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Translational relevance describing 

Few studies have investigated the role of pyroptosis in glioma, and comprehensive 

analyses of pyroptosis regulators in glioma, their correlation with clinical 

characteristics and their prognostic value have not been reported.The present study 

indicated that pyroptosis-related genes can be used to classify glioma patients into two 

subclasses based on different molecular features and clinical characteristics. The 

established prognostic model based on 15 pyroptosis-related genes not only predicted 

the prognosis of glioma patients but also reflected the molecular alterations, immune 

infiltration statuses, and stem cell-like properties of different risk groups. The 

classification based on the risk score of prognostic signature genes revealed a 

lncRNA-miRNA-mRNA regulatory network. The correlation of signature genes with 

drug sensitivity may provide a rationale for clinical applications. Finally, our study 

provides a new understanding of pyroptosis in the development and progression of 

glioma and contributes new important insights for promoting glioma treatment 

strategies. 
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Abstract 

Purpose: Integrative analysis was performed in the Chinese Glioma Genome Atlas 

and The Cancer Genome Atlas to describe the pyroptosis-associated molecular 

classification and prognostic signature in glioma. 

Experimental Design: Pyroptosis-related genes were used for consensus clustering 

and to develop a prognostic signature. The immune statuses, molecular alterations and 

clinical features of differentially expressed genes were analyzed among different 

subclasses and risk groups. A lncRNA-miRNA-mRNA network was built, and drug 

sensitivity analysis was used to identify small molecular drugs for the identified genes. 

Results: Glioma can be divided into two subclasses using 30 pyroptosis-related genes. 

Cluster 1 displayed high immune signatures and poor prognosis as well as high 

immune-related function scores. A prognostic signature based on 15 

pyroptosis-related genes of the CGGA cohort can predict the overall survival of 

glioma and was well validated in the TCGA cohort. Cluster 1 had higher risk scores. 

The high-risk group had high immune cell and function scores and low DNA 

methylation of pyroptosis-related genes. The differences in pyroptosis-related gene 

mutations and somatic copy numbers were significant between the high-risk and 

low-risk groups. The ceRNA regulatory network uncovered the regulatory patterns of 

different risk groups in glioma. Nine pairs of target genes and drugs were identified.  

Conclusions: Pyroptosis-related genes can reflect the molecular biological and 
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clinical features of glioma subclasses. The established prognostic signature can 

predict prognosis and distinguish molecular alterations in glioma patients. Our 

comprehensive analyses provide valuable guidelines for improving glioma patient 

management and individualized therapy. 

 

Introduction 

Gliomas are the most common types of primary tumors in the central nervous system 

and one of the most devastating tumors(1). At present, the main treatment methods of 

glioma are surgical resection, radiotherapy, chemotherapy or chemoradiotherapy(4). 

Although great efforts have been made to improve glioma treatment, the prognosis of 

glioma patients remains poor(5). One of the main reasons is that the molecular 

mechanism is still not fully understood. Therefore, the exploration and research of the 

underlying mechanism of gliomas and identification of potential treatment targets 

followed by application in clinical practice have important theoretical and practical 

significance. 

Pyroptosis is one of the pathways involved in programmed cell death, such as 

apoptosis, ferroptosis, necroptosis, and autophagy(6). Cookson et al. first used 

pyroptosis to describe the caspase-1-dependent pattern of cell death found in 

macrophages(7). Pyroptosis, distinct from apoptosis and necrosis, contributes to a 

range of human diseases as a new mechanism of cell death. Pyroptosis is a 

proinflammatory form of programmed cell death that is dependent on the activity of 

caspase acid-specific proteases(8). In the coupling of the amino-terminal and 
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carboxy-terminal linkers of gasdermin D (GSDMD) by caspases, the latter is 

displaced onto the membrane and perforated, inducing moisture penetration, cell 

swelling and the release of inflammatory factors, which is followed by pyroptosis(9). 

A previous study reported that pyroptosis plays an important role in immunity and 

diseases. In recent years, its role in tumorigenesis and cancer development has been 

studied comprehensively. Various regulators have been reported to be involved in the 

process of pyroptosis and play pivotal roles in the progression of tumors, such as 

hepatocellular carcinoma, lung cancer, and breast cancer(11-13). However, 

comprehensive analyses of pyroptosis regulators in glioma, their correlation with 

clinical characteristics and their prognostic value have not been reported. 

