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Abstract

The brain encodes the statistical regularities of the environment in a task-specific yet flexible and
generalizable format. How it does so remains poorly understood. Here, we seek to understand
this by converging two parallel lines of research, one centered on striatal-dependent sensorimo-
tor timing, and the other on hippocampal-dependent cognitivemapping. We combined functional
magnetic resonance imaging (fMRI) with a visual-tracking and time-to-contact (TTC) estimation
task, revealing the widespread brain network supporting sensorimotor learning in real-time. Hip-
pocampal and caudate activity signaled the behavioral feedback within trials and the improve-
ments in performance across trials, suggesting that both structures encode behavior-dependent
information rapidly. Critically, hippocampal learning signals generalized across tested intervals,
while striatal ones did not, and together they explained both the trial-wise performance and the
regression-to-the-mean biases in TTC estimation. Our results suggest that a fundamental function
of hippocampal-striatal interactions may be to solve a trade-off between specificity vs. generaliza-
tion, enabling the flexible and domain-general expression of human timing behavior broadly.
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Introduction1

When someone throws us a ball, we can anticipate its future trajectory, its speed and the time it2

will reach us. Our expectations then inform our motor system to plan an appropriate action to3

catch it. Generating expectations and planning behavior accordingly builds on our ability to learn4

from past experiences and to encode the statistical regularities of the tasks we perform. At the5

core of this ability lies a continuous perception-action loop, initially proposed for sensorimotor6

systems (e.g. (Wolpert et al., 2011)), which is now at the heart of many leading theories of brain7

function including active inference (Friston et al., 2016), predictive coding (Huang & Rao, 2011) and8

reinforcement learning (Daw & Dayan, 2014).9

Critically, to guide behavior accurately in a dynamically changing environment, the brain needs to10

balance at least three objectives. First, it needs to capture the specific aspects of the task that in-11

form the relevant behavior (e.g. the remaining time to catch the ball). Second, it needs to generalize12

from a limited set of examples to novel and noisy situations (e.g. by inferring how fast previous13

balls flew on average). Third, the sensorimotor representations that guide the behavior need to be14

updated flexibly whenever feedback about our actions becomes available (e.g. when we catch or15

miss the ball), or when the task demand changes (e.g. when someone throws us a frisbee disc in-16

stead). Herein, we refer to these objectives as specificity, generalization and flexibility. While these17

are all fundamental principles underlying human cognition broadly, how we learn to balance these18

three objectives during ongoing behavior remains unclear.19

An optimal behavioral domain to study these processes is sensorimotor timing (Gershman et al.,20

2014; Petter et al., 2018). This is because prior work in humans and non-human primates sug-21

gested that timing estimates indeed rely on prior experiences, based on which the temporal regu-22

larities and kinematic information of the task are inferred (Wolpert et al., 2011; Jazayeri & Shadlen,23

2010; Acerbi et al., 2012; Chang & Jazayeri, 2018). This is reflected for example in the temporal24

and spatial tuning properties of neurons in the caudate, a part of the striatum also implicated in25

associative learning, action coordination and feedback processing (Grahn et al., 2008; Foerde &26

Shohamy, 2011). It is the union of these functions that make the caudate a prime candidate to27

support specificity and flexibility in the context of timing behavior.28

Crucially, timing estimates are not always accurate. Instead, they reflect a trade-off between speci-29

ficity and generalization, which is expressed in systematic behavioral biases. Estimated intervals30

regress towards the mean of the distribution of tested intervals (Jazayeri & Shadlen, 2010), a well-31

known effect that we will refer to as the regression effect (Petzschner et al., 2015). It suggests that32

the brain encodes a probability distribution of possible intervals rather than the exact information33

obtained in each trial (Wolpert et al., 2011). Timing estimates thus depend not only on the interval34

tested in a given trial, but also on the temporal context (i.e., the intervals tested in all other trials).35

This likely helps to generalize from our current experience to possible future scenarios (Jazayeri &36

Shadlen, 2010; Acerbi et al., 2012).37

Important evidence for the learning of task regularities for generalization comes from a parallel38

line of research centered on relational memory and cognitive mapping (Behrens et al., 2018; Mo-39

mennejad, 2020). In particular, the hippocampus has been implicated in generalizing the structure40

of a task away from the individual features that were tested (Kumaran, 2012; Schlichting & Pre-41

ston, 2015; Schapiro et al., 2017; Wikenheiser et al., 2017; Behrens et al., 2018; Schuck & Niv, 2019;42

Whittington et al., 2020; Peer et al., 2021), providing a unified account for its many proposed roles43

in domains such as navigation (Burgess et al., 2002), memory (Schiller et al., 2015) and decision44

making (Kaplan et al., 2017; Vikbladh et al., 2019). Moreover, the hippocampus has been shown45
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to process behavioral feedback in decision-making tasks (Shohamy & Wagner, 2008), pointing to a46

potential role in feedback learning akin to the striatum. Intriguingly, this dovetails with computa-47

tional theories (Chersi & Burgess, 2015; Geerts et al., 2020) and empirical work on memory-guided48

navigation (Doeller et al., 2008; Hartley et al., 2003), which suggested a division of labor between49

the striatum and the hippocampus. While the former may encode specific environmental details50

such as landmarks, the latter may support the encoding of the general layout and geometry of the51

environment (Hartley et al., 2003; Doeller et al., 2008; Goodroe et al., 2018; Gahnstrom & Spiers,52

2020).53

Here, we seek convergence of these ideas and research fields by testing if the same cognitive-54

mapping principles that govern learning in the spatial domain also apply to the time domain. Specif-55

ically, we investigate the relationship betweenhippocampal and striatal learning signalswith behav-56

ioral performance in a fast-paced timing task, revealing how the brain flexibly updates task-relevant57

sensorimotor representations in real time. We explicitly focus on how the hippocampus and the58

striatum encode the details and the structure of a task in parallel, thus serving specificity and gen-59

eralization. To do so, we used functional magnetic resonance imaging (fMRI) to monitor brain60

activity in participants estimating the time-to-contact (TTC) between a moving fixation target and61

a visual boundary. We tested how brain activity reflected the ongoing task performance and the62

behavioral feedback received. Moreover, we characterized in detail the relationship between brain63

activity and the improvements in task performance over time, indeed revealing distinct roles of the64

hippocampus and striatum in encoding different task regularities in parallel. While the caudate en-65

coded task-relevant information that were specific to each TTC interval tested, the hippocampus66

generalized across intervals, signaling learning independent of TTC. Intriguingly, because learning67

occurred in real timewhen behavioral feedback is received, the corresponding activity we observed68

in the hippocampus goes beyond its well-known role in (long-term) episodic memory (Schiller et al.,69

2015). We conclude by proposing that the fundamental and domain-general function of striatal-70

hippocampal interactions may be finding the trade-off between specificity and generalization to71

guide human behavior broadly.72

Results73

In the following, we will present our experiment and results in four steps. First, we introduce the74

TTC-task as well as the behavioral and fMRI measurements we acquired. Second, we show that the75

activity in a large network of regions reflects the behavioral feedback participants received in the76

current and in the previous trial, and we demonstrate that this network centers on the hippocam-77

pus and the caudate as predicted. These results provide evidence for the proposed role of these78

structures in rapid feedback learning. Third, we show that the feedback modulation in both struc-79

tures reflects improvements in behavioral performance over trials and thus that the learning was80

effective and rapid. Critically, while the caudate signaled behavioral improvements specific to the81

TTC interval tested in a given trial, the hippocampus generalized across TTC’s, signaling behavioral82

improvements independent of which TTC interval was tested. Voxel-wise analyses further revealed83

a striking distinction between striatal sub-regions and across a larger brain network. Finally, we84

show that caudate activity scaled with trial-wise behavioral performance, whereas hippocampal ac-85

tivity scaled with both the performance and the regression effect observed in behavior. Together,86

these results suggest that the hippocampus and the striatum update distinct information about87

the task in parallel, supporting the flexible, specific and generalizable expression of sensorimotor88

timing behavior in humans.89
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Time-to-contact (TTC) estimation task90

We monitored whole-brain activity using fMRI with concurrent eye tracking in 34 participants per-91

forming a TTC task. This task offered a rich behavioral read-out and required sustained attention in92

every single trial. During scanning, participants visually tracked a fixation target, which moved on93

linear trajectories within a circular boundary. The targetmoved at one of four possible speed levels94

and in one of 24 possible directions (Fig. 1A, similar to Nau et al. (2018a)). The sequence of tested95

speeds was counterbalanced across trials. Whenever the target stopped moving, participants esti-96

mated when the target would have hit the boundary if it had continued moving. They did so while97

maintaining fixation, and they indicated the estimated TTC by pressing a button. Feedback about98

their performance was provided foveally and instantly with a colored cue. The received feedback99

depended on the timing error, i.e. the difference between objectively true and estimated TTC (Fig.100

