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Abstract 20 

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability 21 

Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally 22 

defined regions in the genome. This approach utilises relationship matrices that are based on 23 

sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination 24 

boundaries in the genome. We implemented the approach on simulated data and show that 25 

the haplotype-based regional GRMs capture variation that is complementary to that captured 26 

by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single 27 

analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the 28 

phenotypic variation that existing genome-wide analysis methods may fail to capture. We 29 

further demonstrate that there are real benefits to be gained from this approach by applying 30 

it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family 31 

Health Study. We analysed height and major depressive disorder (MDD). We identified seven 32 

genomic regions that are genome-wide significant for height, and three regions significant at 33 

a suggestive threshold (p-value < 1 × 10!" ) for MDD. These significant regions have genes 34 

mapped to within 400kb of them. The genes mapped for height have been reported to be 35 

associated with height in humans, whiles those mapped for MDD have been reported to be 36 

associated with major depressive disorder and other psychiatry phenotypes. The results show 37 

that SNHap-RHM presents an exciting new opportunity to analyse complex traits by allowing 38 

the joint mapping of novel genomic regions tagged by either SNPs or haplotypes, potentially 39 

leading to the recovery of some of the “missing” heritability.  40 

Keywords: MDD; height; haplotypes; regional heritability mapping; missing heritability; rare 41 

variation; genome-wide analysis 42 
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Introduction 43 

Estimates of the genetic component of complex trait variation using genotyped SNPs 44 

led to the conclusion that a proportion of the heritability of complex traits is still unexplained 45 

or “missing” (Maher, 2008; Manolio et al., 2009). Full sequence data will contain all the 46 

variants that account for all the heritability of complex traits (Wainschtein et al., 2019). 47 

Moreover, some of these true causal variants may be rare (Pritchard, 2001) and therefore 48 

may be in incomplete linkage disequilibrium (LD) with genotyped SNPs (Yang et al., 2010). 49 

Thus, some of the “missing” heritability may be “hidden” in rare variants whose effects are 50 

difficult to capture because of lack of statistical power. There is, therefore, some benefit to 51 

be gained in terms of improving the heritability estimates and uncovering gene variants 52 

involved in the control of traits by fitting genome-wide analytical models that adequately 53 

capture the combined effects of rare genetic variants (Cirulli and Goldstein, 2010; Gonzalez-54 

Recio et al., 2015).  55 

In light of this, we proposed a genome-wide analytical approach that draws its 56 

theoretical basis from the genome-based restricted maximum likelihood (GREML) approach 57 

(Clarke and Cooper, 2010; Maher, 2008; Manolio et al., 2009; Speed et al., 2012; Yang et al., 58 

2011) which utilises both local and genome-wide relationship matrices to provide regional 59 

estimates of the heritability across locally defined regions in the genome (Nagamine et al., 60 

2012). This regional heritability analysis can capture the combined effect of SNPs in a region, 61 

and thus small effect variants may be detectable. However, the analysis only captures effects 62 

associated with individual SNPs.  63 

Haplotypes may provide a better strategy to capture genomic relationships amongst 64 

individuals in the presence of causal rare variants. Although rare variants are not in LD with 65 
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genotyped variants and thus are difficult to capture in conventional GWAS, these rare 66 

variants, may be in LD with some haplotypes and thus can be captured using haplotype 67 

methods. Compared with genotyped SNPs, capturing haplotype effects may offer an 68 

advantage because haplotypes can be functional units (Vormfelde and Brockmöller, 2007). 69 

Therefore, haplotype effects may reflect the combined effects of closely linked cis-acting 70 

causal variants (Balding, 2006) and using haplotypes could provide real benefit over SNPs in 71 

recovering some of the “missing” heritability and identifying novel trait-associated variants. 72 

Therefore, we extended the SNP-based regional heritability analysis further by incorporating 73 

haplotypes in addition to SNPs in the calculation of the regional GRMs used in the analysis 74 

(Shirali et al., 2018). This approach includes two regional GRMs and divides the genome into 75 

windows based on local haplotype blocks delimited by recombination boundaries. 76 

This paper further explores the properties of both the SNP-based and the haplotype-77 

based regional heritability mapping (SNP-RHM and Hap-RHM respectively). We hypothesise 78 

and show by simulation that the Hap-RHM complements existing SNP-RHM analytical 79 

approaches by capturing regional effects in the genome that existing SNP-based methods fail 80 

to capture. This leads us to propose a mapping strategy that jointly utilises SNP and haplotype 81 

