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ABSTRACT 
 
Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple 
scales. Recent methodological and conceptual advances have enabled investigations of the interplay between 
large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an 
integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for 
Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54±5.62 
years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-
weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release 
includes brain-wide connectomes derived from i) resting-state functional imaging, ii) diffusion tractography, iii) 
microstructure covariance analysis, and iv) geodesic cortical distance, gathered across multiple parcellation scales. 
Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will 
facilitate future research examining the coupling between brain microstructure, connectivity, and macroscale 
function. MICA-MICs is available on the Canadian Open Neuroscience Platform’s data portal 
(https://portal.conp.ca). 
 
 
Keywords: Multimodal | Microstructure | Connectome | Gradients | Multiscale | BIDS   
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BACKGROUND & SUMMARY  
 
The human brain is a highly interconnected network which can be described at multiple spatial and temporal scales. 
Neuroimaging, in particular magnetic resonance imaging (MRI), has provided a window into brain structure and 
function, offering versatile contrasts to assess its multiscale organization 1. Multimodal imaging increasingly 
capitalizes on sequences sensitive to brain microstructure, such as quantitative T1 (qT1) relaxation mapping. This 
contrast can differentiate highly myelinated regions, with shorter T1 relaxation times, from more lightly 
myelinated regions showing longer qT1 2. Regional variations in qT1 concord with seminal myeloarchitectonic 
studies 3–5, supporting the potential of these contrasts for in vivo microstructural profiling and the study of 
myeloarchitectonic similarity between areas 6–9. These investigations can also be complemented by metrics such 
as geodesic distance, enabling estimations of cortico-cortical wiring cost emerging from short-range intracortical 
axon collaterals 10–13, the exploration of the anatomical proximity of different brain systems, and the study of 
cortical topographic organization 14,15. In addition, macroscale connectome architecture can be probed using 
diffusion MRI tractography and resting-state functional connectivity analysis to approximate whole-brain 
structural and functional networks 16–18. Together, these techniques offer key insights into overarching principles 
of brain organization, from properties of local regions to their embedding within macroscale systems. 
 
Recent methodological and conceptual advances have provided the means to analyse topographic principles of 
multiscale brain organization. Homogeneity in regional properties can be detected in structural and functional 
imaging data, at the basis of parcellation-based approaches 19. Regional boundaries can be defined with a varying 
level of granularity from different features, such as morphology 20,21, microstructure 22,23, connectivity patterns 
24,25, and combinations of these metrics 26. Functional and anatomical relationships between parcels can then be 
identified, forming the brain’s macroscale network architecture 27–29. Complementing techniques highlighting 
discrete collections of areas through parcellation or decomposing the brain into mesoscale communities, recent 
work has begun to identify continuous spatial trends – also referred to as gradients – in brain microstructure, 
connectivity, and function. Gradient identification approaches have described main axes of cortical and 
subregional organization at the level of resting-state functional connectivity 14,30–35, structural connectivity derived 
from diffusion tractography 36–39, similarity of cortical microstructure 6,7,13,40–42 and cortical morphology 41, as well 
as molecular and microcircuit properties 16,43,44. These approaches have enabled the discovery of a principal 
gradient of intrinsic functional connectivity differentiating lower-order sensorimotor systems from transmodal 
systems such as the default-mode network and paralimbic cortices, recapitulating seminal models of the cortical 
hierarchy formulated in non-human primates 6,45,46. By depicting low dimensional axes of cortical organization, 
gradient approaches enable investigations of systematic changes in structure and function across the brain and are 
thus particularly suited for studies aiming to bridge different neurobiological axes. For instance, recent work has 
demonstrated stronger decoupling between principal microstructural and functional gradients in transmodal 
cortical areas relative to unimodal systems, possibly reflective of the flexible role that transmodal areas play in 
human cognition 6. Relatedly, the principal functional gradient has also been shown to reflect variations in geodesic 
distance between sensory and transmodal systems, offering a potential macroscale mechanism allowing 
transmodal networks to support higher cognitive functions decoupled from “the here and now” 14. By offering a 
formal framework for such multimodal comparisons, these findings emphasize the potential of dimensional 
analyses to obtain novel insights into multiscale brain organization. 
 