1B, Fig. S1), and it comprised 3 levels reflecting high, middle and low accuracy (Fig. 1C). Because101

timing judgements typically follow the Weber-Fechner law (Rakitin et al., 1998), the feedback levels102

were scaled relative to the ground-truth TTC of each trial. This ensured that participants were ex-103

posed to approximately the same distribution of feedback at all intervals tested (Fig. 1C, Fig. S1B).104

After a jittered inter-trial interval (ITI), the next trial began and the target moved into another direc-105

tion at a given speed. The tested speeds of the fixation target were counterbalanced across trials to106

ensure a balanced sampling within each scanning run. Because the target always stopped moving107

at the same distance to the boundary, matching the boundary’s retinal eccentricity across trials,108

the different speeds led to four different TTCs: 0.55, 0.65, 0.86 and 1.2 seconds. Each participant109

performed a total of 768 trials. Please see Methods for more details.110

Figure 1: Visual tracking and Time-To-
Contact (TTC) estimation task. A) Task
design. In each trial during fMRI scan-
ning, participants fixated a target (phase
1), which startedmoving at one of 4 possi-
ble speeds and in one of 24 possible direc-
tions for 10◦ visual angle (phase 2). After
the target stopped moving, participants
kept fixating and estimated when the fix-
ation target would have hit a boundary
5◦ visual angle apart (phase 3). After
pressing a button at the estimated TTC,
participants received feedback (phase 4)
according to their performance. Feed-
back was scaled relative to target TTC. B)
Task performance. True and estimated
TTC were correlated, showing that partic-
ipants performed the taskwell. However,
they overestimated short TTCs and un-
derestimated long TTCs. Their estimates
regressed towards the grand-meanof the
TTC distribution (horizontal dashed line),
away from the line of equality (diago-
nal dashed line). C) Feedback. On aver-
age, participants received high-accuracy
feedback on half of the trials (also see
Fig. S1B). BC) We plot the mean and SEM
(black dots and lines) as well as single-
participant data as dots. Feedback levels
are color coded.

Analyzing the behavioral responses revealed that participants performed the task well and that111
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the estimated and true TTCs were tightly correlated (Fig. 1B, Spearman’s rho = 0.91, p = 2.2x10−16).112

However, participants’ responses were also systematically biased towards the grand mean of the113

TTC distribution (0.82 seconds), indicating that shorter durations tended to be overestimated and114

longer durations tended to be underestimated. This regression effect has been argued to show115

that timing estimates indeed rely on the statistical task regularities that our brain has encoded116

(e.g. Jazayeri & Shadlen (2010)). The regression effect may thus reflect a key behavioral adaptation117

which helps to generalize from current experiences to future scenarios. Visualizing the timing error118

over trials and scanning runs showed that participants’ task performance improved over time (Fig.119

S1C; linear mixed-effects model with run as fixed effect and participants as the error term, F(3) =120

3.2944, p = 0.024, ε2 = 0.06,CI : [0.00, 0.13]), indicating learning over the course of the experiment.121

Behavioral feedback predicts hippocampal and striatal activity in subsequent trial122

Learning is expected to occur right after the value of the performed action became apparent, which123

is when participants received feedback. As a first proxy for learning, we thus analyzed how the activ-124

ity in each voxel reflected the feedback participants received in each trial. Using a mass-univariate125

general linear model (GLM), we modeled the three feedback levels with one regressor each (high,126

medium, low), with additional nuisance regressors reflecting the 6 realignment parameters, the127

inter-trial-interval (ITI), button presses, and periods of rest in themiddle aswell as at the endof each128

run. We then contrasted the beta weights estimated for high-accuracy and low-accuracy feedback129

and examined the effects averaged across runs on the group-level using two-tailed one-sample130

t-tests.131

Figure 2: Feedback on the previous trial (n-1) modulates network-wide activity and hippocampal connectivity in subsequent
trials (n). A) Voxel-wise analysis. Activity in each trial was modeled with a separate regressor as a function of feedback
received in the previous trial. Insert zooming in on hippocampus added. B) Independent regions-of-interest analysis for the
anterior (ant. HPC) and posterior (post. HPC) hippocampus as well as the caudate nucleus (CN). We plot the beta estimates
obtained for the parametric modulator modeling trial-wise activity as a function of feedback in previous trial. Negative
values indicate a negative relationship between feedback valence and brain activity. Depicted are the mean and SEM across
participants (black dot and line) overlaid on single participant data (coloured dots). Activity in the anterior hippocampus and
in the caudate is modulated by feedback received in previous trial. Statistics reflect p<0.05 at Bonferroni-corrected levels
(*) obtained using a group-level two-tailed one-sample t-test against zero. C) Feedback-dependent hippocampal connectivity.
We plot results of a psychophysiological interactions (PPI) analysis conducted using the hippocampal peak effects in (A) as
a seed. AC) We plot thresholded t-test results at 1mm resolution overlaid on a structural template brain. MNI coordinates
added. Hippocampal activity and connectivity is modulated by feedback received in the previous trial.

Intriguingly, a voxel-wise analysis revealed that activity in the thalamus, striatumand the hippocam-132

pus could be predicted by the feedback participants received just before the trial had started133

(Fig. 2A). Higher-accuracy feedback led to overall stronger activity in these regions. Regions-of-134

interest analyses further localized this feedback-dependent activity to the caudate and the ante-135

rior section of the hippocampus (Fig. 2B, Fig. S2; two-tailed one-sample t tests: anterior HPC,136

t(33) = −3.80, p = 5.9x10−4, p f we = 0.002, d = −0.65,CI : [−1.03,−0.28]; posterior HPC, t(33) = −1.60, p =137

0.119, p f we = 0.357, d = −0.27,CI : [−0.62, 0.07]; caudate, t(33) = −5.85, p = 1.5x10−6, p f we = 4.5x10−6, d =138

−1.00,CI : [−1.43,−0.59]). Note that there was no systematic and predictable relationship between139
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subsequent trials on a behavioral level (Fig. S1A; t(33) = 1.03, p = 0.312, d = 0.18,CI : [−0.17, 0.52])140

and that the direction of the effects differed across regions (Fig 2A), speaking against a feedback-141

dependent bias in attention.142

Feedback-dependent hippocampal functional connectivity143

Having established that both the caudate and the hippocampus reflected feedback in the TTC task,144

we reasoned that the two structuresmay show systematic co-fluctuations in activity as well. To test145

this, we estimated the functional connectivity of a 4 mm radius sphere centered on the hippocam-146

pal peak main effect (x=-32, y=-14, z=-14) using a seed-based psychophysiological interaction (PPI)147

analysis. The PPI main regressor reflected the element-by-element product of the task time course148

and the hippocampal peak voxel time course used as a seed. Separate nuisance regressors mod-149

elled the main effect of previous feedback and the physiological signal correlations between the150

seed region and all other voxels.151

We reasoned that larger timing errors and thus low-accuracy feedback would result in stronger152

learning compared to smaller timing errors and high-accuracy feedback, a relationship that should153

also be reflected in the functional connectivity between the hippocampus and other regions. We154

specifically tested this using the PPI analysis by contrasting trials in which participants performed155

poorly compared to those trials in which they performed well.156

We found that hippocampal activity indeed co-fluctuated with activity in the caudate in a feedback-157

dependent manner (two-tailed one-sample t test: t(33) = −5.85, p = 4.7x10−4, d = 0.67,CI : [0.29, 1.05]).158

These co-fluctuations were stronger when participants received low-accuracy feedback compared159

to when they received high-accuracy feedback. Interestingly, however, we also observed such co-160

fluctuations between the hippocampus and other regions that were likely task-relevant. These161

regions included the primary motor cortex, the parahippocampus and medial parietal lobe as well162

as the cerebellum (Fig. 2C).163

Widespread brain activity reflects behavioral feedback in current trial164

The results presented so far indicate that hippocampal functional connectivity, aswell as the activity165

in the caudate and the hippocampus reflect feedback received in the previous trial. To test if the166

activity in these regions also predicted the performance in the current trial, we next conducted167

a GLM analysis in which we parametrically modeled the time course of each voxel and trial as a168

function of the feedback received at the end of the trial. Nuisance variance was accounted for169

using the same nuisance regressors as before.170

A voxel-wise group-analysis for our regressors-of-interest showed that indeed a large network of171

regions signaled the performance in the current trial, which included the striatum, thalamus, cere-172

bellum, lateral occipital cortex, motor cortex, insula, frontal eye fields as well as the hippocampus173

(Fig. 3A). We again confirmed that these effects were present in the hippocampus and the cau-174

date using an independent regions-of-interest analysis (Fig. 3B, Fig. S2; two-tailed one-sample175

t tests: anterior HPC, t(33) = −5.92, p = 1.2x10−6, p f we = 3.7x10−6, d = −1.02,CI : [−1.45,−0.60];176

posterior HPC, t(33) = −4.07, p = 2.7x10−4, p f we = 8.2x10−4, d = −0.70,CI : [−1.09,−0.32]; caudate,177

t(33) = −7.56, p = 1.1x10−8, p f we = 3.2x10−8, d = −1.30,CI : [−1.78,−0.85]).178