GRMs in a single analysis called SNHap-RHM. We then confirm the utility of this approach by 82 

applying it to real data obtained from about 20,000 individuals from the Generation Scotland: 83 

Scottish Family Health Study (GS: SFHS) (Smith et al., 2012). We analysed two phenotypes: 84 

height and major depressive disorder (MDD). The aim was to uncover novel genetic loci that 85 

may affect these traits and improve the estimates of the genetic components of the variation 86 

in these traits.  87 

 88 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454788doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454788
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Methods 89 

The general statistical setting of a regional GREML analysis  90 

Consider a vector % of phenotype values with length &, the linear mixed-effects model 91 

for fitting the effects of genomic region ' and background polygenic markers is given as:  92 

( = *+ +-#.# + /.$ + 0 93 

where % is a vector of phenotypes, 1 is a design matrix of fixed effects, and 2 is a vector of 94 

fixed effects, 3% is a design matrix relating phenotype measures to genetic markers in region 95 

' and 4% is a vector of random genetic effects due to region ' assumed to be multivariate 96 

normal, 56780, :&!
' ;("<. ;("  is a relationship matrix calculated using markers (SNPs or 97 

haplotypes) in region ': calculated in the subsequent sections as = for the SNP and	? for the 98 

haplotype-based models. @ is a design matrix for background polygenic effects of markers 99 

outside the region ' and 4) is a vector of random polygenic effect of genetic markers excluded 100 

from region ', assumed to be multivariate normal, 56780, :&#
' A($<. A($  is a relationship 101 

matrix calculated using the markers outside the region ': calculated in the subsequent section 102 

in the same way as	=	. And B is a vector of residual effects assumed to be multivariate normal, 103 

567(0, :*'D).	D is an identity matrix. 104 

Under the model, the vector of phenotypes % is assumed to be normally distributed, 105 

7(12, F) where the variance is 106 

6 = :&!
' ;(" + :&#

' A($ + :*
'D 107 

 108 

 109 
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SNP-RHM: SNP-based regional GREML model  110 

A SNP-based regional GREML analysis was first reported by Nagamine et al. (2012). 111 

The regional GREML analysis approach we employ here differs from the analysis done by 112 

Nagamine et al. (2012) in the way the regions are defined. That analysis defined local regions 113 

by breaking the genome into smaller user-defined windows of G SNPs, which overlapped by 114 

H SNPs. Here, however, we define regions based on recombination boundaries in the genome.  115 

The regional GREML model fits two genetic relationship matrices (GRMs): one local 116 

GRM for the region and a whole-genome GRM for the remaining SNPs in the genome that are 117 

outside the region. The GRMs are genomic relatedness matrices calculated as the weighted 118 

proportion of the local or genome-wide autosomal SNPs shared identity by state (IBS) 119 

between pairs of individuals. The SNP IBS matrices are calculated as follows, following the 120 

second scaling factor proposed by VanRaden (2008)  121 

I =
55′

K
 122 

where K is the total number of	L local or	M background autosomal SNPs, and N is a matrix of 123 

genotype codes for the sampled individuals centred by loci means and normalised by the 124 

standard deviation of each locus. N is calculated as follows for individual ' at locus O 125 

5#+ =
(P#+ − 2G+)

S2G+(1 − G+)
 126 

where P#+  is the genotype code at locus O for individual ' and takes the values 0, 1 and 2 for 127 

AA, Aa and aa genotypes respectively, G+ 	is the frequency of allele ‘a’ at locus O. The SNP-128 

based relationship for individuals ' and T is therefore calculated as follows 129 
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I#, =
1

K
×U

(P#+ − 2G+)(P,+ − 2G+)
2G+(1 − G+)

-

+./
 130 

Hap-RHM: Haplotype-based regional GREML model  131 

The haplotype-based regional GREML model follows theoretically from the SNP-based 132 

analysis and utilises haplotypes instead of SNPs as the genetic markers for the regional 133 

analysis. The analysis fits two GRMs, a haplotype-based regional GRM and a SNP-based 134 

background genome-wide GRM. The haplotype-based GRM is similar to the SNP-based GRM 135 

defined in the previous section. For a locally defined region (haplotype block) containing ℎ 136 

haplotype variants, the haplotype-based kinship for individuals ' and T is calculated as follows 137 

W#, =
1

ℎ
×U

(X#+ − 2G+)(X,+ − 2G+)
2G+(1 − G+)

0

+./
 138 

where X#+  is the diplotype code (coded as the number of copies of haplotype O) for individual 139 

