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Abstract: (150 words) 

We developed a computationally efficient method, Ancestral Frequency estimation in Admixed 

populations (AFA), to estimate the frequencies of bi-allelic variants in admixed populations with an 

unlimited number of ancestries. AFA uses maximum likelihood estimation by modeling the conditional 

probability of having an allele given proportions of genetic ancestries. It can be applied using either global 

or local proportions of genetic ancestries. Simulations mimicking admixture demonstrated the high 

accuracy of the method. We implemented the method on data from the Hispanic Community Health 

Study/Study of Latinos (HCHS/SOL), an admixed population with three predominant continental 

ancestries: Amerindian, European, and African. Comparison of the European and African estimated 

frequencies to the respective gnomAD frequencies demonstrated high correlations, with Pearson R2=0.97-

0.99. We provide a genome-wide dataset of the estimated three ancestral allele frequencies in HCHS/SOL 

for all available variants with allele frequency between 5%-95% in at least one of the three ancestral 

populations.  
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Introduction:  

Admixed populations have multiple ancestral origins, with different admixture patterns within and 

between populations, resulting from historical worldwide migration of populations1. Estimation of 

ancestry-specific allele frequencies in admixed populations can identify ancestry-specific enriched 

variants, with higher minor allele frequencies (MAFs) in one ancestry, compared to other ancestries. Fine 

mapping of association regions detected in admixture mapping, where one tests the association between 

local ancestry genomic interval (LAI) counts and a trait, can prioritize ancestry-specific enriched variants 

located in the identified regions for conditional association testing2,3. Similarly, genome-wide association 

studies (GWAS) of admixed populations can be followed by replication testing in homogeneous 

populations from a specific ancestry chosen based on the associated variant’s ancestry-specific 

frequencies. More generally, allele frequencies are important for interpreting sequence variants, 

distinguishing between pathogenic and benign variants4, inferring demographic histories of populations, 

and determining susceptibility to disease5. Thus, ancestry-specific allele frequencies can contribute to 

both research and personalized medicine of admixed populations. This is especially relevant for modern-

day populations that are becoming increasingly genetically admixed6.  

Several population genetic software packages were previously developed for admixture and population 

structure analyses, producing a by-product of ancestry-specific allele frequencies estimation in admixed 

populations7,8. Gravel et al. developed an algorithm based on the expectation-maximization (EM) 

framework relying on LAIs; but their method is not publicly available9. A similar publicly available 

algorithm, ASAFE, was developed. However, this method is available only for a three-way admixed diploid 

population, for genotyped markers located in LAIs, and it is time-consuming10. ASAFE was later extended 

to multi-way admixed populations in an algorithm that maximizes a multinomial likelihood11. 

Unfortunately, the software was not made public.  
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Here, we developed a computationally efficient method, Ancestral Frequency estimation in Admixed 

populations (AFA), for the estimation of ancestry-specific allele frequencies for bi-allelic variants, in a 

multi-way (unlimited) admixed population, with no need for phased data.  Our model is similar to that 

proposed by Gravel et al., using maximum likelihood estimation by modeling the conditional probability 

of having a variant allele given local proportion ancestries (LAFA). We further extended the model by 

leveraging global ancestry proportions (GAFA), which are easier to compute and are more widely 

available, and we provide publicly available code. We examined the accuracy of our method by applying 

it to a simulated three-way admixed dataset. We then implemented the method on imputed genome-

wide genetic data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), an admixed 

population previously characterized with three predominant continental ancestries: Amerindian, 

European, and African, with varying proportions between individuals12. We computed ancestry-specific 

frequencies through AFA using the previous global proportion ancestries calculated by ADMIXTURE12 and 

LAIs calculated by RFMix13,14.  We hypothesized that frequency estimates of variants using local ancestries 

(LAFA) would be more precise than estimates using global proportion ancestries (GAFA). We compared 

our estimated ancestral-specific variant frequencies for European and African ancestries to their 

respective frequencies published in gnomAD, expecting them to be similar, though not identical. Finally, 

we provide estimated Hispanic/Latino ancestry-specific allele frequencies estimated based on the 

HCHS/SOL for all variants with allele frequency between 5%-95% in at least one of the three ancestral 

populations.  

 

Methods: 

Study population 

The HCHS/SOL is a population-based longitudinal cohort study of US Hispanics/Latinos with participants 

recruited from four field centers (Bronx, NY, Chicago, IL, Miami, FL, and San Diego, CA) by a sampling 
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design previously described 15,16. A total of 16,415 self-identified Hispanic/Latino adults, 18- to 74-year-

old, were recruited during the first visit between 2008 and 2011, and various biospecimen and health 

information about risk/protective factors were collected.  

 

Genetic data   

Genotyping and quality control were previously described 12,17. In brief, genotyping was performed using 

Illumina MEGA array, and a total of 11,928 samples and 985,405 genotyped variants passed quality 

control. Genome-wide imputation was conducted using the multi-ethnic NHLBI Trans-Omics for Precision 

Medicine (TOPMed) freeze 8 reference panel (GRCh38 assembly)18.  Due to the overlap of samples in our 

target data and the TOPMed freeze 8 reference panel (n=6,201), we recalculated the estimated 

imputation quality (R2) using only non-overlapped samples to avoid over-estimates of the imputation 

quality. After filtering variants with R2<0.6 and minor allele count ≤5, a total of 42,038,818 imputed 

variants remained for analysis. Coordinates of genotyped and imputed variants were converted from 

GRCh38 to GRCh37 using the liftOver tool from UCSC19 for LAFA analysis since the LAIs were based on 

GRCh37 (as described below). 