In this study, we first outlined the molecular subtypes of gliomas based on 

pyroptosis-related genes in the TCGA dataset and described the clinical and molecular 

characteristics and immune status of each subclass. Then, we developed a prognostic 

signature of pyroptosis-related genes based on the TCGA cohort, validated this 

prognostic signature in the TCGA cohort. Furthermore, we explored the clinical and 

molecular patterns, including immune infiltration, somatic copy number alterations, 

mutations, and DNA methylation, and established a lncRNA-miRNA-mRNA 

regulatory network. Finally, we explored the correlation between small molecular 

drugs and the identified prognostic signature genes. Our comprehensive analyses 

provide new insight into the functions of pyroptosis in the initiation, development, 

and progression of glioma. 

Materials and methods 
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Data source 

We downloaded the genomic data and clinical data of glioma patients from the CGGA 

(http://www.cgga.org.cn/) and TCGA databases (https://portal.gdc.cancer.gov/). The 

copy number alteration threshold data, masked copy number segmentation data, and 

450K DNA methylation data of glioma were also downloaded from the TCGA 

database. Additional gene-centric RMA-normalized gene expression profiles and drug 

response data of over 1000 cancer cell lines were accessed from the Genomics of 

Drug Sensitivity in Cancer (GDSC) database 

(https://www.cancerrxgene.org/downloads). Immune-associated data, including 

immune cells and immunophenoscores, were downloaded from TCIA 

(https://tcia.at/home). Thirty-three pyroptosis-related genes were defined from a 

previous publication and are provided in Table S1(15-18). 

Identification of glioma subclasses 

The pyroptosis-related genes identified were subsequently used in unsupervised class 

discovery. We first excluded some genes with a low median absolute deviation value 

(≤0.5) in the overall glioma patient samples. Consensus clustering provides 

quantitative and visual stability evidence derived from repeated subsampling and 

clustering. Consensus clustering can be used to perform an analysis when a negative 

expression value exists, which is different from nonnegative matrix factorization 

(NMF) clustering(19). This process was completed using the ConsensusClusterPlus R 

package. We identified the optimal clustering number visualizing consensus matrix, 

tracking plot, and cumulative distribution function plot. In addition, a T-distributed 
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stochastic neighbor embedding-based approach was used to validate the clustering in 

glioma patients. 

Gene set variation analysis 

To evaluate the pathway enrichment of each sample, we performed gene set variation 

analysis (GSVA) and estimated the gene set enrichment for glioma subclasses. The 

KEGG gene set was downloaded from the GSEA database. We calculated the 

enrichment scores for every sample using the GSVA R package. Differential analyses 

were performed between glioma subclasses. An absolute log2-fold change (FC)>0.1 

and adjusted P value >0.05 were considered significant. The results were presented 

using the “heatmap” R package. 

Development and validation of a prognostic signature 

We developed a pyroptosis-related prognostic signature based on the CGGA training 

cohort. Univariate Cox regression was used to evaluate the prognostic roles of 30 

pyroptosis-related genes. Twenty differentially expressed genes with P<0.05 were 

entered into LASSO Cox regression, which identified potential genes for the 

prognostic signature in the CGGA training cohort. Finally, a prognostic signature 

model based on 15 pyroptosis-related genes was developed. Then, we calculated the 

risk score for each sample of the CGGA and TCGA validation cohorts using the 

obtained regression coefficient in the CGGA training cohort. The CGGA and TCGA 

samples were divided into a high-risk group and a low-risk group based on the median 

risk score. Kaplan-Meier analyses were used to compare the overall survival curves of 

the high-risk and low-risk groups in the training and validation cohorts. Univariate 
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and multivariate Cox regression analyses were performed to identify whether the risk 

score was an independent prognostic factor in the training and validating cohorts. We 

also established a prognostic nomogram to evaluate the clinical value of the 

prognostic signature. Calibration analysis of the prognostic predictive value of the 

nomogram was carried out using the calibrated function of the “mis” package in 

CGGA and TCGA cohort. 

Differential expression and functional enrichment analysis 

To explore the different molecular patterns for each subclass or risk group, we 

performed differential expression analyses using the “limma” R package. |Log2FC|>1 

and adjusted P value <0.05 were defined as significant differential expression levels. 

Gene Ontology and KEGG pathway analyses were performed using the 

“clusterProfiler” package. 

Estimation of tumor stem cell-like properties and immune infiltration 

We used single-sample gene set enrichment analysis (ssGSEA) to estimate the 

enrichment score of stem cell-like properties (RNAss, DNAss) and the TME (stromal 

score, immune score, and ESTIMATE score) in the TCGA cohort because the CGGA 

dataset did not provide such data. The immune-related cell and function scores were 

also calculated for each sample (downloaded from https://www.gsea-msigdb.org/). 