Beyond innovations in imaging and analytics, neuroscience has increasingly benefitted from the adoption of open 
science practices, particularly through open data sharing 47–49. In addition to advancing our understanding of brain 
organization, these repositories have supported increased exchange and collaboration, boosting transparency and 
reproducibility 50.  In line with this perspective, this work presents a ready-to-use multimodal MRI dataset for 
Microstructure-Informed Connectomics (MICA-MICs). MICA-MICs provides connectomes based on i) task-free 
functional MRI, ii) diffusion tractography, iii) microstructure covariance analysis based on qT1 mapping, and iv) 
geodesic cortical distance, each built across multiple parcellation schemes and spatial scales. We furthermore 
provide anonymized raw data adhering to Brain Imaging Data Structure (BIDS) standards 51. Processing has been 
carried out using an open access pipeline (https://micapipe.readthedocs.io/). This resource promises to deepen our 
understanding of the human brain at multiple scales and augment assessments of generalizability and replicability.  
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METHODS 
 
Participants  
Data were collected in a sample of 50 healthy volunteers (23 women; 29.54±5.62 years; 47 right-handed) between 
April 2018 and February 2021. Each participant underwent a single testing session. All participants denied a 
history of neurological and psychiatric illness. The Ethics Committee of the Montreal Neurological Institute and 
Hospital approved the study (2018-3469). Written informed consent, including a statement for openly sharing all 
data in anonymized form, was obtained from all participants. Socio-demographic information included in this 
release includes participant sex and age at time of scan (in 5-year increments). 
 
MRI data acquisition 
Scans were completed at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital on a 3T 
Siemens Magnetom Prisma-Fit equipped with a 64-channel head coil. Participants underwent a T1-weighted 
(T1w) structural scan, followed by multi-shell diffusion-weighted imaging (DWI) and resting-state functional MRI 
(rs-fMRI). In addition, a pair of spin-echo images was acquired for distortion correction of individual rs-fMRI 
scans. A second T1w scan was then acquired, followed by qT1 mapping (Figure 1A). Total scan time for these 
acquisitions was approximately 45 minutes.  
  
Two T1w scans with identical parameters were acquired with a 3D magnetization-prepared rapid gradient-echo 
sequence (MP-RAGE; 0.8mm isotropic voxels, matrix=320×320, 224 sagittal slices, TR=2300ms, TE=3.14ms, 
TI=900ms, flip angle=9°, iPAT=2, partial Fourier=6/8). Both T1w scans were visually inspected to ensure minimal 
head motion before they were submitted to further processing. qT1 relaxometry data were acquired using a 3D-
MP2RAGE sequence (0.8mm isotropic voxels, 240 sagittal slices, TR=5000ms, TE=2.9ms, TI 1=940ms, T1 
2=2830ms, flip angle 1=4°, flip angle 2=5°, iPAT=3, bandwidth=270 Hz/px, echo spacing=7.2ms, partial 
Fourier=6/8). We combined two inversion images for qT1 mapping in order to minimise sensitivity to B1 
inhomogeneities and optimize intra- and inter-subject reliability 52,53. A 2D spin-echo echo-planar imaging 
sequence with multi-band acceleration was used to obtain DWI data, consisting of three shells with b-values 300, 
700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell, respectively (1.6mm isotropic 
voxels, TR=3500ms, TE=64.40ms, flip angle=90°, refocusing flip angle=180°, FOV=224×224 mm2, slice 
thickness=1.6mm, multi-band factor=3, echo spacing=0.76ms). b0 images acquired in reverse phase encoding 
direction are also provided for distortion correction of DWI scans. One 7 min rs-fMRI scan was acquired using 
multiband accelerated 2D-BOLD echo-planar imaging (3mm isotropic voxels, TR=600ms, TE=30ms, flip 
angle=52°, FOV=240×240mm2, slice thickness=3mm, mb factor=6, echo spacing=0.54ms). Participants were 
instructed to keep their eyes open, look at a fixation cross, and not fall asleep. We also include two spin-echo 
images with reverse phase encoding for distortion correction of the rs-fMRI scans (3mm isotropic voxels, 
TR=4029 ms, TE=48ms, flip angle=90°, FOV=240×240mm2, slice thickness=3mm, echo spacing=0.54 ms, phase 
encoding=AP/PA, bandwidth= 2084 Hz/Px). A complete list of acquisition parameters is provided in the detailed 
imaging protocol available alongside this data release. 
 