 

Global proportion ancestries 

Global continental ancestry proportions were previously estimated for 9,864 unrelated HCHS/SOL 

individuals using ADMIXTURE software under the assumption of three ancestral populations (Amerindian, 

African, and European), based on reference panels representing these ancestral populations12. After 

excluding individuals to generate a data set in which none of the individuals are third-degree relatives or 

closer, and individuals who withdrew consent for genetic studies, 8,933 individuals remained. 

 

Local ancestry intervals (LAIs) 
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Three-way LAI (Amerindian, African, and European) were previously inferred in 12,793 HCHS/SOL 

individuals using the RFMix software with a reference panel derived from the combination of the Human 

Genome Diversity Project (HGDP) and the 1000 Genome Project (using the GRCh37 assembly) 

representing the relevant ancestral populations20. Overall, 15,500 are LAIs dispersed throughout the 

genome (14,815  LAI in autosomal chromosomes), each spanning ten to hundreds of thousands of base 

pairs. After excluding individuals to generate a data set in which none of the individuals are third-degree 

relatives or closer, and individuals who withdrew consent for genetic studies, 9,512 individuals remained. 

 

All participants in this analysis signed informed consent in their preferred language (Spanish/English) to 

use their genetic data. The study was reviewed and approved by the Institutional Review Boards at all 

collaborating institutions. 

 

Statistical analysis 

The statistical model for estimation of ancestry-specific allele frequencies in admixed populations (AFA) 

Suppose that we have a population of 𝑛 individuals with 𝐾 genetic ancestries. Consider a specific bi-allelic 

genetic variant in an autosomal chromosome. Each person has two copies of a variant potentially 

inherited from different ancestries. The genetic ancestry of each copy of the variant was inherited from 

the local ancestry encompassing the variant. For any given variant allele 𝑔, denote its ancestry-specific 

frequencies by 𝑓1, … , 𝑓𝐾 in ancestries 1, … , 𝐾, respectively. Denote further the probability that person 𝑖 

has local ancestry 𝑘 at the variant by 𝑝𝑖,𝑘 , 𝑘 = 1, … , 𝐾. We have that 𝑝𝑖,1 … , 𝑝𝑖,𝐾 satisfy 0 ≤ 𝑝𝑖,𝑘 ≤ 1 and 

𝑝𝑖,1 + ⋯ + 𝑝𝑖,𝐾 = 1, for 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝐾.  The allele count at the variant on a given chromosomal 

copy is sampled from a mixture of Bernoulli distributions, with  

Pr(𝑔𝑖 = 1) = Pr(𝑔𝑖 = 1|𝑎𝑛𝑐𝑒𝑠𝑟𝑦 1) × 𝑝𝑖,1 + ⋯ + Pr(𝑔𝑖 = 1|𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 𝐾) × pi,K 

= 𝑓1𝑝𝑖,1 + ⋯ + 𝑓𝐾𝑝𝑖,𝐾 = 𝑝𝑖,𝑚𝑖𝑥 . 
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For unphased data, or when using genetic ancestry probabilities that are not specific to the variant (e.g., 

global ancestries), the probabilities 𝑝𝑖,1, … , 𝑝𝑖,𝐾 are the same for the two copies of the allele. Under Hardy-

Weinberg equilibrium at each ancestry, we can extend the model above to a Binomial distribution with 

two alleles. If 𝑔𝑖 is now a bi-allelic variant, then: 

 Pr(gi = l) = (
2
𝑙

) 𝑝𝑖,𝑚𝑖𝑥
𝑙  (1 − 𝑝𝑖,𝑚𝑖𝑥 )

2−𝑙 
, l ∈ {0,1,2}. (1) 

Assuming ancestral probabilities 𝑝𝑖,1, … , 𝑝𝑖,𝐾 are known, the unknown frequencies 𝑓1, … , 𝑓𝐾 can now be 

estimated by maximizing the log-likelihood across the sample of independent individuals. The standard 

errors of the estimated frequencies can be used to compute confidence intervals. We use the base R 

optim function with the “L-BFGS-B” optimization method for 𝐾 > 1 ancestries and the “Brent” method 

when estimating allele frequency in one ancestry (for example, if 𝐾 − 1 for 𝐾 > 1 frequencies are known 

or assumed). 

 

Choosing probabilities of genetic ancestry at the variant 

To maximize the likelihood above, we assume that the ancestral probabilities 𝑝𝑖,1, … , 𝑝𝑖,𝐾 of the study 

individuals are known. In practice, they are estimated. We consider two estimators. First is the global 

proportion of ancestry (GAFA). These could be computed using software packages such as ADMIXTURE or 

RFMix, with a subset of independent, genotyped genetic variants, with or without a reference panel6–8,14. 

The second estimator is based on LAIs (LAFA). Local ancestry analysis results in a segmentation of the 

genome in which each segment, LAI, is assigned a genetic ancestry. Thus, a given variant 𝑔 is overlapping 

with a certain LAI, say 𝐿𝐴𝐼𝑔, which is annotated with two genetic ancestries. With some local ancestry 

inference methods, such as RFMix, these LAIs are unphased with respect to the allele counts. To generate 

a vector of genetic ancestry probabilities for the variant, we first generate a vector of counts of local 

ancestries (𝑐𝑖,1, … , 𝑐𝑖,𝐾) , and divide all entries by two, the highest attained count. In mathematical 

notation:  
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𝑝𝑖,𝑘 = 𝑐𝑖,𝑘/2 = (# genetic ancestries of type 𝑘 in 𝐿𝐴𝐼𝑔)/2, 𝑘 = 1, … , 𝐾. 