Because each trial comprisedmultiple distinct phases, ranging from tracking themoving target over179

estimating the TTC to receiving feedback, the underlying processes might not only be distributed180

across the cortex, but also across time within the trial. To characterize the potentially dynamic rela-181
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Figure 3: Brain regions signalling TTC-task performance. Activity in each trial wasmodeled parametrically as a function of the
feedback receivedat theendof the trial. A) Voxel-wise analysis. Weplot thresholded t-test results at 1mmresolutionoverlaid
on a structural template brain. MNI coordinates and insert zooming in on the hippocampus added. A large network of
regions signalling TTC performance included the hippocampus, striatum and cerebellum. B) Independent regions-of-interest
analysis for the anterior (ant. HPC) and posterior (post. HPC) hippocampus as well as the caudate nucleus (CN). We plot
the beta estimate obtained for the parametric modulator modeling trial-wise activity as a function of task performance.
Negative values indicate a negative relationship between feedback valence and brain activity. Depicted are the means and
SEM across participants (black dot and line) overlaid on single participant data (coloured dots). Statistics reflect p < 0.05 at
Bonferroni-corrected levels (*) obtained using a group-level two-tailed one-sample t-test against zero.

tionship between activity and TTC-task performance in detail, we repeated the voxel-wise analysis182

for each trial phase separately (Fig. S3, similar to prior work (Wimmer et al., 2012)). We modelled183

each phase with a distinct regressor in a new GLM, finding strong differences between the trial184

phases in most of the observed areas. The hippocampus and caudate were again most strongly185

modulated when participants received feedback (Fig. S3). While the results obtained for the three186

phases are not independent due to the inherent temporal-order effects within each trial (Fig. 1A),187

they nevertheless suggest that the relationship between activity in each area and the behavioral188

outcome in the TTC-task is dynamic, and that the BOLD signal in different regions peaks at different189

times. Moreover, the fact that the hippocampus and the caudate were most strongly modulated190

in the feedback phase is again consistent with a role in rapid sensorimotor learning.191

In sum, these results show that activity in various regions including the hippocampus and the cau-192

date reflects the feedback received in the previous trial, but also the one received in the current193

trial. Critically, this is the case even though the actual feedback that was received was independent194

across trials (Fig. S1A; t(33) = 1.03, p = 0.312, d = 0.18,CI : [−0.17, 0.52]), suggesting that these effects195

rest at least partially on independent variance in the fMRI signal.196

Timing specificity and generalization in the hippocampus and in the striatum197

Two critical open questions remained. First, did the observed feedback modulation actually reflect198

effective learning and thus behavioral improvements over trials? Second, was the information199

that was learned specific to the interval that was tested in a given trial, thus likely serving TTC200
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specificity, or was independent of the tested interval, potentially serving TTC generalization? To201

answer these questions in one analysis, we conducted a GLM analysis in which wemodeled activity202

not as a function of feedback received in the previous (Fig. 2) or current trial (Fig. 3), but as a203

function of the difference in feedback between trials (Fig. 4). Specifically, we modeled with two204

separate parametric regressors the improvements in TTC task performance across subsequent205

trials (regressor 1: TTC-generalized learning) as well as the improvements over subsequent trials206

in which the same TTC interval was tested (regressor 2: TTC-specific learning). We again accounted207

for nuisance variance as before, and contrasted trials in which participants had improved versus208

the ones in which they had not improved or got worse.209

Figure 4: Distinct cortical and subcortical networks signal learning of TTC-specific and TTC-generalized task information. A)
Left panel: Visual depiction of parametricmodulator design. Two regressors per runmodeled the improvement in behavioral
performance since the last trial independent of the tested TTC (Regressor 1: TTC-generalized) or the improvement since
the last trial when the same target TTC was tested (Regressor 2: TTC-specific). Right panel: Voxel-wise analysis results for
TTC-specific and TTC-generalized regressors. We plot thresholded t-test results at 1mm resolution overlaid on a structural
template brain. MNI coordinates added. Note that we depict the results at uncorrected levels for visualization, but the
striatal and hippocampal effects survive p<0.05 whole-brain FWE-correction (Fig. S4A). B) Independent regions-of-interest
analysis for the anterior (ant. HPC) and posterior (post. HPC) hippocampus as well as the caudate nucleus (CN). We plot the
beta estimates obtained for TTC-generalized (orange dots) and TTC-specific (blue dots) regressors. Depicted are the mean
and SEM across participants (black dot and line) overlaid on single participant data. Statistics reflect p<0.05 at Bonferroni-
corrected levels (*) obtained using a group-level one-tailed one-sample t-test against zero.

Strikingly, our voxel-wise analysis revealed both TTC-specific and TTC-generalized learning activity210

throughout cortical and subcortical regions, with distinct areas engaging in either one or in both211

of these processes (Fig. 4A). Most prominently, we observed a salient distinction in the striatum212

(Fig. 4A), and we found that hippocampal activity signaled behavioral improvements independent213

of the TTC intervals tested. An independent ROI analysis confirmed that this TTC-generalized main214

effect was localized to the posterior section of the hippocampus (Fig. 4B; one-tailed one-sample215

t tests; TTC-specific: anterior HPC, t(33) = 0.57, p = 0.285, p f we = 1, d = 0.10,CI : [−0.24, 0.44], pos-216

terior HPC, t(33) = 1.29, p = 0.103, p f we = 0.619, d = 0.22,CI : [−0.12, 0.57]; TTC-generalized: an-217

terior HPC, t(33) = 0.36, p = 0.360, p f we = 1, d = 0.06,CI : [−0.28, 0.40], posterior HPC, t(33) =218

2.81, p = 0.004, p f we = 0.025, d = 0.48,CI : [0.12, 0.85]). In stark contrast, the caudate signaled219

improvements in behavioral performance only relative to previous trials in which the same TTC220

interval was tested as in the current trial (Fig. 4B; one-tailed one-sample t tests; TTC-specific:221

t(33) = 5.95, p = 5.6x10−7, p f we = 3.4x10−6, d = 1.02,CI : [0.61, 1.45]; TTC-generalized: t(33) = −0.67, p =222

0.746, p f we = 1, d = −0.11,CI : [−0.46, 0.23]). It thus likely engaged in the updating of TTC-specific223

information, unlike the hippocampus, with both regions nevertheless reflecting the behavioral im-224

provements over time. Finally, we again estimated the functional connectivity profile of the hip-225

pocampal main effect as before (sphere with 4mm radius centered on the peak voxel at x=-30,226

y=-24, z=-18), revealing behavioral-improvement-dependent co-fluctuations in multiple regions in-227

cluding the putamen and the thalamus (Fig. S5).228
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These results suggest that the caudate may serve specificity by updating information specific to229

the target TTC, whereas the hippocampus may serve generalization by updating information that230

is independent of the target TTC. In this task, an efficient way of generalizing across TTCs is to231

bias one’s responses towards the mean of the TTC distribution, which effectively corresponds to232

the regression effect that we observed on a behavioral level (Fig. 1B). Given the feedback mod-233

ulation and learning effects we reported above, we thus hypothesized that hippocampal activity234

should also reflect the magnitude of the regression effect in behavior. Likewise, caudate activity235

should reflect how accurate participants were independent of the regression effect. To test this236

in a final analysis, we modeled the activity in each trial parametrically either as a function of per-237

formance (i.e. the difference between estimated and true TTC) or as a function of the strength of238

the regression effect in each trial (i.e. the difference between the estimated TTC and the mean239

of the tested intervals). Voxel-wise weights for these two regressors were estimated in two inde-240

pendent GLMs in which nuisance variance was again accounted for as before. Both voxel-wise241

and ROI-based analyses showed that that caudate activity indeed reflected how accurate partici-242

pants were in each trial (Fig. 5A, B; two-tailed one-sample t test; t(33) = −5.62, p = 2.9x10−6, p f we =243

8.7x10−6, d = −0.96,CI : [−1.39,−0.56]), but not the regression effect (two-tailed one-sample t test;244

t(33) = 1.08, p = 0.287, p f we = 0.859, d = 0.19,CI : [−0.16, 0.53]), along with other regions. Hip-245

pocampal activity reflected the accuracy in each trial (two-tailed one-sample t tests; anterior HPC,246

t(33) = −4.85, p = 2.9x10−5, p f we = 8.7x10−5, d = −0.83,CI : [−1.24,−0.44]; posterior HPC, t(33) =247

−2.88, p = 0.007, p f we = 0.021, d = −0.49,CI : [−0.86,−0.14]), consistent with the previously reported248

feedback modulation (Fig. 3), but in addition it indeed reflected how strongly participants’ TTC249

estimates regressed towards their mean (Fig. 5A, B; two-tailed one-sample t tests; anterior HPC,250

t(33) = −5.55, p = 3.6x10−6, p f we = 1.1x10−5, d = −0.95,CI : [−1.37,−0.55]; posterior HPC, t(33) =251