Differential expression analyses were performed between glioma subclasses and risk 

groups. The correlation coefficients were calculated between the 15 prognostic genes 

and stem cell-like properties and TME scores. 

Somatic copy number alteration, mutation, and DNA methylation analysis 
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Based on the risk groups in the TCGA cohort, we compared the somatic copy number 

alteration, mutation, and DNA methylation levels between the high-risk and low-risk 

groups using the “limma” R package. The results are presented using a heatmap and 

box plot. 

Construction of a ceRNA network 

To further explore the transcriptome regulation network of different risk groups, we 

first performed differential expression analyses for mRNAs, lncRNAs and miRNAs 

between the high-risk group and the low-risk group. Then, we used Cytoscape version 

3.8.2 to establish a lncRNA-miRNA-mRNA regulatory network. 

Correlation between signature genes and drug sensitivity 

To explore the correlation between small molecular drugs and the identified 

prognostic signature genes, Pearson correlation coefficients were calculated. |R|>0.25 

and P>0.05 were considered significantly correlated. 

Statistical analysis 

For continuous variables, Student’s t test and one-way ANOVA were used to compare 

differences in two subgroups and more than two subgroups, respectively. For 

categorical variables, the chi-square test was used. The log-rank test was used to 

compare the survival curves of Kaplan-Meier analysis. The hazard ratio (HR) and 95% 

confidence interval (CI) of each gene and clinical parameters were calculated when 

univariate and multivariate Cox regression were applied. Time-dependent receiver 

operating characteristic model analysis was performed to calculate the area under the 

curve (AUC) using the “timeROC” package. All analyses were achieved using R 
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software version 4.0. A two-sided P value <0.05 was considered significant unless 

otherwise specified. 

Results 

Identification of glioma subclasses 

The flow chart of the data analysis is presented in Figure 1A. From two CGGA 

RNA-seq datasets, we obtained 1018 samples of gene expression data and further 

identified 30 pyroptosis-related genes based on MAD>0.5. The gene symbols and 

descriptions of the 30 pyroptosis-associated genes used for classification are listed in 

Table S1. We first explored the interactions among these genes using PPIs (Figure 1B), 

and the PPI network indicated that CASP8, CASP4, CASP1, NLRP3, NLRP1 and 

NLRC4 are hub genes. The correlation circle plot of the 30 genes is presented in 

Figure 1C (red: positive correlation; green: negative correlation). We identified the 

optimal k value as 2 by estimating the comprehensive correlation coefficient. 

Therefore, we divided the glioma samples into two different subclasses: cluster 1 and 

cluster 2. For the optimal k value (k=2), the consensus matrix showed a relatively 

sharp and clear boundary, indicating stable and robust clustering (Figure 1D). To 

verify the subclass stability, we further performed t-sensitivity PCA and found that a 

two-dimensional t-sensitivity distribution supported subtype clustering (Figure 1E). 

The consensus clustering for each sample is listed in Table S2, and other consensus 

clustering is presented in Figure S1. 

To explore the overall survival differences between the two clusters, we performed 

Kaplan-Meier analysis. In the CGGA cohort, the median survival time was 
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significantly shorter in cluster 2 than in cluster 1 (MST: 1.87 vs. 6.92 years, P<0.001, 

Figure 1F). This result indicated that the two subclasses had distinct prognostic 

patterns. 

Correlation of glioma subclasses with pyroptosis-related genes 

Two subclasses were obtained based on pyroptosis-related genes. To explore the 

pathway enrichment for the two subclasses, we performed GSVA by transforming the 

expression data from a gene-by-sample matrix to a gene set by two subclasses. Then, 

differential pathways were enriched in the two subclasses. Compared with cluster 1, 

the GSVA results indicated that cluster 2 had 182 kinds of significantly differential 

signaling pathways (Table S3). The upregulated pathways were associated with 

immune-related pathways, such as autoimmune, allograft rejection, graft versus host 

disease, primary immunodeficiency, antigen processing and presentation. Some 

signaling pathways, such as the cytosolic DNA sensing pathway, NOD-like receptor 

signaling pathway, Toll-like receptor signaling pathway, and metabolism-related 

pathways, were also significantly enriched. The significantly downregulated pathway 

was long-term potentiation (Figure 2A). A previous study found that EGFR signaling 

upregulates the surface expression of the GluN2B-containing NMDA receptor and 

contributes to long-term potentiation in the hippocampus(20). The NMDA receptor is 

involved in glioma progression(21). 