The probabilities here take values 0, 0.5, 1.  

 

Computing ancestry-specific allele frequencies on the X chromosome 

The methodology for the X-chromosome is similar, with a slight difference for males, where we use a 

Bernoulli distribution (or a Binomial distribution with parameters (𝑝𝑚𝑖𝑥, 1)) to account for the fact that 

there is a single observed allele.  

 

Handling of boundary conditions 

The log-likelihood of the Binomial distribution cannot be maximized at the boundaries, i.e. when the data 

is consistent with an ancestry-specific frequency at the boundary of the parameter space, e.g. 𝑓𝑘 ∈ {0,1} 

for some 𝑘 = 1, … , 𝐾 . To prevent non-convergence of the estimation algorithm, we implemented a 

procedure that generates synthetic observations and adds them to the data. These are 2𝐾  synthetic 

observations, two for each ancestry, mimicking a reference and alternate allele from each of the genetic 

ancestries. For example, one synthetic observation will have a single reference allele for a (simulated) 

person, and the ancestral probabilities for this person are 𝑝𝑖,𝑘 = 1 for ancestry 𝑘, and 𝑝𝑖,𝑙 = 0 for all other 

ancestries 𝑙 ≠ 𝑘, 𝑙 ∈ {1, … , 𝐾}. Another synthetic observation will have a single alternate allele for this 

variant, and the same values of ancestral probabilities. In addition, the algorithm allows for settings box 

constraints on the boundaries21.  

 

An approximation for computing ancestry-specific allele frequency using imputed data 

When imputed data are confidently estimated, the extension of the algorithm to imputed genotypes is 

straightforward. For imputed genotypes with fractions, we cannot compute the log-likelihood based on 

the probability in (1). Instead, we notice that we can decompose the function into two parts: “2 choose 𝑙” 
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and 𝑝𝑖,𝑚𝑖𝑥
𝑙 (1 − 𝑝𝑖,𝑚𝑖𝑥)

2−𝑙
. The second part can be computed for any 𝑙, while the first part cannot. Instead, 

we apply linear interpolation to compute a value approximating “2 choose 𝑙” based on the values of this 

function evaluated at the nearest integers higher and lower than 𝑙.  

 

Simulation studies 

We studied our method, AFA, in simulations to determine how the ancestral frequency estimation 

accuracy is influenced by the effective sample size, effn, defined as effnk = ∑ 𝑝𝑖,𝑘
𝑛
𝑖=1  for ancestry 𝑘 =

1, … , 𝐾, by the expected allele frequencies (rare vs. common variants) and by using the local vs. global 

proportion ancestries (LAFA vs. GAFA).  

We simulated a three-way admixed population, using fixed effn1=effn2=1,000, varied effn3 in the range 

100-4,000, and focused on the estimation of 𝑓3. We fixed 𝑓1 = 0.5, 𝑓2 = 0.3 throughout, and varied the 

allele frequency 𝑓3 ∈ {0.01,0.05,0.1,0.2 }. First, we simulated local ancestries based on global effn (where 

n=effn1 + effn2 + effn3). We assumed that each person has two copies of 10 LAIs of equal lengths. Thus, 

the overall number of LAIs of ancestry 𝑘 ∈ {1, 2,3} was 𝑛 × effnk ∗ 20. Then, we randomly assigned 20 

LAIs (2 copies of 10 LAIs) to individuals and computed the global proportion of ancestries for each 

individual as the proportion of LAIs of each ancestry. The genetic variant was assumed to be in the first 

LAI. Next, we simulated the allele counts based on the allele frequencies 𝑓1, 𝑓2, and 𝑓3. For each person 

and each copy of the first LAI, we sampled the allele from the Bernoulli distribution with a probability 

according to the ancestry at the interval copy. To mimic the real data, which is unphased, we then summed 

the allele count across the two copies for each person. Finally, we estimated ancestry-specific allele 

frequencies using the computed global proportion ancestries and using the ancestries of the first LAI. We 

performed 𝑛𝑠𝑖𝑚 =1,000 simulation replicates for each setting. We also performed a similar simulation 

based on a homogenous population derived from a single ancestry to compare the expected bias in 
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frequency estimation in admixed populations to that in a non-Admixed population when using the same 

algorithm.  

 

Let 𝑓3̂
̅ =

1

𝑛𝑠𝑖𝑚
∑ 𝑓3,�̂�

𝑛𝑠𝑖𝑚
𝑗=1  denote the mean estimated 𝑓3  across simulations. We assessed the frequency 

estimation accuracy of 𝑓3 using the following measures:  

1. Bias: ( 𝑓3 − 𝑓3̂
̅ ).  

2. Inflation: 𝑓3̂
̅ /𝑓3. 

3. RMSE (root mean squared error):  √
1

𝑛𝑠𝑖𝑚
∑ (𝑓3 − 𝑓3,�̂�)

2𝑛𝑠𝑖𝑚
𝑗=1  

 

Comparing ancestry-specific allele frequency estimates to previously published estimates  

We compared the estimated ancestry-specific frequencies of 9 variants using GAFA and LAFA, with 

previously published estimated ancestral frequencies based on the ASAFE method in the HCHS/SOL 

dataset3,22,23. We also compared the estimated Amerindian frequency of 4 variants with the previously 

published frequencies in Pima-Indians3.  