−1.06, p = 0.295, p f we = 0.886, d = −0.18,CI : [−0.53, 0.16]). Notably, similar effects were observed in252

prefrontal and posterior cingulate areas (Fig. 5A).253

Figure 5: TTC-task performance vs. be-
havioral regression effect. A) Voxel-wise
analysis. We plot thresholded F-test re-
sults for the task-performance regres-
sor and the regression-to-the-mean re-
gressor at 1 mm resolution overlaid on
a structural template brain. MNI co-
ordinates added. Distinct networks re-
flect task performance and the regres-
sion effect. B) Independent regions-of-
interest analysis for the anterior (ant.
HPC) and posterior (post. HPC) hippocam-
pus as well as the caudate nucleus (CN).
We plot the beta estimates obtained for
each participant for each of the two re-
gressors. Depicted are the mean and
SEM across participants (black dot and
line) overlaid on single participant data
(blue and orange dots). Statistics reflect
p<0.05 at Bonferroni-corrected levels (*)
obtained using a group-level two-tailed
one-sample t-test against zero.
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Eye tracking: no biases in viewing behavior across comparisons254

To ensure that our results could not be attributed to systematic error patterns in viewing behavior,255

we analyzed the co-recorded eye tracking data of our participants in detail. After preprocessing256

(seemethods), we used Kruskal-Wallis tests to test for differences in fixation accuracy across speed257

levels (Fig. S6A; χ(2) = 0.61, p = 0.895, ε2 = 0.005,CI : [0.00, 0.06]) and received-feedback levels (Fig.258

S6B; χ(2) = 0.190, p = 0.909, ε2 = 0.002,CI : [0.00, 0.10]). Moreover, we examined the relationship259

of the fixation error with TTC-task performance (Fig. S6C; Spearman’s rho = 0.17, p = 0.344) as260

well as with the behavioral regression effect (Fig. 1B, Fig. S6C; Spearman’s rho = 0.26, p = 0.131).261

None of these control analyses suggested that biased patterns in viewing behavior could hinder262

the interpretation of our results.263

Discussion264

This study investigated how the brain extracts the statistical regularities of a sensorimotor timing265

task in the service of immediate actions and how the formed sensorimotor representations are266

continuously updated in a feedback-dependent manner. We focused on how the hippocampus267

and the caudate support behavioral flexibility, specificity and generalization due to their known268

coding schemes for space, time and reward. We monitored human brain activity with fMRI while269

participants performed a time-to-contact (TTC) estimation task, allowing us to analyze brain activity270

as a function of behavioral feedback and task performance as well as of the improvements in task271

performance over time using a series of general linear models. We found that the feedback partic-272

ipants received was reflected in the activity of a large network of brain regions, which prominently273

included the hippocampus and the striatum. Moreover, feedback also modulated hippocampal274

functional connectivity with other task-relevant regions in the subsequent trial. By showing that275

striatal and hippocampal activity directly followed the improvements in behavioral performance276

over time, we demonstrated a link between brain activity and effective learning. Strikingly, the277

two structures engaged in the learning of different types of information in parallel: caudate activ-278

ity reflected behavioral improvements specific to the tested time intervals, whereas hippocampus279

generalized across time intervals. These results provide empirical evidence for distinct but com-280

plementary roles of the hippocampus and the striatum in sensorimotor learning, supporting speci-281

ficity and generalization, and they show that the underlying processes directly translate into the282

immediate behavior participants express. In what follows, we discuss our results in the context283

of prior work on timing behavior and on spatiotemporal coding in the hippocampus and striatum.284

Moreover, we elaborate on the domain-general nature of hippocampal-striatal interactions and of285

the flexible learning mechanisms that potentially underlie the effects observed in this study.286

Spatiotemporal coding in the hippocampus and striatum287

Both the striatum and the hippocampus encompass neurons sensitive to the time that has passed288

since a certain task has begun (Paton&Buonomano, 2018; Eichenbaum, 2014; Umbach et al., 2020).289

These cells might play an important role in guiding timing behavior (Nobre & van Ede, 2018), which290

potentially explains why damage or inactivation of either structure in rodents (Meck et al., 1984;291

Gouvêa et al., 2015), non-human primates (Wang et al., 2018) or humans (Richards, 1973) impairs292

the ability to estimate durations. Our results are in line with these reports, showing that fMRI activ-293

ity in the hippocampus and striatum also reflects participants’ TTC estimation ability (Fig. 3). They294

are also in line with other human neuroimaging studies suggesting that the hippocampus bridges295

temporal gaps between two stimuli during trace eyeblink conditioning (Cheng et al., 2008), and that296
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it represents duration within event sequences (Barnett et al., 2014; Thavabalasingam et al., 2018,297

2019). Our results support prior work showing that striatal activity prominently encodes temporal298

information (Bakhurin et al., 2017; Mello et al., 2015), reflects interval learning (Dallérac et al., 2017)299

and predicts duration judgements in rats (Mello et al., 2015; Gouvêa et al., 2015), non-human pri-300

mates (Wang et al., 2018) and humans (Hinton &Meck, 2004). Such striatal representations of time301

were shown to control the timing of actions in concert with neurons in the medial frontal cortex in302

monkeys (Wang et al., 2018).303

Our results speak to the above-mentioned reports by revealing the widespread brain activity con-304

tributing to effective sensorimotor learning of intervals in humans (Fig. 2,3,4,S3,S4,S5). Moreover,305

they demonstrate a direct link between hippocampal and striatal activity, the feedback participants306

received and the behavioral improvements expressed over time (Fig. 4). Critically, this underlying307

learning process must occur in real-time when feedback is presented, suggesting that it plays out308

on short-term time scales. Notably, the hippocampus is neither typically linked to sensorimotor309

timing tasks such as ours, nor is it considered to reflect temporal relationships on such short time310

scales in humans. Instead, human hippocampal activity is often studied in the context of much311

longer time scales, which showed that it may encode the succession of experiences and events312

into long-term episodic memories (Deuker et al., 2016; Montchal et al., 2019) or contribute to the313

establishment of chronological relations between events in memory (Gauthier et al., 2019, 2020).314

Intriguingly, however, the mechanisms at play may build on similar temporal coding principles as315

those discussed for motor timing (Yin & Troger, 2011; Eichenbaum, 2014; Howard, 2017; Palombo316

& Verfaellie, 2017; Nobre & van Ede, 2018; Paton & Buonomano, 2018; J. L. Bellmund et al., 2020;317

J. L. S. Bellmund et al., 2021; Shikano et al., 2021; Shimbo et al., 2021).318

Importantly, our task can be solved by estimating temporal intervals directly, but also by extrap-319

olating the movement of the fixation target over time, shifting the locus of attention towards the320

target boundary (Fig. 1). The brain may thus likely monitor and learn about the temporal and321

spatial task regularities in parallel. Participants’ TTC estimates were further informed exclusively322

by the speed of the target, which inherently builds on tracking kinematic information over time,323

which may explain why TTC tasks also engage visual motion regions in humans (de Azevedo Neto324

& Amaro Júnior, 2018). While future studies could tease apart spatial and temporal factors explic-325

itly, our results are in line with both accounts. The hippocampus and surrounding structures for326

example represent maps of visual space in primates (Nau et al., 2018), which potentially mediate a327

coordinate system for behavioral planning, for integrating visual information with existing knowl-328

edge and to compute vectors in space. These visuospatial representations are perfectly suited to329

guide attention and thus also the relevant behaviors in our task (Aly & Turk-Browne, 2017), which330

could be tested in the future akin to prior work using a similar paradigm (Nau et al., 2018a).331

The role of feedback in timed motor action332

Critically, our results do not imply that the hippocampus acts as an "internal clock" in our task,333

nor do we think of it as representing action sequences or coordinating motor commands directly.334

Rather, its activity may indicate the feedback-dependent updating of encoded information gener-335

ally independent of the specific intervals or even the task that were used. The hippocampus has336

been proposed as a domain-general model-based learning system, which encodes the task struc-337

ture into an (allocentric) cognitive-map-like format (Kumaran, 2012; Schlichting & Preston, 2015;338

Chersi & Burgess, 2015; Schapiro et al., 2017;Wikenheiser et al., 2017; Behrens et al., 2018; Vikbladh339

et al., 2019; Geerts et al., 2020; Momennejad, 2020). Consequently, it may help to encode the340

structure of a task abstracted away from our immediate experience. In contrast, the striatum was341
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proposed to encode sensory states or actions, thus supporting the encoding of task-specific (ego-342

centric) information (Chersi & Burgess, 2015; Geerts et al., 2020). Together, the two regions may343

thus together play an important role in decision making beyond timing.344

Consistent with these ideas, we observed that striatal and hippocampal activity was modulated by345

feedback in a behavior-dependentmanner (Fig. 2,3). Similar feedback signals have previously been346

linked to learning (Schönberg et al., 2007; Cohen & Ranganath, 2007; Shohamy & Wagner, 2008;347