MRI data pre-processing 
Raw DICOMS were sorted by sequence, converted to NIfTI format using dcm2niix (v1.0.20200427; 
https://github.com/rordenlab/dcm2niix) 54, renamed, and assigned to their respective subject-specific directories 
according to BIDS 51. Agreement between the resulting data structure and BIDS standards was ascertained using 
the BIDS-validator (v1.5.10; DOI: 10.5281/zenodo.3762221) 55. All further processing was performed via 
micapipe, an openly accessible processing pipeline for multimodal MRI data (https://micapipe.readthedocs.io/), 
and BrainSpace, a toolbox for macroscale gradient mapping (https://brainspace.readthedocs.io/) 56.  
 
T1w pre-processing. Native structural images were anonymized and de-identified by defacing all structural 
volumes using custom scripts (https://github.com/MICA-LAB/micapipe/; micapipe_anonymize). Note that 
processing derivatives were generated from non-anonymized images. Structural processing was carried out using 
several software packages, including tools from AFNI, FSL, and ANTs 57. Each T1w scan was deobliqued and 
reoriented to standard neuroscience orientation (LPI: left to right, posterior to anterior, and inferior to superior). 
Both scans were then linearly co-registered and averaged, automatically corrected for intensity nonuniformity 58, 
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and intensity normalized. Resulting images were skull-stripped, and subcortical structures were segmented using 
FSL FIRST 59. Cortical surface segmentations were generated from native T1w scans using FreeSurfer 6.0 60–62.  
 
qT1 pre-processing. Native qT1 scans were anonymized and de-identified by defacing. For pre-processing, a series 
of equivolumetric surfaces were first constructed for each participant between pial and white matter boundaries. 
These surfaces were used for systematic sampling of qT1 image intensities, to compute individual microstructural 
profile similarity matrices 6,7 (see next section). Here, qT1 images were co-registered to native FreeSurfer space 
of each participant using boundary-based registration 63.  
 
DWI pre-processing. DWI data were pre-processed using MRtrix 64,65. DWI data was denoised 66,67, underwent b0 
intensity normalization 58, and were corrected for susceptibility distortion, head motion, and eddy currents using a 
reverse phase encoding from two b=0s/mm2 volumes. Required anatomical features for tractography processing 
(e.g., tissue type segmentations, parcellations) were non-linearly co-registered to native DWI space using the 
deformable SyN approach implemented in ANTs 68. Diffusion processing was performed in native DWI space. 
 
rs-fMRI pre-processing. rs-fMRI images were pre-processed using AFNI 69 and FSL 59. The first five volumes 
were discarded to ensure magnetic field saturation. Images were reoriented, as well as motion and distortion 
corrected. Motion correction was performed by registering all timepoint volumes to the mean volume, while 
distortion correction leveraged main phase and reverse phase field maps acquired alongside rs-fMRI scans. 
Nuisance variable signal was removed using an ICA-FIX 70 classifier trained in-house on a subset of 30 participants 
(15 healthy controls, 15 drug-resistant epilepsy patients) and by performing spike regression using motion outlier 
outputs provided by FSL. Volumetric timeseries were averaged for registration to native FreeSurfer space using 
boundary-based registration 63, and mapped to individual surface models using trilinear interpolation. Native-
surface cortical timeseries underwent spatial smoothing once mapped to each individual’s cortical surface models 
(Gaussian kernel, FWHM=10mm) 71,72, and were subsequently averaged within nodes defined by several 
parcellation schemes (see below). Parcellated subcortical timeseries are also provided in this release and were 
appended before cortical timeseries. Subject-specific subcortical parcellations were non-linearly registered to each 
individual’s native fMRI space using the deformable SyN approach implemented in ANTs 68. 
 