 

Comparing estimated ancestry-specific allele frequencies to gnomAD allele frequencies 

We compared the estimated European and African frequencies in the admixed HCHS/SOL population 

using GAFA and LAFA to the gnomAD v2 liftover (GRCh38) non-Finnish European and African frequencies, 

respectively, by plotting and calculating the Pearson squared correlation coefficient. We assessed only 

gnomAD variants passing quality control filters (FILTER=="PASS"), with an ancestral minor allele count of 

≥100 respective to the assessed ancestry. We also calculated the percentage of estimated confidence 

intervals (CIs) for ancestral MAFs using GAFA and LAFA, which include the concordant reported gnomAD 

MAFs, binned by gnomAD MAF categories.  
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Availability and implementation  

We provide a publicly available GitHub repository, https://github.com/tamartsi/Ancestry_specific_freqs, 

which includes: (1) code for GAFA and LAFA for computing ancestry-specific allele frequencies (2) 

simulation code (3) a dataset of Hispanic/Latino ancestry-specific allele frequencies and their Cls 

estimated based on the HCHS/SOL using GAFA and LAFA for all variants (genotyped or imputed) with an 

estimated frequency between 5%-95% in at least one of the three ancestral populations. This dataset will 

also be available through FAVOR (Functional Annotation of Variants – Online Resource) v2 data release in 

both the single variant query (Allele Frequency Block) and batch query, http://favor.genohub.org. CWL 

workflows for GAFA and LAFA are also available via dockstore  and https://github.com/cwl-

apps/ancestral-maf-admixed-population.  

 

Results 

 
Simulation studies 
 
Table 1 and Figure 1 summarize the results from simulation studies of frequency estimation in a three-

way admixed population, based on GAFA or LAFA. For comparison, simulation results based on non-

admixed populations under the same framework, essentially reducing to standard maximum likelihood 

estimation, are presented in Supplementary Table 1 and Supplementary Figure 1. As expected, estimated 

frequencies become more accurate with increasing effective sample size and increasing MAF. Likely due 

to the boundaries of the parameter space, the estimated frequencies tend to be biased towards more 

common MAFs until large enough effective sample sizes or allele frequencies (or in other words, enough 

counts of the minor allele) are available. In addition, accuracy increased when using LAFA compared to 

GAFA. For example, for MAF =0.01 and effn=4,000 we had bias =0.00574 for GAFA and bias= 0.00022 for 

LAFA; for MAF=0.2 and effn=1000 we had bias = 0.00453 for GAFA and bias = 0.00028 for LAFA (Table1). 
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Similar trends of improved accuracy of frequency estimation with larger effective sample sizes and higher 

MAFs are observed in the non-admixed population analysis (Supplementary Table 1 and Supplementary 

Figure 1), with, unsurprisingly, higher accuracy compared to the admixed population. 

 

Hispanic Community Health Study/Study of Latinos  

We applied AFA to the HCHS/SOL imputed dataset, excluding variants with minor allele count ≤5, setting 

frequency boundary conditions (low= 0.00001, high = 0.99999) as arguments to the optimization function. 

If AFA did not converge for a given variant, we applied it again with a stricter boundary condition 

(low=0.01, high =0.99). We developed workflows for GAFA and LAFA on BioData Catalyst  Powered by 

Seven Bridges (https://biodatacatalyst.nhlbi.nih.gov/). We processed data in a parallel manner by 

batching the workflows by chromosomes and scattering jobs by blocks of 3,000 variants, using the 

c5.18xlarge spot instance provisioned on Amazon Web Services.  The workflows are described 

(represented) in the Common Workflow Language open standard24 and are therefore portable to multiple 

computational environments.  The computation time for the shortest chromosome (chr21, n=552,556 

variants) was 57 minutes using GAFA and 110 minutes using LAFA, with ~50 jobs running in parallel.  The 

number of estimated variant frequencies per chromosome is summarized in Supplementary Table 2 

stratified by boundary condition, for both GAFA and LAFA. The number of variants for which we provide 

estimated variant frequencies, under the condition that they have a frequency between 5%-95% in at 

least one of the three ancestral populations, is summarized in Table 2 stratified by boundary condition, 

for both GAFA and LAFA. In general, rare variants required strict boundary conditions (0.01 rather than 

0.00001) on the estimated frequencies for algorithm convergence. 

 

 
Comparing ancestry-specific allele frequency estimates to previously published estimates  
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Table 3 summarizes 9 previously published HCHS/SOL ancestry-specific allele frequencies estimated by 

ASAFE, for comparison with our GAFA and LAFA frequency estimations.  Frequency estimations for all 9 

variants are highly comparable, with absolute mean frequency differences for African=0.0008 

European=0.0153 and Amerindian=0.0101 for GAFA and African=0.0023 European=0.019 and 

Amerindian=0.0094 for LAFA. Table 4 summarizes 4 previously published allele frequencies of Pima-

Indians to the Amerindian ancestral frequency estimated in HCHS/SOL based on GAFA and LAFA. Here 

too, the absolute mean frequency differences are low with GAFA=0.03 and LAFA=0.01.   

