S., Yamaguchi, S., Wakefield, J. K., Tsuji-Kawahara, S.,
571	Shibata, S. (2011). Attenuated food anticipatory activity and abnormal circadian
572	locomotor rhythms in Rgs16 knockdown mice. PloS one, 6(3), e17655.
573	Herzog, E. D., Hermanstyne, T., Smyllie, N. J., & Hastings, M. H. (2017). Regulating the
574	Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-
575	Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol, 9(1)
576	Hoffmeister-Ullerich, S. A., Susens, U., & Schaller, H. C. (2004). The orphan G-protein-
577	coupled receptor GPR19 is expressed predominantly in neuronal cells during mouse
578	embryogenesis. Cell and Tissue Research, 318(2), 459-463.
579	Hossain, M. S., Mineno, K., & Katafuchi, T. (2016). Neuronal Orphan G-Protein Coupled
580	Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt
581	Signaling. PLoS One, 11(3), e0150846.
582	Hughes, A. T., & Piggins, H. D. (2008). Behavioral responses of Vipr2-/- mice to light. J Biol
583	Rhythms, 23(3), 211-219.
584	Iwahana, E., Akiyama, M., Miyakawa, K., Uchida, A., Kasahara, J., Fukunaga, K., Shibata,
585	S. (2004). Effect of lithium on the circadian rhythms of locomotor activity and
586	glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei.
587	Eur J Neurosci, 19(8), 2281-2287.
588	Johnson, C. H., Elliott, J. A., & Foster, R. (2003). Entrainment of circadian programs.
589	Chronobiology International, 20(5), 741-774.
590	Kastner, S., Voss, T., Keuerleber, S., Glockel, C., Freissmuth, M., & Sommergruber, W. (2012).

- 591 Expression of G protein-coupled receptor 19 in human lung cancer cells is triggered
- 592 by entry into S-phase and supports G(2)-M cell-cycle progression. *Mol Cancer Res*,
- *10*(10), 1343-1358.
- 594 Kroeze, W. K., Sassano, M. F., Huang, X. P., Lansu, K., McCorvy, J. D., Giguere, P. M., ...
- Roth, B. L. (2015). PRESTO-Tango as an open-source resource for interrogation of
 the druggable human GPCRome. *Nat Struct Mol Biol*, 22(5), 362-369.
- Lall, G. S., & Biello, S. M. (2003). Neuropeptide Y, GABA and circadian phase shifts to photic
 stimuli. *Neuroscience*, *120*(4), 915-921.
- LeGates, T. A., Fernandez, D. C., & Hattar, S. (2014). Light as a central modulator of circadian
 rhythms, sleep and affect. *Nat Rev Neurosci, 15*(7), 443-454.
- 601 Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., ... Jones, A. R.
- 602 (2007). Genome-wide atlas of gene expression in the adult mouse brain. *Nature*,
 603 445(7124), 168-176.
- Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., ...
- Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated
 guidance for 2020. *Br J Pharmacol*, *177*(16), 3611-3616.
- Liu, C., & Reppert, S. M. (2000). GABA synchronizes clock cells within the suprachiasmatic
 circadian clock. *Neuron*, 25(1), 123-128.
- Mazuski, C., Abel, J. H., Chen, S. P., Hermanstyne, T. O., Jones, J. R., Simon, T., ... Herzog,
- E. D. (2018). Entrainment of Circadian Rhythms Depends on Firing Rates and
 Neuropeptide Release of VIP SCN Neurons. *Neuron*, 99(3), 555-563.e555.
- 612 Micic, G., Lovato, N., Gradisar, M., Ferguson, S. A., Burgess, H. J., & Lack, L. C. (2016). The