' and takes the values 0, 1 and 2 for the ℎ1ℎ1 , ℎ1ℎ+ , ℎ+ℎ+  diplotypes respectively where 140 

haplotype	Y is any haplotype other than haplotype	O, i.e. Y ≠ O, G+ 	is the haplotype frequency 141 

for haplotype O. 142 

Phenotype Simulations 143 

Five phenotypes were simulated using available genotypic information of 20,032 144 

individuals from the Generation Scotland: Scottish Family Health Study (Smith et al., 2012). A 145 

total of 593,932 genotyped SNPs were used, and missing genotypes were filled in by 146 

imputation. A total of 555,091 SNPs remained after a QC that removed SNPs of MAF < 0.01 147 

and SNPs that were out of Hardy-Weinberg equilibrium at p-value < 0.000001.  148 

The five phenotypes were simulated to have a total variance of 1. This total is 149 

composed of 0.6 environmental (residual) variance and genetic variance of 0.4. The genetic 150 
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variance was partitioned into two components, a polygenic variance of 0.3 and a total QTL 151 

variance of 0.1 (20 QTLs, each explaining a variance of 0.005). A common polygenic variance 152 

was simulated for all five phenotypes from 20,000 markers randomly selected across the 153 

genome. The polygenic variance was simulated to be normally distributed with zero mean 154 

and variance of 0.3.  155 

For each phenotype, 20 regions (haplotype blocks) were randomly selected, one on 156 

each chromosome (except chromosomes 6 and 8 because of the unusually high LD in the MHC 157 

regions on chromosome 6 and a large inversion on chromosome 8 (Amador et al., 2015)), to 158 

simulate quantitative trait loci (QTL). This gave a total of 20 QTLs for each phenotype. The 159 

regions were delimited by natural boundaries: recombination hotspots where the estimated 160 

recombination frequency exceeds ten centiMorgans per Megabase (10cM/Mb) with the 161 

estimated recombination frequency between boundaries  being less than ten centiMorgans 162 

per Megabase (10cM/Mb) based on the Genome Reference Consortium Human Build 37 163 

(International Human Genome Sequencing Consortium, 2004). This recombination threshold 164 

resulted in a total 48,772 regions across the genome. The number and type of marker used 165 

to simulate the QTL are what defined the five phenotypes. The five phenotypes are, a 1-SNP 166 

QTL within the haplotype block, a multiple-SNP (5 SNPs) QTL within the haplotype block, two 167 

types of 1-haplotype QTL within the haplotype block (taking either a common or a rare 168 

haplotype as causal) and multiple (5) haplotype QTL within the haplotype block. Details of 169 

these phenotypes are described below. 170 

For the haplotype QTL phenotypes, a haplotype block is treated as a single genetic 171 

locus having multiple alleles. Each haplotype variant within a block is considered as an allele 172 

of that locus. Each study individual will carry two alleles, or have a diplotype, for each locus 173 
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or haplotype block. The genotype data used to simulate the phenotypes were phased using 174 

SHAPEIT2 (Delaneau et al., 2013) to produce the haplotypes for study individuals. The multiple 175 

haplotype QTL phenotypes were simulated by randomly sampling two rare haplotypes and 176 

three common haplotypes within each haplotype block to give five haplotypes per block. The 177 

two types of 1-haplotype QTL phenotypes were simulated by randomly sampling a rare 178 

haplotype per haplotype block for one type and for the other type a common haplotype was 179 

randomly sampled within each haplotype block. 180 

The individual marker contribution to the polygenic effect and the QTL effects were 181 

calculated as follows 182 

:+
' = 2G+(1 − G+)[+

' 183 

[+ = \
:+
'

2G+(1 − G+)
 184 

where :+
' is the contribution of a marker to the QTL or polygenic variance, [+  is the effect of 185 

a SNP O or haplotype O randomly sampled to have polygenic or QTL effect, G+  is the frequency 186 

of haplotype O or the effect allele of the SNP	O. For the single marker QTL phenotypes, each 187 

QTL explained a variance of 0.005. For the multiple marker QTL phenotypes, each causal 188 

variant explained the same variance, with the effects scaled to account for LD in the region 189 

so each QTL locus had a variance of 0.005. For the multiple haplotype QTL effects, the 190 

haplotype effects were scaled relative to the inverse of their frequency to give a total variance 191 

explained by the region of 0.005. 192 

Common environmental effects were randomly sampled for the five phenotypes from 193 

a normal distribution 7(0, :*') where :*' is 0.6. This, together with a genetic variance of 0.4, 194 
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gave a total variance of 1 for each phenotype. The final simulated phenotype for an 195 

individual	' was then calculated as follows  196 

((]'&[^0	K_LT0L]	G0L	`ab	L0['c&)# = U P#+[+

'2222

+./
+UP#+[+ + 0# ,

'2

+./
 197 

((K.^Y'G^0	K_LT0L]	G0L	`ab	L0['c&)# = U P#+[+

'2222

+./
+UUP#+[+

"