 

Comparing estimated ancestry-specific allele frequencies to gnomAD allele frequencies 

Figure 2 compares the estimated European- and African-specific allele frequencies in HCHS/SOL for 

variants on chromosome 2 using GAFA and LAFA to the gnomAD non-Finnish European and African 

frequencies, respectively. All other chromosomes’ comparisons are presented in Supplementary Figures 

2 (GAFA) and 3 (LAFA).  All estimated frequencies were highly correlated, with Pearson R2=0.97-0.99. We 

further calculated the percentage of ancestral gnomAD frequencies which are included in the 

corresponding CI estimated in HCHS/SOL by GAFA or LAFA, binned by gnomAD frequency categories 

(Table 5).  The mean range of CIs was also calculated for each category and was consistently smaller for 

LAFA compared to GAFA since the ancestral determination for each variant is more accurate when using 

LAIs. Thus, LAFA resulted in a lower percentage of included gnomAD allele frequencies relative to GAFA; 

however, this does not indicate a superiority of GAFA over LAFA because of potentially true differences in 

ancestral frequencies in HCHS/SOL compared to gnomAD. The mean ranges of CIs are lower in low-

frequency variant bins compared to the common frequency bins, both for GAFA and LAFA.  

 

Correlation of estimated ancestry-specific allele frequencies between the GAFA and LAFA for each of 

the 3 ancestries 
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Figure 3 presents strong correlations of the chromosome 2 estimated ancestry-specific allele frequencies 

in the HCHS/SOL population between GAFA and LAFA for each of the three ancestral populations. The 

European’s correlation is stronger than the Africans and Amerindians.  This is probably due to their larger 

effective sample size in the HCHS/SOL, enabling a more precise estimation of the alleles’ frequencies (effn 

based on global proportion ancestries: African=1,296 European=4,912 Amerindian=2,725). All other 

chromosomes’ correlations are presented in Supplementary Figure 4. 

 

Correlation of the estimated ancestry-specific allele frequencies between different ancestries  

Figure 4 presents weak correlations of the estimated ancestry-specific allele frequencies for chromosome 

2 variants in the HCHS/SOL population between the three ancestral populations, for both GAFA and LAFA. 

The squared Pearson correlation coefficient is strongest when comparing Amerindian to European 

ancestral frequencies (GAFA: R2=0.78, LAFA: R2=0.76), followed by the comparison of African to European 

(GAFA: R2=0.71, LAFA: R2=0.71), and weakest in the comparison of African to Amerindian (GAFA: R2=0.61, 

LAFA: R2=0.6). Similar correlations of all other chromosomes are presented in Supplementary Figures 5 

(GAFA) and 6 (LAFA).   

 

Evaluating the algorithm convergence rate of GAFA and LAFA by frequency boundary conditions 

Summary statistics of HCHS/SOL alleles calculated using AFA vs. alleles that failed calculation are 

presented in Supplementary Table 3. For variants on chromosome 2, 92.3% were calculated using GAFA 

(n=3,299310,366) and 88.8% were calculated using LAFA (n=3,175,914). Low MAF is likely the main reason 

for failed ancestral MAF calculation in admixed populations using our method. LAFA's successful 

calculation percentage is lower compared to GAFA since the LAIs do not encompass the whole genome, 

and the liftover from GRCh38 to GRCh37 (in order to match each variant to its LAI) also failed for some 

variants. The number of overlapped calculated variants in both methods on chromosome 2 is 
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n=3,102,863,  while n=192,993 variants were successfully calculated only in GAFA and n=70,641  variants 

were successfully calculated only in LAFA. This emphasizes the importance of developing both methods 

and their potential to complement each other.  

 

Discussion: 

We developed a computationally efficient method for estimating ancestry-specific variant frequencies in 

admixed populations (AFA) based on either the rather widely available global proportion ancestry (GAFA) 

or LAIs (LAFA). Simulations have shown high accuracy of the estimated frequencies for both options, with 

increasing accuracy dependent on ancestral effective population and MAF, and with a slight advantage 

for LAFA over GAFA.  We applied our method to the admixed Hispanic/Latinos population from HCHS/SOL 

with three predominant continental ancestries: European, African, and Amerindian, and demonstrated 

speed, simplicity of calculation, and a highly successful frequency estimation rate.  

Comparison of the European and African estimated ancestral specific frequencies to the respective 

gnomAD frequencies demonstrated strong positive correlations. We did not expect perfect correlation 

with the respective gnomAD frequencies, since evolutionary forces such as genetic drift, mutagenesis, and 

natural selection are expected to accumulate and result in frequency differences. The correlation found 

in Europeans is somewhat stronger compared to the Africans. This is likely due to two reasons: first, 

individuals of African ancestries are characterized by a greater level of genetic diversity compared to 

Europeans25, so allele frequency comparisons between two populations of African ancestral origin will 

demonstrate a larger difference compared to frequency comparisons between two populations of 

European ancestral origin. Second, the effective sample size of European ancestry in the HCHS/SOL was 

substantially larger than the African effective sample size, enabling a more precise estimation of allele 

frequencies.  
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We provide a genome-wide dataset of U.S. Hispanic/Latino ancestry-specific allele frequencies estimated 

based on the HCHS/SOL for all variants with a frequency between 5%-95% in at least one of the three 

ancestral populations, using GAFA (n= 9,808,089) and LAFA (n= 9,844,093). To our knowledge, this is the 

first published genome-wide dataset of ancestral frequencies in an admixed population. Specifically, the 

Amerindian allele frequency estimation is otherwise unavailable.  Inter-HCHS/SOL ancestral frequencies 

present the strongest correlations between Amerindians and Europeans, followed by the Africans and 

Europeans followed by Africans and Amerindians. These findings agree with the dominant 

paleoanthropology hypothesis of the African origin of modern humans, followed by migration to Europe, 

followed by other migrations to Asia and America26. Stronger bottlenecks (founder effect) in Amerindians 

led to more drifts and hence more differences in Amerindian compared to African frequencies. Thus, our 

dataset can serve as a unique resource for genetic epidemiology studies supporting research of 

personalized health in admixed populations. 