Foerde & Shohamy, 2011; Wimmer et al., 2012) and to the successful formation of hippocampus-348

dependent long-termmemories in humans (Wittmann et al., 2005). Moreover, hippocampal activity349

is known to signal learning in other tasks (Foerde & Shohamy, 2011; Dickerson & Delgado, 2015;350

Wirth et al., 2009; Schapiro et al., 2017; Kragel et al., 2021). Our results are also in line with prior351

work on the putative role of the caudate in updating temporal priors in non-human primates (Wang352

et al., 2018; Suzuki & Tanaka, 2019) and with reports showing that disrupting striatal activity leads353

to decreases in timing-task performance specifically when the tested time intervals change (Mello354

et al., 2015; Wang et al., 2018). Here, we show a direct relationship between such effective-learning355

signals and timing behavior, and we show that feedback modulates widespread brain activity (Fig.356

2, 3, potentially reflecting the involvement of these areas in the coordination of reward behavior357

observed earlier (LeGates et al., 2018). These regions includes those serving sensory and motor358

functions, but also those encoding the structure of a task or the necessary value functions associ-359

ated with specific actions (Lee et al., 2012).360

The present study further demonstrates that activity in the hippocampus co-fluctuates with activ-361

ity in the striatum in a task-dependent manner. Similar co-fluctuations with hippocampal activity362

were observed in themotor cortex, typically involved in action planning and execution, the parahip-363

pocampus and medial parietal lobe, often associated with visual-scene analysis (Epstein & Baker,364

2019), as well as the cerebellum (Fig. 2C), which is tightly coupled with the basal ganglia for coordi-365

nating actions (Bostan & Strick, 2018). This may indicate that behavioral feedback also affects the366

functional connectivity profile of the hippocampus with those domain-selective regions that are367

currently engaged in the ongoing task.368

What might be the neural mechanism underlying sensorimotor learning in our study? Prior work369

has shown that frontal, striatal and hippocampal temporal receptive fields scale relative to the370

tested intervals, and that they re-scale dynamically when those tested intervals change (MacDon-371

ald et al., 2011; Gouvêa et al., 2015; Mello et al., 2015; Wang et al., 2018). This may enable the en-372

coding and continuous maintenance of optimal task priors, which keep our actions well-adjusted373

to our current needs. We speculate that such receptive-field re-scaling also underlies the learning374

discussed here, which likely builds both on local and network-wide re-weighting of functional con-375

nections between neurons and entire regions. Consistent with this idea and the present results,376

receptive-field re-scaling can occur on a trial-by-trial basis in the striatum (Mello et al., 2015; Gouvêa377

et al., 2015; Wang et al., 2018) and in the hippocampus (Shikano et al., 2021; Shimbo et al., 2021).378

Striatal and hippocampal interactions: A trade-off between specificity and generalization?379

So far, we discussed how hippocampal and striatal processes may support the flexible expression380

of timing behavior, but how does this process strike the balance between specificity and gener-381

alization (i.e. how does the learned probability distribution capture the tested intervals optimally382

without overfitting)? Our results suggest that the trade-off between these two objectives is gov-383

erned by activity in many regions, which update different types of task information in parallel (Fig.384

4A). Hippocampal activity reflected improvements in behavioral performance over trials indepen-385
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dent of the tested TTC level, whereas the caudate signaled behavioral improvements specifically386

over those trials in which the same TTC was tested. This suggests a striking functional distinction387

between these areas, serving either specificity or generalization, which is complemented by other388

areas engaging in both processes simultaneously such as the putamen, the pallidum and the tha-389

lamus (Fig.S4C).390

Interestingly, this putative division of labor between the hippocampus and striatal areas dovetails391

with a large body of literature on spatial navigation, reportingmany similarities but also clear differ-392

ences in function between these structures (Doeller et al., 2008; Chersi & Burgess, 2015; Goodroe393

et al., 2018; Gahnstrom & Spiers, 2020; Geerts et al., 2020). Prior work has shown that the striatum394

supports the reinforcement-dependent encoding of locations relative to landmarks, whereas the395

hippocampusmay help to encode the structure of the environment in a generalizable andmap-like396

format. Wepropose that this encoding of specific and generalizable information is the fundamental397

and domain-general function of hippocampal-striatal interactions: they find an optimal trade-off398

between specificity and generalization. This agrees well with the functional differences observed399

in the present study, with caudate activity potentially reflecting the encoding of individual details400

of our task such as the TTC intervals, and the hippocampus generalizing across TTCs to encode the401

overall task structure. Notably, meeting the two objectives can have antagonistic effects on behav-402

ior, and the consequences of the updating sensorimotor representations must likely be commu-403

nicated to a wider network of task relevant regions. This could explain the activity co-fluctuations404

we observed in our data (Fig. 2C), which fits to prior observations of the two areas interacting in405

many tasks including associative learning (Mattfeld & Stark, 2015) and navigation (Brown & Stern,406

2014), even showing synchronized neural activity in rats (Berke et al., 2004), and when temporal407

expectations are violated (van de Ven et al., 2020).408

Importantly, we observed that TTC estimates regress towards the mean of the sampled intervals,409

an effect that is well known in the timing literature (Fig. 1B), Jazayeri & Shadlen (2010)) and in410

other domains (Petzschner et al., 2015). We hypothesized that this effect is grounded in the activity411

of the hippocampus for the following reasons. First, biasing time estimates towards their mean412

may naturally serve generalization, because the mean of the tested intervals will likely also be the413

mean of possible future intervals. Second, the hippocampus has been suggested to play a cen-414

tral role in generalization in other non-temporal domains (Kumaran, 2012; Schlichting & Preston,415

2015; Schapiro et al., 2017; Momennejad, 2020). The picture that emerges from our results is that416

this function of the hippocampus may also support generalization in the temporal domain, poten-417

tially reflecting the temporal-context-dependent learning of the grandmean of the tested intervals418

(Jazayeri & Shadlen, 2010). This is because the hippocampus signalled TTC-generalized behavioral419

improvements over trials (Fig. 4) as well as the strength of the TTC regression effect in behavior (Fig.420

5). We thus provide evidence for the poorly understood neural underpinnings of the well-known421

regression effect in behavior (Petzschner et al., 2015), which likely reflects an important behavioral422

adaptation central to our ability to generalize. Our findings directly predict that participants with423

stronger hippocampal involvement during encoding will perform better when new intervals are424

tested compared to controls, a prediction that could be tested in future work.425

Conversely, we found that the caudate signalled behavioral improvements that were specific to the426

TTC that was tested (Fig. 4), and it reflected the accuracy of the TTC estimates independent of the427

regression effect (Fig. 5). Moreover, the putamen was strongly modulated by both accuracy and428

the regression effect unlike the caudate (Fig. 4), revealing a striking functional distinction across429

striatal subregions. These findings are in line with a large body of literature implicating the striatum430

in coding time and reward (Cox & Witten, 2019; Petter et al., 2018; Paton & Buonomano, 2018) as431
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well as the value of specific actions (Samejima et al., 2005) in a distributed manner. Prior studies432

have for example shown a functional distinction between sub-units of the striatum (e.g. Hunnicutt433

et al. (2016); Grahn et al. (2008)), which also agrees with the fact that stable task-structure and434

flexible events are coded in parallel in the striatum (Kubota et al., 2009). They also agree with435

reports showing that the spatiotemporal integration principles governing memory formation in436

the striatum and the hippocampus differ (Ferbinteanu, 2020).437

Finally, feedback-dependent hippocampal-striatal interactions may also speak to the behavioral438

impairments observed in patients with Parkinson’s disease (PD), who often misestimate durations439

when neurons in the striatum lack dopaminergic inputs. The timing judgements of such patients440

tend to regress toward the mean more quickly without dopaminergic medication than when these441

patients are medicated (Malapani et al., 1998, 2002). We propose that this may reflect an im-442

pairment in the interval-specific striatal learning mechanism we observed here (Shi et al., 2013).443

This is also in agreement with findings of impaired learning in PD patients, which has previously444

been linked to hippocampal and striatal learning signals (Foerde & Shohamy, 2011; Wimmer et al.,445

2012). Fittingly, such timing impairments are most pronounced specifically when the tested inter-446

vals change, and they can be alleviated using dopamine medication, again pointing to a tight link447

between the effects observed here and reward processing. Notably, a similar dopaminergic control448

has been shown for hippocampal-dependent stimulus generalization (Kahnt & Tobler, 2016).449