Generating individual and group-level connectome matrices 
The following sections describe the construction of feature matrices, derived from each imaging sequence included 
in this data release (Figure 1B). Cortical connectomes are provided according to anatomical 20, intrinsic functional 
24, and multimodal parcellation schemes 26 at different resolutions, for a total of 18 distinct cortical parcellations. 
Anatomical atlases available in this dataset include Desikan-Killiany (aparc) 20 and Destrieux (aparc.a2009s) 21 
parcellations provided by FreeSurfer, as well as an in vivo approximation of the cytoarchitectonic parcellation 
studies of Von Economo and Koskinas 73. We additionally include similarly sized subparcellations, constrained 
within the boundaries of the Desikan-Killany atlas 20, providing matrices with 100 to 400 cortical parcels following 
major sulco-gyral landmarks. Parcellations based on intrinsic functional activity (Schaefer atlases based on 7-
network parcellation) are also included in this release according to a wide range of resolutions (100-1000 nodes) 
24. Lastly, we also provide connectome matrices generated from a multimodal atlas with 360 nodes derived from 
the Human Connectome Project dataset, known as the Glasser parcellation 26. All atlases are available on Conte69 
56 and fsaverage5 surface templates (see parcellations in https://github.com/MICA-LAB/micapipe), and were 
resampled to each participant’s native surface to generate modality- and subject-specific matrices. In addition, 
structural and functional connectome matrices include data for each subcortical structure (nucleus accumbens, 
amygdala, caudate nucleus, pallidum, putamen, and thalamus) and the hippocampus appended before entries for 
cortical parcels (see USAGE NOTES).  
 
Geodesic distance (GD). We computed individual GD matrices along each participant’s native cortical midsurface 
using workbench tools 71,72. First, a centroid vertex was defined for each cortical parcel by identifying the vertex 
with the shortest summed Euclidean distance from all other vertices within its assigned parcel. The GD between 
centroid vertices and all other vertices on the native midsurface mesh was computed using Dijkstra’s algorithm. 
Notably, this implementation computes distances not only across vertices sharing a direct connection, but also 
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across pairs of triangles which share an edge to mitigate the impact of mesh configuration on calculated distances. 
Vertex-wise GD values were averaged within parcels. 
 
Microstructural profile covariance (MPC). We generated 14 equivolumetric intracortical surfaces 74 to sample 
qT1 intensities across cortical depths, yielding distinct intensity profiles reflecting the intracortical microstructural 
composition at each cortical vertex. This number of surfaces was selected based on recent stability analyses of 
resulting MPC matrices 6,7. Data sampled from surfaces closest to the pial and white matter boundaries were 
discarded to mitigate partial volume effects. Vertex-wise intensity profiles were averaged within parcels. Nodal 
microstructural profiles were cross-correlated across the cortical mantle using partial correlations while controlling 
for the average cortex-wide intensity profile, and log-transformed 6,7. Left and right medial walls, as well as non-
cortical areas such as corpus callosum and peri-callosal regions of the Desikan-Killiany and Destrieux 
parcellations were excluded when averaging cortex-wide intensity profiles. Resulting matrices thus represented 
participant-specific similarity matrices in myelin proxies across the cortex.  
 
Diffusion MRI tractography derived structural connectivity (SC). Structural connectomes were generated with 
MRtrix from pre-processed DWI data 64,65. We performed anatomically-constrained tractography using tissue types 
(cortical and subcortical grey matter, white matter, cerebrospinal fluid) segmented from each participant’s pre-
processed T1w images registered to native DWI space 75. We estimated multi-shell and multi-tissue response 
functions 76 and performed constrained spherical-deconvolution and intensity normalization 77. We generated a 
tractogram with 40 million streamlines (maximum tract length=250; fractional anisotropy cutoff=0.06). We 
applied spherical deconvolution informed filtering of tractograms (SIFT2) to reconstruct whole brain streamlines 
weighted by cross-sectional multipliers 78. The reconstructed cross-section streamlines were mapped to each 
parcellation scheme (cortical and subcortical), which were also warped to DWI space. The connection weights 
between nodes were defined as the weighted streamline count. 
 