The advantages of our method are the ability to estimate ancestral frequencies and CIs of genotyped or 

imputed variants in admixed populations with an unlimited number of ancestries, with no need for phased 

data, on a genome-wide scale. The algorithm is applicable for phased data as well. Thus, our method is 

simple, effective, and enables a wider usage. It can be applied using either global proportions of genetic 

ancestries (GAFA) or LAI proportions encompassing the variant (LAFA). GAFA is a computationally simpler 

process compared to LAFA, and it encompasses all regions of the genome. However, it assumes a uniform 

distribution of ancestries throughout the genome; which is slightly less precise. Comparison of both GAFA 

and  LAFA  shows strong correlations for variants calculated by both methods and shows some variants 

could be calculated by using only one of the methods, complementing each other and emphasizing the 

advantage of using both options. Specifically, LAFA is more precise; but the algorithm may not converge 

when using LAFA so that frequency estimates were not obtained, while GAFA may converge for these 

variants. We think that this is likely due to local ancestry inference errors: when using LAFA, the ancestral 
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probabilities assigned by the algorithm at the segment take values 𝑝𝑖1, … , 𝑝𝑖𝐾 ∈ {0,0.5,1}. Thus, if in all 

LAIs from a specific ancestry the observed MAC is 0, it may lead to non-convergence. Non-convergence 

may also arise from a lack of HWE in LAIs from a certain ancestry. Depending on effective population 

sample sizes, our method may perform less well for low MAFs variants. First, estimation depends on the 

effective sample sizes of the ancestral origins and the ancestry-specific frequencies (e.g. having enough 

counts). Second, AFA methods apply maximum likelihood estimation of Binomial likelihoods, which 

cannot be evaluated by the optimization algorithm at the boundaries of the parameter space (frequencies 

of 0 or 1; though the likelihood is computed at the boundary). Therefore, very few minor allele counts in 

one of the genetic ancestries may lead to non-convergence of the algorithm, unless box constraints are 

placed (e.g., limiting the frequencies to be estimated within the interval [0.01, 0.99]), so that frequencies 

outside the interval cannot be estimated.  
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Figure 1: Results from simulation studies of frequency estimation of a bi-allelic variant in a three-
way admixed population, based on A. GAFA (Global -Ancestral Frequency estimation in Admixed 
populations) B. LAFA (Local -Ancestral Frequency estimation in Admixed populations). Various 
settings include a different effective sample size of effn (x-axis) and different expected minor 
allele frequencies (indicated in the upper title of each graph). We performed 1,000 simulation 
replicates of each scenario. Each dot represents the mean frequency of 1,000 simulation 
replicates each line represents the 95% interval estimated frequencies across the simulation 
replicates. 
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Figure 2: Scatter plots of estimated ancestry-specific allele frequencies in HCHS/SOL 

chromosome 2 to corresponding gnomAD non-Finnish European and African frequencies 

respectively (A) using GAFA (no. variants: African=1,239,958 European=819,710) (B) using LAFA 

(no. variants: African=1,168,271 European= 775,749).  
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Figure 3: Scatter plots of the estimated ancestry-specific allele frequencies in chromosome 2 in 

the HCHS/SOL population between GAFA and LAFA for each of the three ancestral populations 

(no. variants=9,308,589). 
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 Figure 4: Scatter plots of the estimated ancestry-specific allele frequencies in chromosome 2 in 

the HCHS/SOL population between the three ancestral populations, for (A) GAFA (B) LAFA. 
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200 0.234 0.034 1.171 0.086 0.95 0.0955 0.4126 0.203 0.003 1.015 0.029 0.96 0.1466 0.2588

500 0.214 0.014 1.069 0.059 0.95 0.1062 0.3281 0.201 0.001 1.006 0.018 0.94 0.1655 0.2379

1000 0.205 0.005 1.023 0.036 0.96 0.1351 0.2749 0.200 0.000 1.001 0.012 0.96 0.1764 0.2217

2000 0.201 0.001 1.005 0.023 0.95 0.1571 0.2468 0.200 0.000 1.002 0.008 0.95 0.1844 0.2152

4000 0.200 0.000 1.000 0.013 0.96 0.1755 0.2240 0.200 0.000 1.000 0.005 0.95 0.1895 0.2103

0.2

Three-way admixed population using GAFA Three-way admixed population using LAFA

0.005

0.01

0.05

0.1

Table 1: Results from simulation studies of frequency estimation of a bi-allelic variant in a three-way admixed population, based on AFA (Ancestral 

Frequency estimation in Admixed populations), by different effective sample sizes and different expected minor allele frequencies. For each of the 

settings, we tested  1,000 simulation replicates and calculated the mean frequency estimate, the difference, and ratio of the mean observed frequency 

and the expected frequency, the RMSE of the estimate frequncies, the percentage of CI including the expected frequency (coverage), and the 95% interval 

of the estimated frequencies. The results refer to one of the ancestries. The characteristics of the other two ancestries were the same in all simulations, 

with effective sample size of effn=1,000, one ancestry with MAF=0.5 and the other with MAF=0.3.  