+./
+ 0# ,

'2

3./
 198 

where P#+  is the number of copies of the effect allele of SNP	O for individual ' (for haplotypes, 199 

this is defined as X#+; the number of copies of haplotype O for individual ') and [+  is the effect 200 

of haplotype	O or SNP	O. Twenty replicates were analysed for each of the five phenotypes with 201 

a different set of QTL markers sampled for each replicate.   202 

Analysis of simulated data 203 

We have shown previously that regional GREML analysis (Regional Heritability 204 

Mapping or RHM) using fixed region sizes in the genome is a suitable mapping method for 205 

finding local genetic effects (Nagamine et al., 2012). The conventional RHM model fits two 206 

genomic relationship matrices (GRMs) in the analyses to map genetic loci that affect trait 207 

variation: a local GRM (rGRM) calculated using SNPs located in the region and a genome-wide 208 

GRM (gwGRM) calculated from SNPs outside the region. We have since extended this 209 

conventional regional GREML analysis to incorporate haplotypes in the calculation of the local 210 

GRM and have successfully implemented this in a simulation study (Shirali et al., 2018). This 211 

study by Shirali et al. (2018) utilises a regional GREML model that breaks the genome into 212 

naturally defined regions by delimiting them by recombination hotspots. Two types of 213 

regional GREML models are then fitted in turn to the phenotypes. One model (SNP-RHM) uses 214 
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SNPs to estimate local genetic relationships between study individuals, and the other model 215 

(Hap-RHM) estimates local genetic relationships amongst individuals using haplotypes.  216 

In this simulation study, the five simulated phenotypes were analysed using the two 217 

models, the SNP-based regional GREML model (SNP-RHM for the SNP QTL phenotypes) and 218 

the haplotype-based regional GREML model (Hap-RHM for the haplotype QTL phenotypes). 219 

To test the analytical models' specificity, we applied Hap-RHM to SNP QTL phenotypes and 220 

SNP-RHM to the haplotype QTL phenotypes. We also performed a Hap-RHM analysis in which 221 

the units of analysis in the haplotype blocks were restricted to regions of 20 or fewer SNPs 222 

per haplotype block. This was because we observed that longer haplotype blocks had many 223 

SNPs (and hence many, many haplotypes), and this impacted the estimation of the simulated 224 

regional effect. The hybrid Hap-RHM, therefore, investigates whether the regional effect is 225 

well captured by the haplotype-based model when shorter haplotypes are used.  226 

We estimated the regional genetic variance and polygenic variance using restricted 227 

maximum likelihood (REML). For each simulated phenotype, we analysed 220 regions in total 228 

to map the 20 simulated QTLs. This involved analysing the region containing the QTL and ten 229 

adjacent regions (five in either direction). In this way, we limit the analysis to the regions in 230 

the genome with simulated effects, thereby reducing computation time considerably. Also, 231 

by analysing neighbouring regions, we are able to explore the precision of estimates of the 232 

location of regional effects. We assessed the significance of a region using the Likelihood Ratio 233 

Test (LRT). The genome-wide significance threshold was calculated to be LRT = 23.9 (p-value 234 

< 1.02	 × 10!4) using a Bonferroni correction for testing 48,772 regions. 235 

Also, we selected one replicate for each simulated phenotype and performed a 236 

regional heritability analysis that jointly fitted the SNP and the haplotype GRM in an approach 237 
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that we termed SNP and Haplotype Regional Heritability Mapping (SNHap-RHM). An overview 238 

of SNHap-RHM is shown in Figure 1. 239 

GS: SFHS Data 240 

Genotyping, quality control and phasing of Generation Scotland: Scottish Family Health 241 

Study dataset 242 

The data from the Generation Scotland: Scottish Family Health Study comprised 243 