Clinical characteristics and transcriptomes of glioma subclasses 

We explored the correlation of subclasses with clinical characteristics (Figure 2B). 

Compared with patients in cluster 2 with a favorable prognosis, patients in cluster 1 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454997
http://creativecommons.org/licenses/by-nc/4.0/


tended to have GBM (P<0.001), WHO grade IV (P<0.001), a higher proportion of 

age >41 years, 1p19q non-codeletion status (P<0.001), and IDH wildtype status 

(P<0.001). Sex, PRS type and radiotherapy status were not associated with the 

molecular subclasses (P>0.05). For the pyroptosis-related genes except CASP9, 

significant differential expression was observed in the two clusters. Among these 

differentially expressed genes, all genes were upregulated in cluster 1 and 

downregulated in cluster 2 (Figure 2B). We also compared the differences in 

pyroptosis-related genes in patients with different histologies, grades, IDH mutation 

statuses, and 1p19q statuses. Compared with the LGG group, the GBM group had one 

upregulated gene (AIM2) and 21 downregulated genes (Figure S2A). Twenty-one 

DEGs were found for grade, and their expression increased with increasing WHO 

grade (P<0.005, Figure S2B). For IDH status, 25 DEGs were found (Figure S2C). 

Thirty pyroptosis-related DEGs were found for 1p191 status (Figure 2SD). 

We further performed differential expression analysis between cluster 1 and cluster 2. 

A total of 392 DEGs were found, 18 genes were upregulated, and 372 genes were 

downregulated in cluster 2 (Table S4). GO and KEGG enrichment analyses were 

performed for all DEGs (Table S5 and Table S6). A total of 874 differentially 

expressed functions were enriched, including 709 biological processes, 95 cellular 

components and 70 molecular functions. The top 30 enrichment results are presented 

in Figure S3. Most of these functions were associated with immunity. In addition, 56 

pathways were also identified in the KEGG analysis (Figure S4), and the top five 

pathways were phagosome, Staphylococcus aureus infection, tuberculosis, 
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complement and coagulation cascades, and human T-cell leukemia virus 1 infection. 

Correlation of glioma subclasses with immune status 

To explore the tumor heterogeneity between the two subclasses, we investigated the 

immune cell and immune function differences. Compared with cluster 2, cluster 1 had 

higher aDC, CD8+ T cell, DC, iDC, macrophage, mast cell, neutrophil, NK cell, pDC, 

T helper cell, Tfh cell, Th2 cell, TIL, and Treg levels (all P<0.001, Figure S5A). 

Similarly, cluster 1 had higher immune function scores than cluster 2, including APC 

coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, HLA, 

inflammation promotion, MHC class I, parainflammation, T cell coinhibition, type I 

IFN response and type II IFN response (all P<0.001, Figure S5B). 

Development of a pyroptosis-related prognostic signature in glioma 

Initially, we performed univariate Cox regression to identify the correlations of the 30 

pyroptosis-related genes with OS (Figure S6A) in the CGGA cohort. In total, 20 

pyroptosis-related genes were identified as associated with the overall survival of 

glioma patients. The Kaplan-Meier plot indicated that high expression of CASP3, 

CASP4, CASP5, CASP6, CASP8, ELANE, GSMAD, IL6, NLRP3, NOD1, NOD2, 

PLCG1, PRKACA, PYCARD, and SCAF11 was associated with poorer OS in glioma. 

Using 20 prognostic pyroptosis-related genes, we developed a prognostic signature by 

performing LASSO regression in the CGGA training cohort (Figure S6B and S6C). 

Fifteen of the 20 prognostic genes were used to develop the risk signature. We 

calculated the risk score for each sample using the regression coefficients of the 15 

genes. Glioma patients with risk scores greater than the median value were divided 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454997
http://creativecommons.org/licenses/by-nc/4.0/


into a high-risk group, and the others were divided into a low-risk group. Compared 

with the low-risk group, the high-risk group was more likely to have GBM (P<0.001), 

a higher WHO grade (P<0.001), recurrence (P<0.001), older age (P<0.001), IDH 

wildtype status (P<0.001), 1p19q non-codeletion status (P<0.001), and a history of 

chemotherapy (P<0.001). The heatmap showed the association between the risk group 

and clinical parameters and differentially expressed genes of the high- and low-risk 

groups (Figure S6D). Furthermore, we found that glioma patients belonging to cluster 

1 (Figure S4A), patients with a poor prognosis (Figure S7B), patients with GBM 

(Figure S7C), patients with WHO grade IV (Figure S7D), patients with 1p19q 

non-codeletion status (Figure S7E), and patients with IDH wildtype status (Figure 

S7F) had higher risk scores (all P<0.001). 