Conclusion450

In sum, we combined fMRI and a time-to-contact estimation task to show that the humanhippocam-451

pus and striatum support the effective learning from feedback, likely serving behavioral flexibility,452

specificity and generalization broadly. Hippocampal and striatal activity directly reflected the be-453

havioral improvements over trials, signalling the encoding of TTC-generalized and TTC-specific in-454

formation respectively. This strikingly resembled previous observations made in the spatial do-455

main, suggesting that the proposed functions of hippocampal-striatal interactions are domain-456

general. Inspired by two parallel lines of research, one centered on sensorimotor timing and the457

other one on cognitive mapping and structure learning, we suggest that the fundamental function458

of hippocampal-striatal interactions may be finding the trade-off between specificity and gener-459

alization. Our results demonstrate that the hippocampus and striatum play an important role in460

feedback learning, and they implicate both structures in guiding flexible, specific and generalizable461

timing behavior in humans.462
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Methods482

Participants483

We recruited 39 participants for this study (16 females, 19-35 years old). Five participants were484

excluded: one participant did not comply with the task instructions; one was excluded due to a fail-485

ure of the eye-tracker calibration; three participants were excluded due to technical issues during486

scanning. A total of 34 participants entered the analysis. The study was approved by the regional487

committee formedical and health research ethics (project number 2017/969) in Norway and partic-488

ipants gave written consent prior to scanning in accordance with the declaration of Helsinki (2008).489

Task490

Participants performed two tasks simultaneously: a smooth pursuit visual-tracking task and a time-491

to-contact estimation task. The visual tracking task entailed fixation at a fixation disc thatmoved on492

predefined linear trajectories with one of four speeds: 4.2◦/s, 5.8◦/s, 7.5◦/s and 9.1◦/s. Upon reach-493

ing the end of such a linear trajectory, the dot stoppedmoving until the second task was completed.494

This second task was a time-to-collision (TTC) estimation task in which participants indicated when495

the fixation target would have hit a circular boundary if it had continued moving. This boundary496

was a yellow circular line surrounding the target trajectory with 10◦ radius. Participants gave their497

response by pressing a button at the anticipated moment of collision. They performed this task498

while still keeping fixation, and the individual linear trajectories were all of the same length (10◦499

visual angle), leading to four target TTC durations of 1.2s, 0.88s, 0.67s and 0.55s tested in a counter-500

balanced fashion across trials. After the button press, participants received feedback for 1 second501

informing them about the accuracy of their response. When participants overestimated the TTC,502

half of the fixation disc closest to the boundary changed color (orange or red) as a function of re-503

sponse accuracy (medium or low, respectively). When participants underestimated the TTC, half of504

the fixation disc further away from the boundary changed color. When participants were accurate,505

two opposing quadrants of the fixation disc would turn green. This allowed us to present feedback506

at fixation while keeping the number of informative pixels matched across feedback levels. To cal-507

ibrate performance feedback across different TTC durations, the precise response window widths508

of each feedback level scaled with the speed of the fixation target. The following formula was used509

to scale the response window width: d ± ((k ∗ d)/2) where d is the target TTC and k is a constant510

proportional to 0.3 and 0.15 for high and medium accuracy, respectively. This ensured that partici-511

pants received approximately the same feedback for tested TTCs despite the known differences in512

absolute performance between target TTCs due to inherent scalar variability (Gibbon, 1977). When513

no response was given, participants received low-accuracy feedback (two opposing quadrants of514

the fixation dot turned red) after a 4 seconds timeout. After the feedback, the disc remained in its515

last position for a variable inter-trial interval (ITI) sampled randomly from a uniform distribution516

between 0.5 seconds and 1.5 seconds. Following the end of the ITI, the dot continued moving in a517

different direction. In the course of 768 trials, each target TTC was sampled 192 times. We sampled518

eye-movement directions with 15◦ resolution, leading to an overall trajectory that was star-shaped,519

similar to earlier reports (Nau et al., 2018a). The full trajectory was never explicitly shown to the520

participants.521

Behavioral analysis522

Participants indicated the estimated TTC in each trial via button press. Estimated and true TTCwere523

strongly correlated (Spearman’s rho = 0.91, p = 2.2x10−16) showing that participants performed the524
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task well. However, in line with previous work (Jazayeri & Shadlen, 2010), participants tended to525

overestimate shorter durations and underestimate longer durations (Fig. 1B). As a measure of526

behavioral performance, we computed the absolute TTC-error defined as the absolute difference527

in estimated and true TTC for each target-TTC level. Participants received feedback after each trial528

corresponding to the absolute TTC error of that trial. On average, 46.9% (σ = 9.1) of trials were of529

high accuracy, 31.2% (σ = 3.9) were of medium accuracy and 21.1% (σ = 9.8) were of low accuracy530

(Fig. 1C). Moreover, we found that this feedback distribution was indeed similar across target-TTC531

levels as planned (Fig. S1B). To test participants’ performance improvements over time, we used a532

linearmixed-effectsmodel with run as predictor, absolute TTC-error as the dependent variable and533

participants as the error term. The results showed a main effect of run (F(3) = 3.2944, p = 0.024, ε2 =534

0.06,CI : [0.00, 0.13]. Post-hoc tests using Bonferroni correction confirmed a significant decrease in535

absolute TTC-error between run 1 and 4 (t(104) = 2.86, p f we = 0.031, d = 0.56,CI : [0.17, 0.95]).536

Imaging data acquisition & preprocessing537

Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospi-538

tal in Trondheim, Norway. A T1-weighted structural scan was acquired with 1mm isotropic voxel539

size. Following EPI-parameters were used: voxel size=2mm isotropic, TR=1020ms, TE=34.6ms, flip540

angle=55◦, multiband factor=6. Participants performed a total of four scanning runs of 16-18 min-541

utes each including a short break in the middle of each run. Functional images were corrected for542

head motion and co-registered to each individual’s structural scan using SPM12 (www.fil.ion.ucl543

.ac.uk/spm/). We used the FSL topup function to correct field distortions based on one image ac-544

quired with inverted phase-encoding direction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup).545

Functional images were then spatially normalized to the Montreal Neurological Institute (MNI)546

brain template and smoothed with a Gaussian kernel with full-width-at-half-maximum of 4 mm547

for regions-of-interest analysis or with 8 mm for whole-brain analysis. Time series were high-pass548

filtered with a 128 s cut-off period. The results of all voxel-wise analyses were overlaid on a struc-549

tural T1-template (colin27) of SPM12 for visualization.550

Regions of interest definition and analysis551

Regions-of-interest masks for different brain areas were generated for each individual participant552

based on the automatic parcellation derived from FreeSurfer’s structural reconstruction (https://553

surfer.nmr.mgh.harvard.edu/). The ROIs used in the present study include the caudate nucleus554

(CN) and the hippocampus (HPC) as main areas of interest (Fig. S2A) as well as the Nucleus Accum-555

bens, Thalamus, Putamen, Amygdala and Globus Pallidum in addition (Fig. S4). The hippocampal556

ROI was manually segmented following previous reports into its anterior and posterior sections557

based on the location of the uncal apex in the coronal plane as a bisection point (Poppenk et al.,558

2013). We did this because prior work suggested functional differences between anterior and pos-559

terior hippocampus with respect to their contributions to memory-guided behavior (Poppenk et560

al., 2013). All individual ROIs were then spatially normalized to the MNI brain template space and561

re-sliced to the functional imaging resolution using SPM12. All ROI analyses were conducted using562

4mm spatial smoothing.563

All ROI analyses described in the following were conducted using the following procedure. We564

extracted beta estimates estimated for the respective regressors of interest for all voxels within565

a region in both hemispheres, averaged them across voxels within that region and hemispheres566

and performed one-sample t-tests on group level against zero as implemented in the software R567

(https://www.R-project.org).568
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Brain activity as a function of current-trial performance569

Weused amass-univariate general linearmodel to analyze the time courses of all voxels in the brain570

as a function of feedback received at the end of each trial. The model included onemean-centered571

parametric modulator per run with three levels reflecting the feedback received in each trial. The572

feedback itself was a function of TTC error in each trial (high accuracy = 0, medium accuracy = 0.5573

and low accuracy = 1). In addition, we added three nuissance regressors per run modeling ITIs,574

button presses, and periods of rest. These regressors were convolved with the canonical hemody-575

namic response function of SPM12. Moreover, the model included the six realignment parameters576

obtained during pre-processing as well as a constant term modeling the mean of the time series.577

We estimated weights for all regressors and conducted a t-test against zero using SPM12 for our578

feedback regressors of interest on the group level. Importantly, positive t-scores indicate a posi-579

tive relationship between fMRI activity and TTC error and hence with poor behavioral performance.580

Conversely, negative t-scores indicate a negative relation between the two variables and hence bet-581

ter behavioral performance.582

In addition to the voxel-wise whole-brain analyses described above, we conducted independent583

ROI analyses for the anterior and posterior sections of the hippocampus (Fig. S2A, Fig. 3B; two-584

tailed one-sample t tests: anterior HPC, t(33) = −5.92, p = 1.2.x10−6, p f we = 3.7x10−6, d = −1.02,CI :585