23,960 participants recruited from Scotland (Smith et al., 2006). The DNA from about 20,032 244 

of the participants had been genotyped using the Illumina HumanOmniExpressExome8v1-2_A 245 

chip (~700K genome-wide SNP chip) (Smith et al., 2012).  246 

Quality control excluded SNPs and individuals with a call rate less than 98%, SNPs with 247 

minor allele frequency (MAF) less than 1% and SNPs that were out of Hardy-Weinberg 248 

equilibrium (p-value < 0.000001). A total of 555,091 autosomal SNPs passed quality control 249 

for downstream analysis. Phasing of the GS: SFHS data was done using SHAPEIT2 (Delaneau 250 

et al., 2013). Haplotype blocks were defined using recombination hotspots with a 251 

recombination rate of 10cM/Mb inferred from the Reference Consortium Human Build 37 252 

(International Human Genome Sequencing Consortium, 2004). Haplotypes variants within 253 

blocks were determined using the phased data. 254 

Phenotype definition 255 

MDD status for GS: SFHS participants was assigned following an initial mental health 256 

screening questionnaire with the questions: "Have you ever seen anybody for emotional or 257 

psychiatric problems?" or "Was there ever a time when you, or someone else, thought you 258 

should see someone because of the way you were feeling or acting?" Participants who 259 
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answered yes to one or both of the screening questions were further interviewed by the 260 

structured clinical interview to diagnose mood disorders (SCID) (First et al., 2002). A total of 261 

18,725 participants (2,603 MDD cases and 16,122 controls) were retained for analysis for 262 

MDD. A total of 19,944 participants from the GS: SFHS were analysed for height.  263 

 SNHap-RHM of MDD and Height 264 

 SNHap-RHM fits jointly, the two types of regional GRMs, SNP-based and haplotype-265 

based, in the analysis of phenotypes (Figure 1). We pre-corrected the phenotypes with the 266 

whole-genome GRM before performing SNHap-RHM to speed up the GREML analysis of each 267 

block. This pre-correction has previously been shown to speed the regional heritability 268 

analysis by Shirali et al. (2018). This step involved 22 separate GREML analyses each fitting a 269 

whole-genome GRM that excluded SNPs from one chromosome. The residuals from the pre-270 

correction step were then used in the SNHap-RHM analysis. The models adjusted for sex, age, 271 

age2, and the first 20 principal components calculated from the study participants' genomic 272 

relationship matrix (calculated using 555,091 autosomal SNPs). 273 

The significance of a region was tested with a likelihood ratio test (LRT) with two 274 

degrees of freedom which compared a model with three variance components fitted (the two 275 

regional variances together with the residual variance) against a model with only the residual 276 

variance component fitted. The individual regional variance components were subsequently 277 

tested with an LRT with one degree of freedom which compared a model with three variance 278 

components fitted against a model with two variance components fitted (one regional 279 

variance component dropped from the model).  280 

The p-values obtained from the LRTs were used to generate genome-wide association 281 

plots for each phenotype (equivalent to GWAS Manhattan plots). The genome-wide 282 
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significance threshold was calculated to be LRT = 23.9 (p-value < 1.02	 × 10!4) using a 283 

Bonferroni correction for testing 48,772 regions. The suggestive significance threshold of a 284 

region was set at an LRT = 19.5 (p-value < 1	 × 10!"). 285 

Results  286 

Simulation: SNP-RHM, Hap-RHM and SNHap-RHM 287 

SNP-RHM and Hap-RHM: We performed a regional GREML analysis that fits two GRMs 288 

(one for the region and one for the rest of the genome) per region across multiple genomic 289 

regions delimited by recombination hotspots. We tested two types of regional GREML 290 

models, SNP-RHM and Hap-RHM, on 20 replicates of five simulated phenotypes. In SNP-RHM, 291 

the regional matrix is derived from SNP genotypes whereas in Hap-RHM the regional matrix 292 

is derived from haplotypes. The phenotypes were simulated to be determined by 20 regional 293 

QTL effects and genome-wide polygenic effects. The regional QTL effects of the five 294 

phenotypes were simulated using SNPs as causal variants for two of them and haplotypes for 295 

the remaining three as described in the methods section. 296 

The likelihood ratio test (LRT) was used to test the null hypothesis, H0: that the genetic 297 

variance explained by the region is not significant, against the alternative hypothesis, H1: that 298 

the region accounts for a significant proportion of the phenotypic variance. A large LRT 299 

statistic is evidence against the null hypothesis, and therefore means the region explains a 300 

significant proportion of the phenotypic variance.  301 

The LRTs averaged over the 20 replicates of the five phenotypes are shown in Figure 302 