Functional connectivity (FC). Individual rs-fMRI timeseries mapped to subject-specific surface models were 
averaged within cortical parcels. The subcortical parcellation was warped to each subject’s native fMRI volume 
space and used to average timeseries within each node. Individual functional connectomes were generated by 
cross-correlating all nodal timeseries. For analyses presented in this paper, correlation values subsequently 
underwent Fisher-R-to-Z transformations. However, all FC matrices are provided as raw correlation matrices in 
the released data.  
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Figure 1. Overview of MICA-MICs dataset. (a) Sequences provided in the MICA-MICs dataset release include quantitative T1 
relaxometry, a multiband accelerated resting-state functional scan, multiband, multi-shell diffusion-weighted imaging, and two structural 
T1w scans. Pial and white matter surface segmentations are superimposed on a coronal slice of the T1w image generated by FreeSurfer 
combining both input T1w scans. (b) Group-averaged matrices (only left hemisphere parcels shown - top panel) and connection weights 
from three outlined seeds, selected to represent a diverse set of network communities (bottom panel). Microstructural profile covariance 
(MPC), functional connectivity (FC), and geodesic distance (GD) matrices were averaged across participants. Group-level structural 
connectivity (SC) was computed using distance-dependent thresholding to preserve the distribution of within- and between-hemisphere 
connections lengths in individual subjects 79. Prior to averaging, subject-level SC matrices were log-transformed to reduce connectivity 
strength variance. All features are projected to the fsaverage5 midsurface from the Schaefer-400 atlas. 
 
DATA RECORDS 
 
All files are organized according to the Brain Imaging Directory Structure (BIDS) 51 and are hosted on the 
Canadian Open Neuroscience Platform’s data portal (CONP; https://portal.conp.ca/dataset?id=projects/mica-
mics).  
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Figure 2. Directory structure of MICA-MICs dataset. (A) Anonymized data with no additional processing are provided in the rawdata 
branch of the directory structure, and includes qT1, T1w, diffusion-weighted, and resting-state functional imaging data. (B) Processing 
derivatives are organized according to their associated pipelines. Group and subject-level gradients (/derivatives/gradients) were derived 
from averaged and individual connectivity matrices computed from several parcellation schemes using micapipe (/derivatives/micapipe). 
Matrices and gradients are organized into modality-specific directories for structural (/anat/micro_profiles for MPC, /anat/geo_dist for 
geodesic distance), functional (/func), and diffusion-weighted (/dwi) imaging. We additionally provide detailed image quality reports for 
T1w and rsfMRI raw data generated using MRIQC 80.  
 
Native space data 
Native space data and corresponding .json files are contained in the branch /rawdata/sub-HC#/ses-01 of the 
directory structure (Figure 2A). For each subject (/sub-HC#/ses-01), the /anat subdirectory includes several NIfTI 
files containing native space T1w and qT1 images. T1w scans are named according to acquisition order, denoted 
by run-#. For unprocessed qT1 images, we provide results of each inversion time parameter (denoted by inv-1 and 
inv-2), T1 mapping based on the combination of both inversion time images (T1-map), as well as MP2RAGE-
derived synthetic T1w images (uni). Removal of facial features by masking was the only change applied to these 
images (see MRI data pre-processing).  
 
Subject-specific DWI files can be found in the /rawdata/sub-HC#/ses-01/dwi subdirectory. Gradient direction, 
diffusion weighting, DWI volumes, and .json sidecar files are associated with each shell, indicated by its 
corresponding b-value and number of diffusion directions in the filename (e.g., “sub-HC#_ses-01_acq-b#_dir-
AP_dwi.json”). b0 images are denoted by their inverse phase encoding direction (PA; i.e., “sub-HC#_ses-01_dir-
PA_dwi.json”).  
 
The rs-fMRI scans as well as associated spin-echo images used for distortion correction are located in the 
/rawdata/sub-HC#/ses-01/func subdirectory. Functional timeseries include 700 timepoints, with the exception of 
subject numbers equal to or preceding sub-HC004 who underwent slightly longer acquisition (800 timepoints). 
Phase encoding direction of spin-echo images are indicated in the filename (i.e., APse – anterior-posterior – or 
PAse – posterior-anterior. The string “se” following phase-encoding direction in the filename indicates a spin-
echo image later used for distortion correction). 
 