The Kaplan-Meier analysis showed that the high-risk group had a significantly poorer 

OS than the low-risk group (Figure 3A, Figure 3B, and Figure 3C). Univariate Cox 

regression indicated that the risk score was positively associated with OS in glioma 

(HR=3. 105, 95% CI: 2.681–3.596, P<0.001, Figure 3D). Multivariate Cox regression 

suggested that the risk score was an independent unfavorable prognostic predictor in 

glioma (HR=1.685, 95% CI: 1.392–2.039, P<0.001, Figure 3E). In addition, PRS type, 

tumor grade, and age were positively associated with OS. However, chemotherapy, 

wildtype IDH status, and 1p19q status were negatively associated with OS in the 

CGGA training cohort. The PCA plot indicated that patients in different risk groups 

were separated into obviously different clusters (Figure 3F). Time-dependent receiver 

operating characteristic analysis was performed to evaluate the predictability of the 
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prognostic model. Our results showed that the AUCs at 1 year, 2 years, and 3 years 

were 0.717, 0.784 and 0.773, respectively. We further compared the OS status among 

different histology, IDH status, 1p19q codeletion status, and grade subgroups. The 

results showed that the OS of the high-risk group was still poorer than that of the 

low-risk group (Figure S8A-S8I, all P<0.001). 

External validation of the pyroptosis-related prognostic signature in glioma 

To further validate the prognostic value of the pyroptosis-related gene model, we also 

calculated the risk score of glioma patients in the TCGA cohort using the regression 

coefficients of the CGGA cohort. The Kaplan-Meier analysis indicated a significant 

correlation of the high-risk group with worse OS than the low-risk group (Figure 

4A-4C). Univariate Cox regression showed that the risk score was significantly 

associated with OS in the TCGA cohort (HR=2.084, 95% CI: 1.890–2.297, P<0.001, 

Figure 4D). In multivariate Cox regression, the risk score was also an independent 

prognostic indicator (HR=1.425, 95% CI: 1.247–1.629 P<0.001, Figure 4E). The PCA 

plot validated the high- and low-risk distribution of all glioma patients based on the 

TCGA cohort. Furthermore, the AUCs of the risk score were 0.844 at 1 year, 0.863 at 

2 years, and 0.874 at 3 years. 

Prognostic prediction models 

To further evaluate the clinical prediction value of the prognostic signature, we 

constructed a prognostic nomogram model based on multivariate Cox regression 

analysis that included all clinical parameters in the CGGA cohort (Figure S9A). The 

calibration curves indicated that the clinical nomogram model could precisely predict 
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the 1-year, 3-year and 5-year OS of glioma patients (C-index=0.799, Figure 

S9B-S9D). The predictive accuracy of this nomogram was well validated in the 

TCGA cohort (C-index=0.841, Figure S9E-S9G). 

Functional enrichment and immune infiltration analyses based on the prognostic 

signature 

We further explored the underlying biological functions that define the survival of 

glioma patients. We first performed DEG analysis between the high-risk and low-risk 

groups and then annotated the functions of the DEGs in terms of biological processes, 

cellular components, and molecular functions using GO enrichment and KEGG 

pathways. We identified 338 DEGs in the CGGA cohort (Table S7) and 2600 DEGs in 

the TCGA cohort (Table S8). The GO enrichment and KEGG pathway analyses 

indicated that the CGGA and TCGA cohorts shared some enrichment results, such as 

extracellular matrix organization, extracellular structure organization, immune 

response, ECM-receptor interaction, and cell adhesion molecules (Figure 5A-5D). 

We also explored the differences in immune cells and immune functions based on the 

risk score in the CGGA (Figure 5E and Figure 5G) and TCGA datasets (Figure 5F and 

Figure 5H). As shown in the box plots, the immune cell score showed a similar trend 

in the CGGA and TCGA datasets. All immune cell scores were significantly 

upregulated in the high-risk group. The immune function differences of the different 

risk groups were the same in the CGGA and TCGA datasets (all P<0.001). All 

immune function scores were significantly upregulated in the high-risk group. 