2. The figure shows plots of average LRT for the QTL regions and ten adjacent regions (5 to 303 

each side). The results show that both models detected the simulated regional effects at the 304 
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genome-wide significance level (LRT = 23.9) and can capture true causal loci in traits with 305 

different genetic architectures. The LRTs were higher on average for the SNP-based model 306 

(SNP-RHM) than the haplotype-based model (Hap-RHM). This could be because for Hap-RHM, 307 

the genome-wide GRM which is a SNP-based GRM does not tag any of the background 308 

haplotype effects that are outside any one particular region being analysed, and thus the 309 

residual variance may be inflated by the other haplotype QTLs which downwardly impact the 310 

LRTs.  311 

We provide further investigation of the results from the simulation in the 312 

supplementary data. For both analysis models, we have presented detailed results of the 313 

relationships between the LRT statistics, region size, variance estimates and allele frequencies 314 

(Supplementary Figures 3 – 10).  We observed that the longer haplotype blocks had many 315 

SNPs (and hence many, many haplotypes), and this impacted the estimation of the simulated 316 

regional variance (Supplementary Figure 8). We, therefore, performed a hybrid-Hap-RHM 317 

analysis that restricted the natural haplotype block sizes to 20 or fewer SNPs per haplotype 318 

block. This hybrid-Hap-RHM was to investigate whether the regional variance is well captured 319 

by Hap-RHM when shorter haplotypes are used. The hybrid-Hap-RHM underestimated the 320 

regional variance for larger regions but did not offer any discernible improvement in the LRT 321 

statistics (Supplementary Figure 9). The relationship between region size and estimated 322 

variance was different between the Hap-RHM and hybrid-Hap-RHM, while we observed a 323 

similar relationship between LRTs and the region size.  324 

Both SNP-RHM and Hap-RHM fail to capture the simulated regional effects when the 325 

simulated phenotype has a genetic architecture that does not match the analysis model, i.e., 326 

SNP or haplotype (Figure 3 and Supplementary Figure 1). These figures show the results for 327 
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the situation where the SNP QTL phenotypes were analysed with the haplotype-based model 328 

(Hap-RHM) and the haplotype QTL phenotypes were analysed with the SNP-based model 329 

(SNP-RHM). Both models fail to detect the simulated effects in such situations, therefore, 330 

showing that the models complement each other since they capture effects due to different 331 

types of genetic variants (i.e., tagged by SNPs or haplotypes).  332 

To confirm that two models are complementary and thus independent of each other, 333 

we implemented SNHap-RHM that fits the regional SNP and haplotype GRMs jointly, on a 334 

replicate of each of the five simulated phenotypes. The significance of regional effects was 335 

tested with an LRT with two degrees of freedom. The results are shown in Figure 4 and 336 

confirm that the two models are complementary since even when fitted jointly, we can still 337 

capture the simulated effects independently.  338 

SNHap-RHM analysis of Height and MDD 339 

The heritability estimates for height and MDD, calculated using the whole-genome 340 

GRM, were 81.4% and 13.8% respectively. There were no overlaps between regions identified 341 

as significant (tested with an LRT with one degree of freedom) by the haplotype and SNP-342 

based models for either of the two traits (Supplementary Figure 2). This reaffirms our 343 

hypothesis shown by simulation that the Hap-RHM is complementary to SNP-RHM in mapping 344 

associated genomic loci.  345 

The regional heritability results for height and MDD are presented as plots of minus-346 

Log10 of the LRT p-values (Figures 5 and 6). The plots for the SNHap-RHM, SNP-RHM and Hap-347 

RHM analyses are shown.  348 
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The results for height show that nine regions passed the Bonferroni-corrected 349 

genome-wide significance threshold in the analysis using SNP-RHM. No region was genome-350 

wide significant for height when analysed with Hap-RHM. Furthermore, these associations 351 

still come up when SNPs and haplotypes in those regions are analysed jointly using SNHap-352 

RHM. There are GWAS reported genes that lie in or are within 400kb of these regions 353 

(Supplementary Table 1).  354 

For MDD, no region passed the Bonferroni-corrected genome-wide significance 355 

threshold for the analysis done with the SNP-based and haplotype-based regional GREML 356 

models (Figure 6). Three regions passed the suggestive significance threshold at p-value <357 

1 × 10!" for Hap-RHM analysis of MDD. A further nine regions were significant at p-value <358 

5 × 10!" for the haplotype-based analysis, and one region for the SNP-based analysis 359 

(Supplementary Table 2). Figure 6 shows that when the two local GRMs are fitted jointly using 360 