Processed data 
Processed data included in this release are stored in the derivatives subdirectory associated with their processing 
pipeline (Figure 2B). Quality control reports of raw structural and functional data are provided in 
derivatives/mriqc/. Modality-specific matrices of varying granularity (70-1000 nodes) were generated using 
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micapipe, and are stored in their respective subdirectory (e.g., all functional connectomes can be found in 
derivatives/micapipe/sub-HC#/ses-01/func/). We also provide group- and subject-level gradients generated from 
each matrix, stored in derivatives/gradients/ses-01/ (see TECHNICAL VALIDATION AND DERIVATIVE METRICS). 
 
Structural processing. Surface-mapped processing derivatives of structural scans are provided in 
/derivatives/micapipe/sub-HC#/ses-01/anat. These features are organized in two distinct subdirectories. First, 
MPC matrices generated from processed qT1 scans are stored in the /micro_profiles subdirectory and are identified 
by the parcellation scheme from which they were computed (e.g., “sub-HC#_ses-01_space-fsnative_atlas-
schaefer100_desc-mpc.txt”). GD matrices for each cortical parcellation scheme are included in the /geo_dist 
subdirectory (e.g., “sub-HC#_ses-01_space-fsnative_atlas-schaefer100_desc-gd.txt”). As described in a previous 
section, individual geodesic distance matrices were computed along each participant’s native midsurface using 
workbench 71,72. 
 
DWI processing. Processing derivatives of DWI scans are provided in /derivatives/micapipe/sub-HC#/ses-01/dwi. 
Structural connectomes (e.g., “sub-HC#_ses-01_space-dwinative_atlas-schaefer100_desc-sc.txt”) and associated 
edge lengths (e.g., “sub-HC#_ses-01_space-dwinative_atlas-schaefer100_desc-edgeLength.txt”) are provided for 
each parcellation. 
 
rs-fMRI processing. Fully processed connectomes (i.e., after removal of nuisance variable signal using ICA-FIX 
70, mapping to native cortical surface, spatial smoothing, and regression of motion spikes) are provided in 
/derivatives/micapipe/sub-HC#/ses-01/func (e.g., “sub-HC#_ses-01_space-fsnative_atlas-schaefer100_desc-
fc.txt”). Functional connectomes were computed from native-surface mapped timeseries for congruency across 
data modalities, as both GD and MPC matrices are generated from data mapped to native cortical surface models.  
 
Quality control. Reports of image quality metrics computed by MRIQC v0.15.2 
(https://github.com/poldracklab/mriqc/) 80 are included in the /mriqc branch of MICA-MICs processing 
derivatives. For each subject, /mriqc directories contain /anat and /func subdirectories, which include image quality 
metric reports for T1w and resting-state functional scans in .html and .json formats. These reports provide a number 
of metrics evaluating the quality of the input data, including estimates of motion, signal-to-noise, and intensity 
non-uniformities 80. 
 
TECHNICAL VALIDATION AND DERIVATIVE METRICS  
 
Quality control procedures 
Cortical surface segmentations. Surface extractions were visually inspected by three authors (JR, AJL, CP) and 
corrected for any segmentation errors with the placement of control points and manual edits.  
 