Abbreviations: GAFA  Global -Ancestral Frequency estimation in Admixed populations; LAFA  Local -Ancestral Frequency estimation in Admixed 

populations; MAF  minor allele frequency; CI  confidence interval; RMSE  root mean squared error.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.06.455462doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455462
http://creativecommons.org/licenses/by-nd/4.0/


 

Chromosome Total Boundary 1E-05 (%) Boundary 1E-02 Total Boundary 1E-05 (%) Boundary 1E-02 

1 731372 583,809 (79.82) 147563 733709 413,042 (56.3) 320667

2 789792 629,106 (79.65) 160686 812360 448,927 (55.26) 363433

3 683573 547,793 (80.14) 135780 692240 389,055 (56.2) 303185

4 699617 560,836 (80.16) 138781 703178 407,366 (57.93) 295812

5 608090 488,543 (80.34) 119547 622061 343,828 (55.27) 278233

6 623354 516,241 (82.82) 107113 625767 355,100 (56.75) 270667

7 557900 455,514 (81.65) 102386 557945 321,508 (57.62) 236437

8 530427 419,391 (79.07) 111036 545404 294,384 (53.98) 251020

9 411577 332,874 (80.88) 78703 417816 232,124 (55.56) 185692

10 483953 394,154 (81.44) 89799 481662 276,438 (57.39) 205224

11 470444 378,998 (80.56) 91446 479053 269,368 (56.23) 209685

12 458340 367,421 (80.16) 90919 459471 257,015 (55.94) 202456

13 348128 288,100 (82.76) 60028 353459 208,717 (59.05) 144742

14 307247 250,059 (81.39) 57188 307967 171,930 (55.83) 136037

15 271244 219,250 (80.83) 51994 275865 155,716 (56.45) 120149

16 285290 226,155 (79.27) 59135 279954 158,444 (56.6) 121510

17 256758 207,176 (80.69) 49582 250340 140,177 (55.99) 110163

18 270605 221,435 (81.83) 49170 273281 158,435 (57.98) 114846

19 215685 176,195 (81.69) 39490 202739 115,992 (57.21) 86747

20 212499 169,496 (79.76) 43003 212818 118,307 (55.59) 94511

21 129185 105,026 (81.3) 24159 131628 75,669 (57.49) 55959

22 127717 104,683 (81.96) 23034 123688 69,062 (55.84) 54626

X 335292 235,553 (70.25) 99739 301688 139,741 (46.32) 161947

Total 9,808,089   7,877,808 (80.32) 1,930,281             9,844,093   5,520,345 (56.08) 4,323,748             

Abbreviations: GAFA Global -Ancestral Frequency estimation in Admixed populations; LAFA Local -Ancestral Frequency estimation 

in Admixed populations.

GAFA LAFA

Table 2: Number of estimated variant frequencies per chromosome in HCHS/SOL that are common (frequency between 5%-95%) 

in at least one of the three ancestral populations, stratified by boundary condition, calculated via GAFA or LAFA.
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Table 3: HCHS/SOL ancestry-specific allele frequencies previously published (estimated by ASAFE) compared to GAFA and LAFA frequency estimations.  

Manuscript SNP CHR POS hg38 Ref. Alt African European Amerindian Freq. est. CI low CI High Freq. est. CI low CI High Freq. est. CI low CI High Freq. est. CI low CI High Freq. est. CI low CI High Freq. est. CI low CI High

Burkart, 2017 rs4133185 7 15,461,794   A T 0.126 0.180 0.823 0.123 0.093 0.152 0.172 0.158 0.185 0.817 0.797 0.836 0.124 0.107 0.142 0.175 0.167 0.184 0.829 0.816 0.841

Burkart, 2017 rs4628172 7 15,455,525   T G 0.101 0.175 0.820 0.097 0.069 0.125 0.168 0.155 0.182 0.814 0.794 0.834 0.100 0.084 0.116 0.171 0.162 0.179 0.827 0.814 0.839

Burkart, 2017 rs4721442 7 15,466,382   T G 0.877 0.821 0.177 0.884 0.855 0.913 0.828 0.815 0.842 0.179 0.159 0.199 0.879 0.862 0.896 0.826 0.818 0.834 0.164 0.152 0.176

Sofer, 2017  rs1458038 4 80,243,569    T  C 0.030 0.250 0.310 0.065 0.037 0.094 0.257 0.243 0.271 0.289 0.270 0.308 0.035 0.024 0.046 0.248 0.239 0.258 0.322 0.307 0.336

Sofer, 2017  rs9366626 6 25,684,725    G  A 0.750 0.620 0.250 0.748 0.711 0.784 0.627 0.610 0.643 0.324 0.302 0.346 0.744 0.726 0.762 0.615 0.604 0.626 0.268 0.253 0.284

Sofer, 2017  rs73156692 12 101,214,917  A  G 0.130 0.230 0.010 0.165 0.135 0.196 0.242 0.230 0.255 0.012 0.002 0.022 0.140 0.123 0.157 0.244 0.235 0.253 0.011 0.007 0.014

Jian, 2020 rs113719683 4 40,431,429   T C 1.000 0.926 0.997 0.974 0.956 0.992 0.872 0.863 0.882 0.952 0.941 0.964 0.990 0.978 1.002 0.866 0.859 0.873 0.959 0.952 0.965

Jian, 2020 rs112178366 4 40,431,425   A G 1.000 0.927 0.997 0.974 0.956 0.992 0.873 0.864 0.883 0.952 0.940 0.963 0.990 0.979 1.001 0.867 0.860 0.874 0.959 0.952 0.965

Jian, 2020 rs112927755 4 40,431,443   G A 1.000 0.927 0.997 0.976 0.958 0.993 0.879 0.869 0.889 0.952 0.940 0.963 0.990 0.979 1.001 0.873 0.866 0.879 0.959 0.952 0.965

* Frequencies refer to the Ref. allele. 