SNHap-RHM, the genomic regions associated with MDD can still be mapped. The associated 361 

regions mapped by the haplotype-based model for MDD contains genes reported by GWAS 362 

to be associated with several psychiatry phenotypes (Figure 6 and Supplementary Table 2). 363 

The top associated region was within 400kb of the DCC gene. This gene is part of the NETRIN1 364 

pathway, which has been reported to be associated with major depressive disorder in two 365 

GWAS samples (Generation Scotland: Scottish Family Health Study and Psychiatric Genomics 366 

Consortium) (Zeng et al., 2017). Zeng et al. (2017a) used a SNP-RHM guided by pathway 367 

analysis (first uncover pathway association and then localise DCC within the pathway) to show 368 

the DCC association with major depressive disorder. 369 

A linear mixed effects model was used to test for association of the SNPs within the 370 

suggestive significant region identified by the haplotype-based model on chromosome 3 for 371 
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MDD. The model tested for association of SNPs by fitting them individually in the model and 372 

fitting a GRM to account for relatedness of individuals. The region on chromosome 3 was 373 

chosen because there is a psychiatric phenotype associated gene, MYRIP (Luciano et al., 374 

2011), mapped to it, unlike the DCC region which has the gene outside the region. The results 375 

are shown in Table 1. Five SNPs within this region are nominally significant at p-value < 0.05.	 376 

Four out of these five SNPs confer about 2% increased risk of the disease each. These four 377 

SNPs lie within the MYRIP gene sequence. The MYRIP gene is expressed in the brain (Ganat et 378 

al., 2012). A SNP in this gene is reported to be associated with brain processing speed in the 379 

Lothian birth cohort (Luciano et al., 2011). Brain processing speed is an important cognitive 380 

function that is compromised in psychiatric illness such as schizophrenia and depression, and 381 

old age. Also, a SNP in the MYRIP gene region is associated with sleep duration (Gottlieb et 382 

al., 2007). Sleep durations outside the normal range (both short sleep and long sleep) is 383 

significantly associated with increased risk of depression (Mohan et al., 2017; Roberts and 384 

Duong, 2014; Watson et al., 2014; Zhai et al., 2015). The MYRIP gene is also reported to have 385 

a role in insulin secretion (Waselle et al., 2003) and low insulin levels have been linked to 386 

depression (Greenwood et al., 2015; Pearson et al., 2010; Webb et al., 2017).    387 

Comparison with published GWAS SNPs  388 

For both traits, the SNPs in the regions that were significant at p-value < 5 × 10!" 389 

were compared to SNPs reported in the GWAS catalogue (MacArthur et al., 2017) to be 390 

significant for the two traits. The GWAS catalogue was accessed on the 15th of January 2021. 391 

The results are presented in Table 2. The SNP-based and haplotype-based models identified 392 

1,380 and 45 SNPs respectively for height, and 78 and 495 SNPs respectively for MDD taking 393 

all SNPs within haplotype blocks significant at p-value < 5 × 10!". Out of the 1,380 SNPs 394 
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identified for height by the SNP-based model, 57 SNPs spanning 20 haplotype regions were 395 

in common with published GWAS results for height. 396 

Discussion 397 

We have proposed and implemented a genome-wide analytical method that analyses 398 

genomic regions using a regional GREML model (Nagamine et al., 2012). We have since 399 

extended this method to include haplotypes by fitting a regional haplotype-based GRM (Hap-400 

RHM) and also redefined genomic regions in our analysis to be delimited by recombination 401 

hotspots generated using HapMap Phase II (Shirali et al., 2018). In this study, we build on our 402 

previous regional GREML methods by exploring the properties of the SNP and haplotype-403 

based regional heritability mapping models by simulation and demonstrate that the two 404 

variance components fitted are largely independent of each other (Supplementary Figure 2). 405 

The novelty in this study shows the two models capture two different kinds of effects in terms 406 

of genetic architecture and thus the two variance components can be fitted jointly (by fitting 407 

the SNP and haplotype regional matrices together) in a joint marker regional heritability 408 

mapping procedure called SNHap-RHM.  409 

We hypothesised that the Hap-RHM would complement the SNP-RHM. We 410 

investigated this hypothesis in a simulation study in which we simulated 20 replicates each of 411 

two types of SNP QTL phenotypes and three types of haplotype QTL phenotypes. The results 412 

show that the two GREML models can capture the effects of causal variants within genomic 413 

loci associated with the phenotype analysed. The results also show that the two models are 414 

specific about the type of causal effect they can capture, therefore, providing support for the 415 

hypothesis that haplotype-based regional GREML models will complement SNP-based 416 

regional GREML models. We provide further support for this hypothesis by fitting the two 417 
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GRMs jointly and showing (using a LRT with two degrees of freedom) that we can still capture 418 

the simulated effects and real effects from real data. 419 

We applied SNHap-RHM to height and MDD phenotypes from the Generation 420 

Scotland: Scottish Family Health Study. Again, we draw comparisons between the effects 421 

captured by the SNP-RHM and the Hap-RHM. The SNP-RHM identified more genome-wide 422 