Image quality metrics. The consistency of T1w scan quality was assessed using contrast-to-noise estimates 
computed in MRIQC 80 (Figure 3A). This metric provides a measure of separability of grey and white matter 
distributions for a given T1w image 80,81, with higher values indicating better image quality. For DWI scans, 
movement was quantified in each shell using MRtrix and FSL eddy 82 (Figure 3B). For rs-fMRI, framewise 
displacement (FD) was estimated using FSL’s motion outlier detection tool. We also explored temporal signal-to-
noise (tSNR) ratio, calculated for each participant by dividing surface-mapped mean timeseries by their standard 
deviation. Motion and distortion corrected timeseries were used to calculate tSNR across the cortex for each 
participant (i.e., before high-pass filtering and nuisance signal regression using ICA-FIX). Vertex-wise tSNR 
values were averaged within parcels to aggregate values across subjects (Figure 3C).  
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Figure 3. Image quality metrics across sequences. (A) Contrast-to-noise (CNR), estimated with MRIQC 80, showed no outliers in either 
T1w scan (first scan in blue, second scan in green). (B) Motion parameters of diffusion-weighted images were obtained from FSL eddy 82. 
The histogram illustrates root mean squared (RMS) voxel-wise displacement relative to the first volume across all shells. Line plots show 
RMS displacement in each volume relative to the previous volume. (C) Framewise displacement (FD) of resting-state functional scans was 
obtained using FSL motion outliers, reflecting the average of rotation and translation parameter differences at each volume 83. The histogram 
shows subjects-wise average FD across volumes. Line plots show FD across resting-state acquisitions for three participants, with 
respectively 20th, 50th, and 80th percentile average FD across our sample. Dashed line indicates 0.2 mean FD threshold used for exclusion 
of participants with excessive motion. Vertex-wise temporal signal-to-noise (tSNR) was calculated on the native surface of each participant. 
Computed tSNR values were averaged within a 400-node functional parcellation (Schaefer-400) and averaged across individuals.  
 
Estimation of cortical gradients from MPC, FC, SC, and GD matrices 
In this section, we demonstrate how group and individual-level gradients can be derived from each data modality 
provided in MICA-MICs. Using the BrainSpace toolbox (http://brainspace.readthedocs.io) 56, we identified 
gradients from MPC, FC, SC, and GD matrices. We constructed group-level gradients by averaging all cortical 
entries of subject-level matrices constructed from the Schaefer-400 atlas. MPC, FC, and GD matrices were 
computed by cross-subject averaging, and results were thresholded row-wise to retain the top 10% edges, as in 
previous work 6,14,30,34. Group-level structural connectivity (SC) was computed using distance-dependent 
thresholding to preserve the distribution of within- and between-hemisphere connection lengths in individual 
subjects 79. Prior to averaging, subject-level SC matrices were log-transformed to reduce connectivity strength 
variance. Group-average SC matrices were thresholded to only retain positive edges. No further thresholding was 
applied given the sparsity of SC matrices relative to other modalities.  
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Normalized angle affinity matrices, capturing inter-regional similarity of microstructural, connectivity, and 
distance patterns, were computed from each modality-specific matrix (Figure 4A, top). Left and right hemispheres 
were analysed separately for SC data, given limitations of diffusion tractography in mapping inter-hemispheric 
fibres. Hemispheres were also analysed separately for GD gradients, as the surface-based measure of geodesic 
distance used here is computed on distinct hemisphere surface spheres. Data from both hemispheres were used to 
generate affinity matrices from MPC and FC features. We applied diffusion map embedding, a non-linear 
dimensionality reduction technique 14,56,84, to each affinity matrix to identify eigenvectors (or gradients) describing 
inter-regional variability in each feature in descending order for each modality (Figure 4A, middle). Resulting 
gradients were visualized on cortical surfaces, revealing distinct patterns for each feature (Figure 4A, bottom). 
For instance, the first MPC gradient (G1) derived from myelin-sensitive qT1 recapitulated a sensory-fugal axis 
45,46 ordering nodes from sensorimotor to paralimbic cortices 6. In contrast, the principal FC and SC gradients 
primarily distinguished visual and sensorimotor cortices. The second gradient of FC, explaining a similar amount 
of variance to FC-G1, was anchored in unimodal sensory systems and the higher-order default mode network 14. 
Gradients of geodesic distance highlighted the longest distance axes across the cortical surface mesh, specifically 
evolving along anterior to posterior (G1) and mesial/inferior to lateral/superior (G2) directions. 
 