[−1.45,−0.60]; posterior HPC, t(33) = −4.07, p = 2.7x10−4, p f we = 8.2x10−4, d = −0.70,CI : [−1.09,−0.32])586

and for the caudate (Fig. S2B, Fig. 3B; two-tailed one-sample t test: t(33) = −7.56, p = 1.1x10−8, p f we =587

3.2x10−8, d = −1.30,CI : [−1.78,−0.85]). Here, we tested the beta estimates obtained in our first-588

level analysis for the feedback regressor of interest. See section "Regions of interest definition and589

analysis" for more details.590

Brain activity as a function of trial phase591

To examine the relation between brain activity and behavioral performance in a trial in more detail,592

we repeated the univariate analysis explained above for each phase of the trial. Three regressors593

modelled themain effects of trial phase. Three additional parametric regressorsmodeled the feed-594

back effect on the activity during the tracking phase, the TTC estimation phase and the feedback595

phase in one GLM. In addition, we again added regressors modeling the ITI’s, button presses and596

periods of rest to themodel as well as head-motion regressors and a constant term as before. Each597

run was modeled separately. On the group-level, we again used SPM12 to perform t-tests against598

zero using the weights estimated for the feedback regressors of interest for each trial phase.599

Brain activity as a function of performance on the previous trial600

To examine how feedback modulates activity in the subsequent trial, we used a GLM analysis to601

model the activity of each voxel and trial as a function of feedback received in the previous trial. The602

GLM included three regressors modeling the feedback levels, one for ITIs, one for button presses603

and one for periods of rest, which were all convolved with the canonical hemodynamic response604

function of SPM12. In addition, the realignment parameters and a constant termwere again added.605

On the group level, we then contrasted the weights obtained for the low error vs. high error re-606

gressors and tested for differences using t-tests implemented in SPM12.607

Additionally, we again conducted ROI analyses for the anterior and posterior sections of the hip-608

pocampus (Fig. S2A, Fig. 2B; Two-tailed t tests: anterior HPC, t(33) = −3.80, p = 5.9x10−4, p f we =609

0.002, d = −0.65,CI : [−1.03,−0.28]; posterior HPC, t(33) = −1.60, p = 0.119, p f we = 0.357, d = −0.27,CI :610

[−0.62, 0.07]) as well as for the caudate (Fig. S2B, Fig. 2B; Two-tailed t test: t(33) = −5.85, p =611
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1.5x10−6, p f we = 4.5x10−6, d = −1.00,CI : [−1.43,−0.59]) following the same procedure as described ear-612

lier (section "Regions of interest definition and analysis"). Here, we tested beta estimates obtained613

in the first-level analysis for the feedback-in-previous-trial regressor of interest.614

Hippocampal functional connectivity as a function of previous-trial performance615

We conducted a psychophysiological interactions (PPI) analysis to examine whether hippocampal616

functional connectivity with the rest of the brain depended on the participant’s performance on617

the previous trial. To do so, we centered a sphere onto the group-level peak effects within the HPC618

using main-effect GLM described in the previous section. The sphere was 4mm in radius and was619

centered on following MNI coordinates: x=-32, y=-14, z=-14. The GLM included a PPI regressor, a620

nuisance regressor accounting for themain effect of past-trial performance, and a nuisance regres-621

sor explaining variance due to inherent physiological signal correlations between the HPC and the622

rest of the brain. The PPI regressor was an interaction term containing the element-by-element623

product of the task time course (effects due to past-trial performance) and the HPC spherical seed624

ROI time course. The estimated beta weight corresponding to the interaction termwas then tested625

against zero on the group-level using a t-test implemented in SPM12. This revealed brain areas626

whose activity was co-varying with the hippocampus seed ROI as a function of past-trial perfor-627

mance (n-1).628

Furthermore, we conducted an ROI analysis for the caudate (Fig. S2B; one-tailed t test: t(33) =629

−5.85, p = 4.7x10−4, d = 0.67,CI : [0.29, 1.05]) following the same procedure as described earlier (see630

section "Regions of interest definition and analysis"). Here, we tested the beta estimates obtained631

in the first-level analysis for the PPI regressor of interest against zero.632

Brain activity as a function of improvements in behavioral performance across trials633

We used a GLM to analyze activity changes associated with behavioral improvements across trials.634

One regressor modelled the main effect of the trial and two parametric regressors modeled the635

following contrasts: trials in which behavioral performance improved vs. trials in which behavioral636

performance did not improve or got worse relative to the previous trial. These regressors modeled637

the behavioral improvements either relative to the previous trial, and thus independently of TTC638

(likely serving generalization), or relative to the previous trial in which the same target TTC was pre-639

sented (likely serving specificity). These two regressors reflect the tests for target-TTC-generalized640

and target-TTC-specific learning, respectively. Improvement in performance was defined as re-641

ceiving feedback of higher valence than in the corresponding previous trial. The same nuisance642

regressors were added as in the other GLMs and all regressors except the realignment parame-643

ters and the constant term were convolved with the canonical hemodynamic response function of644

SPM12. On the group level, we tested the two parametric regressors of interest against zero using645

a t-test implemented in SPM12, effectively contrasting trials in which behavioral performance im-646

proved against trials in which behavioral performance did not improve or got worse relative to the647

respective previous trials. All runs were modeled separately.648

Moreover, we again conducted ROI analyses for the anterior and posterior sections of the hip-649

pocampus (Fig. S2A) as well as for the caudate (Fig. S2B) following the same procedure as described650

earlier (see section "Regions of interest definition and analysis"). Here, we tested beta estimates651

obtained in the first-level analysis for the TTC-specific and TTC-generalized learning regressors us-652

ing one-tailed one-sample t-tests (TTC-specific: anterior HPC, t(33) = 0.57, p = 0.285, p f we = 1, d =653

0.10,CI : [−0.24, 0.44], posterior HPC, t(33) = 1.29, p = 0.103, p f we = 0.619, d = 0.22,CI : [−0.12, 0.57], cau-654

date, t(33) = 5.95, p = 5.6x10−7, p f we = 3.4x10−6, d = 1.02,CI : [0.61, 1.45]; TTC generalized: anterior HPC,655
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t(33) = 0.36, p = 0.360, p f we = 1, d = 0.06,CI : [−0.28, 0.40], posterior HPC, t(33) = 2.81, p = 0.004, p f we =656

0.025, d = 0.48,CI : [0.12, 0.85], caudate, t(33) = −0.67, p = 0.746, p f we = 1, d = −0.11,CI : [−0.46, 0.23]). In657

addition, to test which specific subcortical regions were involved in these processes, we conducted658

post-hoc ROI analyses for subcortical regions after the whole-brain results were known (one-tailed659

one-sample t tests; TTC-specific: nucleus accumbens: t(33) = 4.41, p = 5.2x10−5, p f we = 2.6x10−4, d =660

0.76,CI : [0.38, 1.15], globus pallidus: t(33) = 7.05, 2.3x10−8, p f we = 1.1x10−7, d = 1.21,CI : [0.77, 1.67],661

putamen: t(33) = 8.07, p = 1.3x10−9, p f we = 6.5x10−9, d = 1.38,CI : [0.92, 1.88], amygdala: t(33 = 1.78, p =662

0.042, p f we = 0.212, d = 0.30,CI : [−0.04, 0.66], thalamus: t(33) = 2.61, p = 0.007, p f we = 0.034, d = 0.45,CI :663

[0.09, 0.81]; TTC-generalized, nucleus accumbens: t(33) = 1.82, p = 0.039, p f we = 0.196, d = 0.31,CI :664

[−0.04, 0.66], globus pallidus: t(33) = 7.06, p = 2.2x10−8, p f we = 1.1x10−7, d = 1.21,CI : [0.77, 1.68],665

putamen: t(33) = 6.21, p = 2.6x10−7, p f we = 1.3x10−6, d = 1.06,CI : [0.65, 1.50], amygdala: t(33) =666

4.25, p = 8.3x10−5, p f we = 4.1x10−4, d = 0.73,CI : [0.35, 1.12], thalamus: t(33) = 4.05, p = 1.5x10−4, p f we =667

7.4x10−4, d = 0.69,CI : [0.32, 1.08]). The subcortical ROIs (Fig. S2B) were based on the FreeSurfer668

parcellation as described in the section "Regions of interest definition and analysis".669

Hippocampal functional connectivity as a function of TTC-generalized learning670

To examine which brain regions whose activity co-fluctuated with the one of the hippocampus dur-671

ing TTC-generalized learning, we again conducted a PPI analysis similar to the one described earlier.672

A spherical seed ROI with a radius of 4mmwas centered around the hippocampal group-level peak673

effect (x=-30, y=-24, z=-18) observed for the TTC-generalized learning regressor described above.674