613	etiology of delayed sleep phase disorder. Sleep Med Rev, 27, 29-38.
614	Mieda, M., Ono, D., Hasegawa, E., Okamoto, H., Honma, Ki., Honma, S., & Sakurai, T.
615	(2015). Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal
616	Coupling Regulating Circadian Behavior Rhythm. Neuron, 85(5), 1103-1116.
617	Nakanishi, H., Higuchi, Y., Kawakami, S., Yamashita, F., & Hashida, M. (2010). piggyBac
618	Transposon-mediated Long-term Gene Expression in Mice. Molecular Therapy, 18(4),
619	707-714.
620	O'Dowd, B. F., Nguyen, T., Lynch, K. R., Kolakowski, L. F., Jr., Thompson, M., Cheng, R.,
621	George, S. R. (1996). A novel gene codes for a putative G protein-coupled receptor
622	with an abundant expression in brain. FEBS Letters, 394(3), 325-329.
623	Parsons, M. J., Brancaccio, M., Sethi, S., Maywood, E. S., Satija, R., Edwards, J. K., Nolan,
624	P. M. (2015). The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via
625	an AT Motif-Driven Axis. Cell, 162(3), 607-621.
626	Patton, A. P., Edwards, M. D., Smyllie, N. J., Hamnett, R., Chesham, J. E., Brancaccio, M.,
627	Hastings, M. H. (2020). The VIP-VPAC2 neuropeptidergic axis is a cellular
628	pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun, 11(1),
629	3394.
630	Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Würbel, H.
631	(2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.
632	Br J Pharmacol, 177(16), 3617-3624.
633	Rao, A., & Herr, D. R. (2017). G protein-coupled receptor GPR19 regulates E-cadherin
634	expression and invasion of breast cancer cells. Biochim Biophys Acta Mol Cell Res,

635 *1864*(7), 1318-1327.

- Riker, A. I., Enkemann, S. A., Fodstad, O., Liu, S., Ren, S., Morris, C., ... Matta, J. (2008). 636 The gene expression profiles of primary and metastatic melanoma yields a transition 637 638 point of tumor progression and metastasis. BMC Med Genomics, 1, 13. Shan, Y., Abel, J. H., Li, Y., Izumo, M., Cox, K. H., Jeong, B., ... Takahashi, J. S. (2020). 639 Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian 640 641 Role in Network Synchrony. Neuron 642 Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., ... Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with 643 rapid induction of the mPer1 transcript. Cell, 91(7), 1043-1053. 644 645 Stein, L. M., Yosten, G. L., & Samson, W. K. (2016). Adropin acts in brain to inhibit water 646 drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. Am J Physiol Regul Integr Comp Physiol, 310(6), R476-480. 647 Takahashi, J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat 648 649 Rev Genet, 18(3), 164-179. Thapa, D., Stoner, M. W., Zhang, M., Xie, B., Manning, J. R., Guimaraes, D., ... Scott, I. 650 (2018). Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-651
 - 652 MAPK-PDK4 signaling pathway. *Redox Biol, 18*, 25-32.
 - 653 Yamaguchi, Y., Suzuki, T., Mizoro, Y., Kori, H., Okada, K., Chen, Y., ... Okamura, H. (2013).
 - 654 Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag.
 - 655 Science, 342(6154), 85-90.

656

657 FIGURE LEGENDS

658	Figure 1. Spatiotemporal expression profile of <i>Gpr19</i> in the SCN. (a) Representative brain
659	coronal sections of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice hybridised to anti-sense ³³ P-labelled $Gpr19$
660	riboprobe. Arrows indicate the position of the SCN. Scale bars, 1 mm. (b) RNAscope <i>in situ</i>
661	hybridisation of Gpr19 in the SCN. The sections were counterstained with haematoxylin.
662	Right panels show the extracts of the Gpr19-RNAscope signal. The dashed lines delineate
663	the SCN. oc, optic chiasm; v, third ventricle. Scale bars, 50 μ m. (c) Circadian rhythm of
664	Gpr19 expression in the SCN. Relative mRNA abundance was determined by in situ
665	hybridisation autoradiography. Values are presented as the mean \pm SEM ($n = 6$, for each time
666	point). Representative time-series autoradiographs are shown on top. Scale bars, 200 μ m. (d)
667	Western blots of Gpr19 in the SCN of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice at ZT4 and ZT16.
668	Endogenous Gpr19 proteins were immunoprecipitated from hypothalamic SCN membrane
669	extracts and probed for Gpr19. The solid and open arrowheads indicate Gpr19 and non-
670	specific bands, respectively. Relative protein levels were determined by densitometry.
671	
672	Figure 2. The <i>Gpr19</i> CRE sequence generates circadian expression of <i>Gpr19</i> in the SCN.