We next assess the reproducibility of group-average gradients in individual participants. Subject-level gradients 
were generated following the same procedure as previously described group-level analyses. Resulting subject-
level gradients were aligned with group-level template gradients generated from the 49 other participants using 
Procrustes alignment 56. This procedure (i.e., excluding a single participant from the template used for alignment) 
ensured that resulting correlations were not spuriously increased by correlating single-subject data present in both 
sets. Aligned subject-level gradients were correlated with their corresponding gradient in the group-level data 
(Figure 4B). A similar pattern was seen across all modalities, with decreasing individual-level replicability in 
gradients explaining less variance within each feature. Indeed, G1 was highly reproducible in all participants across 
all modalities (r mean±SD; MPC 0.785±0.041; FC 0.839±0.065; SC 0.973±0.008; GD 0.989±0.003), but 
correlations between individual subject data and group-level template gradients were lower for gradients 
explaining less variance (e.g., G10; MPC 0.193±0.064; FC 0.416±0.127; SC 0.785±0.083; GD 0.940±0.019). 
 
All subject-level gradients provided in this release were aligned to the full group template, and are provided for 
each modality and parcellation scheme. As such, all individual-subject gradients are aligned to an identical 
template. These files are included in their respective /derivatives subdirectories. For instance, all FC gradients for 
a given participant can be found in the /derivatives/gradients/ses-01/subjects/sub-HC# subdirectory (e.g., “sub-
HC#_ses-01_space-fsnative_atlas-schaefer100_desc-fcGradient.txt” for FC gradients). Gradients generated from 
the averaged full sample data can also be accessed within their respective /derivatives/gradients directories (e.g., 
/derivatives/gradients/ses-01/group/func for FC gradients).  
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Figure 4. Deriving smooth microstructural, connectivity, and distance gradients. (a) Matrices derived from the Schaefer-400 
parcellation describing i) microstructural similarity, ii) functional connectivity, iii) structural connectivity, and iv) spatial proximity were 
thresholded, and transformed into affinity matrices using a normalized angle kernel (top row). Only left hemisphere data is shown, although 
data from both hemispheres was included in MPC and FC analyses. We then applied diffusion map embedding, a non-linear dimensionality 
reduction technique, to each affinity matrix to derive gradients describing inter-regional variability in each feature in descending order 
(middle row). A subset of resulting gradients is projected onto the cortical surface for each modality (bottom row). (b) We assessed 
reproducibility of group-level gradient patterns at the individual-participant level using Spearman correlations. We generated gradients for 
each modality, in each participant, and aligned resulting eigenvectors to corresponding group-level gradient data. Box plots show variations 
in Spearman r-values across participants, for the first 10 gradients in each modality (presented in the same order as panel a). Note change 
in y-axis scale in SC and GD box plots.  
 
USAGE NOTES 
 
Data hosting. MICA-MICs is made openly available via the CONP portal 
(https://portal.conp.ca/dataset?id=projects/mica-mics).  
 
Matrix ordering. Rows and columns of GD and MPC matrices follow the order defined by annotation labels 
associated with their parcellation (see parcellations in https://github.com/MICA-LAB/micapipe), including 
unique entries for the left and right medial walls. For example, row and column entries of the Schaefer-100 
matrices are ordered according to: Left hemisphere cortical parcels (1 medial wall followed by 50 cortical regions), 
and right hemisphere cortical parcels (1 medial wall followed by 50 cortical regions). FC and SC matrices follow 
the same ordering, although entries for subcortical structures are appended before cortical parcels. As such, row 
and column entries of the Schaefer-100 FC and SC matrices are ordered according to: Subcortical structures and 
hippocampus (7 left, 7 right), left hemisphere cortical parcels (1 medial wall followed by 50 cortical regions), and 
right hemisphere cortical parcels (1 medial wall followed by 50 cortical regions). The ordering of all parcels and 
their corresponding label in each volumetric parcellation are documented in lookup tables provided with our 
analysis pipeline. 
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Gradient data. Nodes excluded from group- and individual-level gradient analyses are indicated by a value of Inf 
in the corresponding node index. These data points may correspond to non-cortical nodes (e.g., medial wall, 
callosal or peri-callosal areas) or to nodes with no connections to other areas. This second case occasionally 
occurred in higher-resolution (>500 nodes) SC matrices of individual subjects. 
 
CODE AVAILABILITY STATEMENT 
All processing pipeline scripts are openly available. Code used to generate pre-processed outputs can be accessed 
via GitHub (https://github.com/MICA-LAB/micapipe). Documentation for the processing pipeline, including 
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