Significant expression levels were also observed among different immune subtypes, 
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which indicated that the glioma prognosis risk could be associated with immune status 

(Figure S10). We also explored the correlation of the expression of target genes with 

cancer stem cell-like properties (RNAss, DNAss) and the TME (stromal score, 

immune score, and ESTIMATE score). We found that PCG1 was negatively 

associated with RNAss, the stromal score, the immune score, and the ESTIMATE 

score. SCAF11 was only negatively associated with DNAss. The rest of the genes 

showed positive correlations with RNAss, DNAss and the stromal, immune and 

ESTIMATE scores (Figure S11). 

Molecular alterations of pyroptosis-related genes based on the prognostic 

signature 

Molecular alterations of pyroptosis-related genes were also evaluated based on 

histology in the TCGA dataset. NLRP2, NLRP7, and PLCG1 were the only gene 

alterations in LGG, and NLRP3, NLRP7, NLRP2, SCAF11, NOD1, PLCG1, NLRP1, 

and CASP1 were gene alterations in GBM. All gene alterations were within 2% 

(Figure S12A and Figure S12B). The somatic copy number alteration analysis 

indicated significant differences among the pyroptosis-related genes. Among these 

genes, the copy variation number was significantly increased in GPX4, NLRP7, 

NLRP2, CASP3, CASP6, IL1B, CASP8, IL6, AIM2, NLRP4, NLRP3, PRKACA, 

ELANE, SCAF11, CASP9, NOD1, and PLCG1 and was significantly decreased in 

GSDMB, GSDMD, NLRP1, CASP9, TIRAP, CASP1, CASP4, NOD2, CASP5, 

PYCARD, GSMDC, GSMDA, and IL18 in the high-risk group (Figure S12C). The 

DNA methylation levels of the pyroptosis-related genes were also compared. The 
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results showed that the overall DNA methylation levels were significantly decreased 

in the high-risk group and increased in the low-risk group (Figure S12D). 

Construction of a ceRNA network based on the prognostic signature 

A ceRNA network was constructed based on the differentially expressed mRNAs, 

lncRNAs and miRNAs between the high-risk and low-risk groups in the TCGA 

dataset. We identified 763 downregulated mRNAs, 1176 upregulated mRNAs, 116 

downregulated lncRNAs, 132 upregulated lncRNAs (Table S9), 47 downregulated 

miRNAs and 71 upregulated miRNAs (Table S10). Finally, 39 mRNAs (28 

upregulated and 11 downregulated), 26 lncRNAs (15 upregulated and 15 

downregulated) and 14 miRNAs (13 upregulated and 1 downregulated) were included 

in the ceRNA network (Figure 6). The Kaplan-Meier curves suggested that 13 

lncRNAs (positive correlation: AC025211.1, AC068643.1, GDNF-AS1, and 

LINC00519; negative correlation: ADH1L1-AS2, CRNDE, FAM181A-AS1, 

HOTAIRM1, MCF2L-AS1, MIR210HG, NEAT1, SLC6A1, and SNHG9; Figure S13), 

41 mRNAs (Figure S14 and Table S11) and 8 miRNAs (miR-21, miR-155, miR-200a, 

miR-216a, miR-221, miR-222, miR-429, and miR-503; Figure S15) were associated 

with OS in glioma patients. 

Drug sensitivity analysis 

To identify potential target drugs, we performed correlations of the identified 

prognostic signature genes with drugs. We identified 257 pairs of significant 

gene-drug correlations (Table S12). There were 9 pairs with correlation 

coefficients >0.5 or <-0.5. 
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ELANE-hydroxyurea, ELANE-cyclophosphamide, CASP3-nelarabine, 

NOD2-imiquimod, NLRP3-rebimastat, ELANE-ABT-199, ELANE-imexon, and 

NOD2-isotretinoin showed drug sensitivity. PRKACA-cobimetinib showed drug 

resistance (Figure S16). 

Discussion 

In contrast to apoptosis caused by immune silencing, a variety of dangerous signaling 

molecules and cytokines are activated and released during pyroptosis, accompanied 

by a strong inflammatory response and activation of the immune system(22). A large 

number of studies have found that the inflammatory environment can induce the 

canceration of normal cells, and the inflammatory response environment formed by 

pyroptosis provides a suitable environment for tumor growth (23). As a ubiquitous 

death method of tumor cells, pyroptosis has become increasingly prominent in the 

development of tumors with the deepening of research. However, previous studies on 

pyroptosis have not identified a prominent role in clinical application, which 

highlights the significance of pyroptosis-related gene subclasses and prognostic 

models in predicting the clinical outcomes of glioma patients.  