- 673 (a) The CRE in the *Gpr19* promoter. Genomic positions relative to the transcription start site
- 674 (+1) of the *Gpr19* gene are indicated along with evolutionary conservation scores among

675	mammalian species. Alignment shows the CRE (-867 to -860; highlighted in magenta) and
676	its flanking sequences of mouse, human, and other representative mammalian species. We
677	used reporter constructs containing serial deletions of the mouse Gpr19 promoter (-242 to
678	+226, -514 to +226, -915 to +226, -1083 to +226) and the mutant derivative for the CRE
679	(mut; GCACAAAA). We also used reporter constructs containing 3× isolated CRE
680	(3×CREwt) or its mutant (3×CREmut). miniP, minimal promoter. (b) Gpr19 promoter
681	activities in MEF cells after treatment with cAMP enhancer FSK. Average fold increase
682	relative to basal activity was calculated ($n = 6$, for each construct). Error bars indicate SEM.
683	* $P < 0.05$, one-way ANOVA, Bonferroni's <i>post hoc</i> test. (c) Representative detrended
684	bioluminescence traces from SCN explants infected with AAV carrying the 3×CREwt
685	(upper) or 3×CREmut (lower) reporter construct. Luminescence was recorded at 20-min
686	intervals over 5 days in culture.
687	
688	Figure 3. Gpr19 deficiency elongates the period of locomotor activity rhythm and alters
689	circadian clock gene expression in the SCN. (a) Representative double-plotted locomotor

activity records of C57BL/6J-backcrossed $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice. Mice were housed in a 12L:12D light–dark cycle and transferred to DD. Periods of darkness are indicated by grey backgrounds. Each horizontal line represents 48 h; the second 24-h period is plotted to the

right and below the first. The coloured lines delineate the phase of activity onset in DD. (b) 693 Daily profile of locomotor activity of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice in LD. Values are the 694 mean \pm SEM of % activity of a day. **P* < 0.05, two-way ANOVA with Bonferroni's *post hoc* 695 test. (c) Period-length distribution of C57BL/6J-backcrossed $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice. 696 Free-running period measurements were based on a 14-day interval taken after 3 days of a 697 DD regime and were executed with a χ^2 periodogram. Plotted are the period lengths of 698 individual animals. Bars indicate the mean \pm SEM (*Gpr19*^{+/+}, n = 11; *Gpr19*^{-/-}, n = 9). **P* < 699 0.05, Student's unpaired *t*-test. (d) Heatmaps displaying circadian expression of 700 representative clock and clock-related genes in the SCN of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice. The 701 highest and lowest values of each gene were adjusted to 1 and 0, respectively. The genes 702 (rows) are ordered by hierarchical clustering using Euclidean distance and Ward 703 agglomeration. (e) Line graphs showing double-plotted circadian expression profiles of the 704 genes affected by Gpr19 deficiency in (d). Relative mRNA levels were determined by qRT-705 PCR (n = 2, for each data point). Values (mean \pm variation) are double-plotted for better 706 comparison between the genotypes. Per2 is not affected. Data of all examined genes are 707 shown in Figure S3. 708

709

710 **Figure 4.** *Gpr19^{-/-}* mice exhibit a decreased capacity of phase shift to early subjective night

711 light. (**a**,**b**) Representative double-plotted locomotor activity records of $Gpr19^{+/+}$ and