Abbreviations: ASAFE  ancestry-specific allele frequency estimation; GAFA  Global -Ancestral Frequency estimation in Admixed populations; LAFA  Local -Ancestral Frequency estimation in Admixed populations CI  95% confidence interval.

Method

ASAFE GAFA LAFA

African European Amerindian African European Amerindian

Paper SNP CHR POS hg38 Ref. Alt Freq. est. CI low CI High Freq. est. CI low CI High

Sofer, 2017 rs75432840 6 34,143,031  C G 0.28 0.398 0.379 0.417 0.287 0.272 0.303

Sofer, 2017 rs138977532 6 36,382,025  C T 0.59 0.635 0.620 0.650 0.587 0.572 0.602

Sofer, 2017 rs139139046 11 71,452,308  G C 0.87 0.831 0.819 0.844 0.823 0.813 0.833

Sofer, 2017 rs72849841 17 80,298,494  C T 1.00 0.987 0.978 0.996 0.996 0.994 0.998

* Frequencies refer to the Ref. allele. 

Pima Indians
GAFA LAFA

Abbreviations: GAFA  Global -Ancestral Frequency estimation in Admixed populations; LAFA  Local -Ancestral Frequency estimation in Admixed 

populations.

Table 4: Previously published Pima Indians allele frequencies, compared to our GAFA and LAFA Amerindian frequency estimations in the 

HCHS/SOL.  
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AF categories In (%) Out (%) N* CI length** In (%) Out (%) N* CI length**

<0.05 0.47 0.53 6,154,256  0.019 0.71 0.29 5,722,679  0.015

0.05-0.1 0.47 0.53 2,484,933  0.032 0.53 0.47 2,306,660  0.023

0.1-0.2 0.58 0.42 2,179,468  0.049 0.38 0.62 2,024,874  0.031

0.2-0.3 0.53 0.47 1,139,908  0.063 0.31 0.69 1,059,791  0.039

0.3-0.4 0.49 0.51 749,960     0.072 0.31 0.69 696,775     0.044

0.4-0.5 0.48 0.52 557,597     0.076 0.31 0.69 516,965     0.046

0.5-0.6 0.48 0.52 454,150     0.077 0.31 0.69 421,517     0.047

0.6-0.7 0.48 0.52 404,407     0.074 0.30 0.70 376,436     0.045

0.7-0.8 0.48 0.52 365,295     0.068 0.30 0.70 339,991     0.040

0.8-0.9 0.49 0.51 341,980     0.056 0.29 0.71 319,042     0.032

0.9-1 0.56 0.44 298,032     0.033 0.39 0.61 279,494     0.018

<0.01 0.81 0.19 764,738     0.009 0.64 0.36 713,699     0.006

0.01-0.05 0.40 0.60 2,630,848  0.010 0.30 0.70 2,444,070  0.007

0.05-0.1 0.31 0.69 1,180,341  0.016 0.22 0.78 1,097,724  0.011

0.1-0.2 0.31 0.69 1,379,163  0.023 0.21 0.79 1,287,160  0.015

0.2-0.3 0.31 0.69 913,809     0.028 0.21 0.79 853,249     0.018

0.3-0.4 0.30 0.70 698,053     0.031 0.20 0.80 652,017     0.020

0.4-0.5 0.31 0.69 555,041     0.033 0.21 0.79 518,228     0.021

0.5-0.6 0.31 0.69 460,852     0.033 0.21 0.79 430,399     0.021

0.6-0.7 0.31 0.69 396,445     0.032 0.21 0.79 369,703     0.021

0.7-0.8 0.32 0.68 329,217     0.029 0.21 0.79 306,753     0.019

0.8-0.9 0.32 0.68 272,693     0.024 0.21 0.79 254,014     0.016

0.9-1 0.32 0.68 391,595     0.013 0.14 0.86 366,541     0.008

*Number of variants

**Mean confidence interval lengths

Table 5: Percentage of non-Finnish European and African gnomAD frequencies included in the  corresponding 

confidence interval (CI) estimated in HCHS/SOL by GAFA and LAFA, binned by gnomAD frequency categories.  

We assessed only gnomAD variants passing quality control filters (FILTER=="PASS"), with an ancestral minor 

allele count of ≥100 respective to the assessed ancestry.The Europeans have an extra category for rare 

variants (<0.01), since their  calculation is based on a larger datset compared to Africans. 

Abbreviations: AF  Allele frequency; GAFA  Global -Ancestral Frequency estimation in Admixed populations; 

LAFA  Local -Ancestral Frequency estimation in Admixed populations.

GAFA LAFA

A
fr

ic
an

Eu
ro

p
ea

n

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2021.08.06.455462doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455462
http://creativecommons.org/licenses/by-nd/4.0/