To extract the average time course of the seed region, we first conducted a GLM for two regres-675

sors of interest: one modeling trials where TTC-generalized learning occurred, and another one676

modeling trials where TTC-generalized learning did not. We again added all nuisance regressors as677

described before. We then used an F-contrast to detect voxels with significant main effects within678

our seed region, and then averaged across these voxels to obtain the final seed time course. In the679

second GLM, we then added this time course as the PPI regressor and estimated the element-by-680

element product of the task time course and this seed ROI time course. We also included in the PPI681

GLM two nuisance regressors accounting for task-related effects from our contrast of interest (Be-682

havioral improvements vs. no behavioral improvements) as well as physiological correlations that683

could arise due to anatomical connections to the hippocampal seed region or shared subcortical684

input. On the group-level, we then tested the weights estimated for our PPI regressor of interest685

against zero using a t-test implemented in SPM12. This revealed areas whose activity co-fluctuated686

with the one of the hippocampus with as a function TTC-generalized feedback learning.687

Moreover, we conducted independent ROI analyses for subcortical regions as described in the688

section "Regions of interest definition and analysis". Here, we tested the beta estimates obtained689

for the hippocampal seed-based PPI regressor of interest (One-tailed one-sample t tests: caudate:690

t(33) = 1.06, p = 0.149, p f we = 0.894, d = 0.18,CI : [−0.16, 0.53], putamen: t(33) = 2.79, p = 0.004, p f we =691

0.026, d = 0.48,CI : [0.12, 0.84], globus pallidus: t(33) = 2.52, p = 0.008, p f we = 0.050, d = 0.43,CI :692

[0.08, 0.79], amygdala: t(33) = 2.60, p = 0.007, p f we = 0.041, d = 0.45,CI : [0.09, 0.81], nucleus accumbens:693

t(33) = −1.14, p = 0.869, p f we = 1, d = −0.20,CI : [−0.54, 0.15], thalamus: t(33) = 2.71, p = 0.005, p f we =694

0.032, d = 0.46,CI : [0.11, 0.83]).695

Brain activity as a function of behavioral performance and as a function of the behavioral696

regression effect697

To examine the neural underpinnings governing specificity and generalization in timing behavior698

in detail, we analyzed the trial-wise activity of each voxel as a function performance in the TTC task699
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(i.e. the difference between estimated and true TTC in each trial) and as a function of the regression700

effect in behavior (i.e. the difference between the estimated TTC and the mean of the sampled in-701

tervals, whichwas 0.82 s). To avoid effects of potential co-linearity between these regressors, we es-702

timated model weights using two independent GLMs, which modeled the time course of each trial703

with either one of the two regressors. In addition, we again accounted for nuisance variance as de-704

scribed before, and all regressors except the realignment parameters and the constant term were705

convolved with the canonical HRF of SPM12. After fitting themodel, we used the weights estimated706

for the two regressors to perform voxel-wise F-tests using SPM12, revealing activity that was cor-707

related with these two regressors independent of the sign of the correlation. In addition, we again708

performed ROI analyses using two-tailed one-sample t-tests for the anterior and posterior hip-709

pocampus (S2A; TTC-task performance: anterior HPC, t(33) = 4.85, p = 2.9x10−5, p f we = 8.7x10−5, d =710

−0.83,CI : [1.24, 0.44], posterior HPC, t(33) = 2.88, p = 0.007, p f we = 0.021, d = 0.49,CI : [0.86, 0.14];711

Regression effect: anterior HPC, t(33) = 5.55, p = 3.6x10−6, p f we = 1.1x10−5, d = −0.95,CI : [1.37, 0.55],712

posterior HPC, t(33) = 1.06, p = 0.295, p f we = 0.886, d = 0.18,CI : [0.53, 0.16]) as well as for the caudate713

(S2B; TTC-task performance: t(33) = 5.62, p = 2.9x10−6, p f we = 8.7x10−6, d = −0.96,CI : [1.39, 0.56];714

Regression effect: t(33) = 1.08, p = 0.287, p f we = 0.859, d = 0.19,CI : [0.16, 0.53]).715

Eye tracking: Fixation quality does not affect the interpretation of our results716

We used an MR-compatible infrared eye tracker with long-range optics (Eyelink 1000) to monitor717

gaze position at a rate of 500 hz during the experiment. After blink removal, the eye tracking718

data was linearly detrended, median centered, downsampled to the screen refresh rate of 120719

hz and smoothed with a running-average kernel of 100 ms. There were no systematic biases in720

fixation error across speeds (Fig. S6A; Kruskal–Wallis test: χ(2) = 0.608, p = 0.895, ε2 = 0.005,CI :721

[0.00, 0.06]) or across feedback levels (Fig. S6B; χ(2) = 0.190, p = 0.909, ε2 = 0.0019,CI : [0.00, 0.10]).722

Moreover, differences in fixation error could neither explain individual differences in absolute TTC723

error (Fig. S6C; Spearman’s rho = 0.167, p = 0.344), nor individual differences in the regression effect724

in behavior (Fig. S6C; Spearman’s rho = 0.26, p = 0.131).725
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Supplementary Material924

Figure S1: Behavioral analyses. A) Behavioral autocorrelation analysis. We did not observe a correlation between subsequent
trials in the feedback participants received. The feedback and thus behavioral performance in one trial did therefore not
predict feedback or performance in the following trial. B) Feedback distributions for all speed levels. Participant’s received
approximately the same feedback for all speed levels and thus for all target TTCs. AB) Depicted are themean and SEM across
participants (black dot and line) overlaid on single participant data (dots). C) TTC task performance over time. Left panel:
Across-trial-average performance over scanning runs. Right panel: task performance over trials. We plot the mean (black
line) and SEM (shaded area) across participants. Run identity color coded. Participants’ task performance improved over
time.
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Figure S2: Regions of interest (ROIs). A) Anterior and posterior hippocampal ROIs. B) Caudate ROI. AB) ROIs shown for a
sample participant superimposed onto the skull-stripped structural T1-scan of that participant. These masks were created
using FreeSurfer’s cortical and subcortical parcellation.
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Figure S3: Trial-phase specific relationship between brain activity and behavior. We repeated the voxel-wisemass-univariate
general linear model analysis for performance in the current trial (Fig. 2) for each of the three trial phases individually. This
included the tracking phase (in which the fixation target moved), the TTC-estimation phase (in which the fixation target
had stopped and participants estimated the TTC) and the feedback phase (in which participants received feedback about
how accurately they had estimated the TTC). We plot thresholded t-test results at 1mm resolution overlaid on a structural
template brain. Positive t-scores indicate a positive relationship between brain activity and TTC-error.
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Figure S4: Distinct networks support TTC-specific and TTC-generalized feedback learning. A) Voxel-wisemass-univariate GLM
results for TTC-generalized and TTC-specific parametric regressors. We plot thresholded t-test results at 1mm resolution
at p < 0.05 whole-brain FWE-corrected levels. Activity maps were overlaid on a structural template brain. Positive t-scores
indicate a relationship between brain activity and the updating of either TTC-specific or TTC-generalized information re-
spectively. Insert zooming in on hippocampus and MNI coordinates added. B) Subcortical regions-of-interest (ROIs) for the
nucleus accumbens, the amygdala, the thalamus, the caudate, the putamen and the pallidum. All ROIs are shown for a
sample participant superimposed onto the skull-stripped structural T1-scan of that participant. They were created using
FreeSurfer’s cortical and subcortical parcellation. C) ROI-analysis results for subcortical regions for TTC-generalized (orange
dots) and TTC-specific regressors (blue dots). Depicted are themean and SEM across participants (black dot and line) overlaid
on single participant data. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level one-tailed
one-sample t-test against zero.
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Figure S5: TTC-generalized hippocampal connectivity. A) Regions of interest analysis for subcortical regions estimated using
a Psychophysiological-interactions (PPI) analysis conducted using the hippocampal effect in Fig.4A as a seed. Positive beta
estimates indicate that functional connectivity between each ROI and the hippocampal seed depended on howmuch partic-
ipants TTC-task performance improved across trials. Depicted are the mean and SEM across participants (black dot and line)
overlaid on single participant data for the nucleus accumbens, the amygdala, the caudate, the globus pallidum, the puta-
men and the thalamus. Statistics reflect p<0.05 at Bonferroni-corrected levels (*) obtained using a group-level one-tailed
one-sample t-test against zero. B) Whole-brain voxel-wise t-test results for the TTC-generalized hippocampal connectivity
overlaid on a structural template brain at 1mm resolution. MNI coordinates added.
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Figure S6: Eye tracking analyses. A) Fixation error over speed. There were no significant differences in fixation error across
speed levels and thus across target TTC’s. B) Fixation error over TTC-task performance. There were no significant differences
in fixation error across TTC-task performance levels. C) No correlation of TTC-task performance or the behavioral regression-
to-the-mean effect with fixation error. Fixation quality does not affect the interpretation of the imaging results presented in
this study. Each dot represents a single participant. Regression line (black) and standard error (gray shade). AB) Group-level
mean and SEM depicted as black dot and line overlaid on single participant data.
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