712 *Gpr19^{-/-}* mice before and after a 15-min light pulse exposure at CT14, CT22, or CT6. CT

- vas determined for individual animals based on their free-running period and the onset of
- 714 locomotor activity (which is defined as CT12). The red lines delineate the phase of activity
- onset. Phase shifts (delay at CT14, advance at CT22) were quantified as the time difference
- between regression lines of activity onset before and after the light pulse, 200 lux for (a) and
- 717 20 lux for (**b**). (**c**,**d**) Magnitude of light-induced phase-shifts of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice.
- 718 By convention, delays are negative, and advances are positive. Data indicate the mean \pm
- 719 SEM for 200 lux (c) and 20 lux (d) (200 lux: CT14, $Gpr19^{+/+} n = 11$, $Gpr19^{-/-} n = 14$; CT22,

720
$$Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 12; CT6, Gpr19^{+/+} n = 9, Gpr19^{-/-} n = 8; 20 lux: CT14,$$

721
$$Gpr19^{+/+} n = 7, Gpr19^{-/-} n = 11; CT22, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11, Gpr19^{-/-} n = 11; CT6, Gpr19^{+/+} n = 11;$$

722 7, $Gpr19^{-/-} n = 6$). *P < 0.05, two-way ANOVA with Bonferroni's post hoc test.

723

Figure 5. Attenuated light-induced induction of *Per1* mRNA and c-Fos immunoreactivity in the SCN of *Gpr19^{-/-}* mice. (a) *Per1* expression in the SCN of *Gpr19^{+/+}* and *Gpr19^{-/-}* mice with or without a 15-min light pulse exposure at CT14 or CT22. Mice were sacrificed 1 h after light onset. Data are presented as the mean \pm SEM (n = 4). The mean value in *Gpr19^{+/+}* SCN without a light pulse was set to 1. **P* < 0.05, two-way ANOVA with Bonferroni's *post*

729	<i>hoc</i> test. Representative autoradiographs are shown on the top. Scale bars, 200 μ m. (b) The
730	number of c-Fos-immunopositive cells in the SCN of $Gpr19^{+/+}$ and $Gpr19^{-/-}$ mice. Mice
731	were illuminated as described in (a). Data are the mean \pm SEM ($n = 4$ for light (-), $n = 6-8$
732	for light (+)). * $P < 0.05$, two-way ANOVA with Bonferroni's <i>post hoc</i> test. Representative
733	images of immunohistochemistry are shown on the top. Scale bars, 200 $\mu m.$ (c) Reduced c-
734	Fos induction in the dorsal area of the SCN in <i>Gpr19</i> ^{-/-} mice. Representative images of
735	immunohistological distribution of c-Fos expression in the SCN of $Gpr19^{+/+}$ and $Gpr19^{-/-}$
736	mice (2 mice for each genotype) after a 15-min light pulse exposure at CT14. oc, optic
737	chiasm; v, third ventricle. Scale bars, 200 μ m. (d,e) The number of c-Fos-immunopositive
738	cells in the ventral (d) and dorsal (e) area of the SCN in (c) ($n = 4$ for light (–), $n = 8$ for
739	light (+)). Values are the mean \pm SEM. * <i>P</i> < 0.05, two-way ANOVA with Bonferroni's <i>post</i>
740	<i>hoc</i> test. n.s., not significant.
741	

Figure 6. A putative role of Gpr19 in the central circadian clock modulation. The orphan receptor Gpr19 is a circadian oscillating GPCR localised to the middle-dorsal area of the SCN, is involved in the determination of the intrinsic period of locomotor activity rhythm, and modulates the extent of phase shift response to early subjective night light. Gpr19 controls gene expression in the SCN and modulates the propagation of light-entrainment

- ⁷⁴⁷ signal from the ventral to the dorsal area of the SCN. Orange, c-Fos expression area;
- 748 Asterisk, light pulse; D, dorsal area; V, ventral area; CRE, cAMP-responsive element.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6