The traditional histologic-based classification has some limitations, although this 

classification system has been updated several times over the years and serves 

clinicians well. One of the primary limitations is interobserver variability(24). A 

previous study reported that the concordance for reviewing a case is only 

approximately 50% among different neuropathologists, especially for astrocytic 

glioma versus oligodendroglioma(25). The existing classification criteria may be 
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inaccurate for cases with mixed tissue features. Prognosis is very different for glioma 

patients with different subtypes. The lack of understanding of tumor biology could be 

partly responsible. The development of genomics has allowed us to better understand 

the differences in prognosis and molecular features and promote effective treatment in 

glioma subclasses based on molecular features. Using 30 pyroptosis-related genes, we 

divided glioma patients into two subtypes. Significant overall survival differences 

were observed between cluster 1 and cluster 2. GSVA indicated that cluster 1 was 

enriched in some immune-related pathways. We identified 392 DEGs between the two 

subtypes. GO and KEGG analyses further validated the enrichment of immune-related 

functions and pathways. Cluster 1 and cluster 2 showed absolute differences in 

immune cells and immune functions. The infiltration levels of all kinds of immune 

cells, except Th1 cells, were higher in cluster 1, which had a poor prognosis, than in 

cluster 2. Cluster 1 also showed more significant trends in some main immune 

function levels, such as immune checkpoints, inflammation promotion, 

parainflammation, HLA, T cell and APC inhibition and costimulation, type I and II 

IFN responses, and cytolytic activity. These results indicated that the classification of 

glioma based on pyroptosis-related genes was correlated with immune infiltration, 

which fully reflects the features of strong inflammation and immune response during 

pyroptosis. A recent study reported that pyroptosis presents antitumor immune 

function in tumors, namely, pyroptosis-induced inflammation triggers robust 

antitumor immunity and can synergize with checkpoint blockade(26). Moreover, 

some key pathways were also highly enriched in cluster 1, such as the NOD-like 
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receptor signaling pathway, Toll-like receptor signaling pathway, and cytosolic DNA 

sensing pathway, which were reported to be involved in glioma progression(27-29). 

Some metabolism-related pathways were also enriched, such as amino sugar and 

nucleotide, glutathione, glycosaminoglycan and other glycan degradation, and 

glycosphingolipid biosynthesis. These metabolism-related pathway differences were 

the main characteristics of glioma classification(30). The differences in clinical 

features between cluster 1 and cluster 2 were also very evident. IDH status, 1p19q 

codeletion status, chemotherapy, age, and grade were obviously different. Cluster 1 

had more risk components. These results indicated that pyroptosis-related genes 

divided glioma patients into two-dimensional distributions well. Subsequently, we 

established a prognostic signature based on 15 pyroptosis-related genes. This 

prognostic signature was well validated in an external independent cohort. Combining 

clinical features and the risk score of the 15 genes, we developed a nomogram for 

clinical application. The CGGA and TCGA datasets showed high consistency. These 

results indicated that the prognostic signature based on pyroptosis-related genes has 

high clinical value. 

The signature genes were involved in two biological mechanisms of pyroptosis. The 

assembly of inflammasome bodies is the initial step of the classical pyroptosis 

pathway. The inflammasome is mainly composed of pattern recognition receptors 

(PRRs), apoptosis-associated speck-like protein (ASC) and pro-caspase-1 

precursors(31). PRRs are receptor proteins responsible for recognizing different signal 

stimuli in cells. They are mainly composed of nucleotide-binding oligomerization 
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domain-like receptor protein (NLRP) 1, NLRP3, nucleotide-binding oligomerization 

domain-like receptor protein C4 (NLRC4), absent in melanoma 2 (AIM2) and other 

components(32). ASC is an adaptor protein that is mainly composed of the N-terminal 

pyrindomain (PYD) and the C-terminal caspase activation and recruitment domain 

(CARD)(33). Procaspase-1 is an effector molecule that can specifically cleave 

GSDMD after activation. After the danger signal sensor NLR1, NLRP3 or AIM2 

recognizes the danger signal molecule, the N-terminal PYD is combined with the 

N-terminal PYD of the adaptor protein. ASC then recruits Caspase-1 through the 

interaction of the CARDCARD domain to complete the assembly of the inflamed 

body(34). This method of cell death mediated by Caspase-1 is called the classical 

pathway of pyroptosis(35). The nonclassical pathway of pyrolysis is mainly mediated 

by Caspase-4, Caspase-5 and Caspase-11. After cells are stimulated by bacterial LPS, 

Caspases-4, -5, and -11 directly bind to bacterial LPS and are activated(36). Activated 

Caspases-4, -5, and -11 specifically cleave GSDMD and release the intramolecular 

inhibition of the GSDMD-N domain(37).The GSDMD-N-terminus can activate 

Caspase-1 by activating the NLRP3 inflammasome(38). Activated Caspase-1 

stimulates the maturation of IL-18 and IL-1β precursors, and IL-18 and IL-1β are 

secreted to the outside of the cell and amplify the inflammatory response. Yang et al 

found that in the nonclassical pathway that relies on Caspase-11, gap junction 

protein-1 (Pannexin-1) can be cleaved, and the cleavage of Pannexin-1 can activate its 

own channel and release ATP, which induces pyrolysis(39). Lamkanfi et al found that 

in the nonclassical pathway that relies on Caspase-11, Pannexin-1 cleavage can also 
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activate the NLRP3 inflammasome, which in turn activates Caspase-1 and induces the 

occurrence of pyroptosis(40). It has been reported that hsa_circ_0001836 knockdown 

could induce pyroptotic cell death in glioma cells in vitro and in vivo by 

epigenetically upregulating NLRP1 expression(41). In addition, miR-214 could 

inhibit cell proliferation and migration through the regulation of pyroptosis mediated 

by caspase 1 in glioma U87 and T98G cells(42). According to the results, mutations 

of pyroptosis-related genes are mainly attributed to the classical pathway of pyrolysis. 

More research is needed to validate the molecular mechanisms. 

Based on the risk score, we classified glioma patients into high- and low-risk groups 

to discriminate clinical outcomes. We further explored the molecular features between 

the high- and low-risk groups. The functional enrichment analysis results were similar 

in the TCGA and CGGA datasets, and the same pathways appeared in the two datasets, 

such as ECM-receptor interaction, GABAergic synapse, focal adhesion, and 

extracellular matrix organization. The immune cells and immune functions showed 

similar trends: immune cell and functional scores were higher in the high-risk group. 

The clinical features showed that cluster 1 had a higher risk score and poorer 

prognosis than cluster 2. The results indicated that the classification was accurate and 

validated in the risk model. Furthermore, we compared the gene alterations, CNVs, 

and DNA methylation levels. Significantly different levels were observed, which 

reflected the different molecular features of the different risk groups. The ceRNA 

network identified several key lncRNA-miRNA-mRNA regulatory networks: 

FAM181A-AS1-miR-21-(CPEB3, SAIB1, BLC7A, MAP2K3, JAG1, TGFBI, 
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FAM46A, SPRY2, and CALD1). The survival analysis further suggested the 

regulatory correlation: elevated FAM18A-AS1 and miR-21 were associated with poor 

prognosis in glioma, and low expression of BCL7A, SATB1 and CPEB3 was 

associated with favorable prognosis. Previous experiments have reported the 

promoting role of miR-21 in glioma(43), and upregulation of SATB1 and CPEB3 is 

associated with the development and progression of glioma(44, 45). The drug 

sensitivity analysis indicated that NOD2, ELANE, CASP3, and PYCARD showed 

sensitivity to small molecular drugs, and PRKACA, IL6, and NLLRP3 showed 

resistance to some drugs. It was reported that the inhibition of the NLRP3 

inflammasome by beta-hydroxybutyrate can suppress the migration of glioma 

cells(46). These results may provide some guidelines for clinical practice. 

Currently, our study provides new evidence for glioma classification and prognosis 

assessment based on pyroptosis-related genes. However, there are still some 

limitations in the present study. First, the training dataset and validation dataset were 

from different population settings; the CGGA dataset was from the Chinese 

population, and the TCGA dataset mainly included Caucasians and some other races. 

A dataset with a larger sample size is needed to verify the present molecular subtypes. 

Therefore, it is necessary to validate the prognosis in the subgroup population setting. 

Finally, in vivo and in vitro experiments are needed to understand the molecular 

mechanisms and regulatory networks between different subclasses and risk 

classifications of glioma. 

The present study indicated that pyroptosis-related genes can be used to classify 
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glioma patients into two subclasses based on different molecular features and clinical 

characteristics. The established prognostic model based on 15 pyroptosis-related 

genes not only predicted the prognosis of glioma patients but also reflected the 

molecular alterations, immune infiltration statuses, and stem cell-like properties of 

different risk groups. The classification based on the risk score of prognostic signature 

genes revealed a lncRNA-miRNA-mRNA regulatory network. The correlation of 

signature genes with drug sensitivity may provide a rationale for clinical applications. 

Finally, our study provides a new understanding of pyroptosis in the development and 

progression of glioma and contributes new important insights for promoting glioma 

treatment strategies.       
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