(GW) significant regions (p-value < 1.02 × 10!4) for height compared to MDD. Fifty-seven of 423 

the SNPs identified for height by the SNP-RHM have been reported by other studies to be 424 

associated with height. These SNPs spanned 20 genomic regions in the GS: SFHS cohort. 425 

Height is a highly polygenic trait with many common genetic variants accounting for a majority 426 

of the additive genetic variation (Yang et al., 2015). These common genetic variants may be 427 

in LD with genotyped SNPs on SNP chips (these chips are disproportionately enriched for 428 

common SNPs). Therefore, the SNP-based regional GREML model is better suited to capture 429 

SNP loci in height compared to MDD. MDD is a very heterogeneous phenotype, and thus every 430 

MDD case will have a set of genetic and non-genetic risk factors exclusive to them (Levinson 431 

et al., 2014). These unique genetic risk factors will mean that at the population level, a lot of 432 

the genetic variants driving the disease will be rare.  433 

Three genomic regions were identified for MDD by the haplotype-based regional 434 

GREML model with p-value < 1 × 10!". The Hap-RHM works well for MDD because MDD is 435 

believed to be driven by rare genetic variants, and the model can capture rare genetic 436 

variants. The haplotype model can capture rare variants because of the LD between rare 437 

variants (both typed and untyped) and the flanking variants that aggregate to form the 438 

haplotypes within the genomic regions. There were no overlaps between regions identified 439 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454788doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454788
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

by the Hap-RHM and SNP-RHM for each of the two traits, which again support the hypothesis 440 

that the two classes of models complement each other in mapping associated loci.  441 

In both traits, the top significant regions we mapped at p-value < 5 × 10!" had genes 442 

mapped to those regions or within 400kb of those regions. For height, these genes have been 443 

reported to be associated with height in humans (Gudbjartsson et al., 2008; Kichaev et al., 444 

2019; Lango Allen et al., 2010; Nagy et al., 2017; Tachmazidou et al., 2017; Weedon et al., 445 

2008; Wood et al., 2014). For MDD, these genes have been reported to be associated with 446 

major depressive disorder and other psychiatry phenotypes (Arnau-Soler et al., 2019; Howard 447 

et al., 2019; Liu et al., 2019; Luciano et al., 2011; Wray et al., 2018; Zeng et al., 2017). In one 448 

of such regions for MDD, five SNPs within the region are individually significantly associated 449 

with MDD at the nominal level (p-value < 0.05). Four of these SNPs lie within the gene 450 

sequence of MYRIP, and they each confer 2% disease risk. A conventional GWAS analysis 451 

would have missed these nominally associated SNPs because they will not reach genome-452 

wide (GW) significance. However, analysing these SNPs within the region as haplotypes, gave 453 

us the power to detect the combined effect of these SNPs in the region at a suggestive-454 

significance level even with our relatively small sample size compared to recent genome-wide 455 

association studies of MDD: 322,580 (Howard et al., 2018), and 480,359 (Wray et al., 2018).  456 

The current study's primary strength is the ability of SNHap-RHM to incorporate SNP 457 

and haplotype information jointly to map genomic regions that affect complex traits. This 458 

gives SNHap-RHM a uniquely useful role to play in the future of complex traits analysis. The 459 

plummeting costs of whole-genome resequencing (Caulfield et al., 2013) has shifted research 460 

focus in GWA studies towards sequence data analysis (Höglund et al., 2019). Although whole-461 

genome sequence data analysis allows incorporating all the genetic variants that drive the 462 
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phenotypic variation, there may still be some variants whose individual effects may be too 463 

small to be picked up in a conventional GWA analysis. However, regionally analysing sequence 464 

information can help overcome this because multiple small-effect variants in a region can add 465 

up to a substantial regional effect that can be captured by a regional SNP GRM or tagged by 466 

a haplotype GRM. Moreover, by defining haplotype blocks using recombination hotspots, 467 

whole-genome information can be summarised naturally without setting arbitrary blocks. 468 

More so, regional heritability analysis of sequence data would be an efficient way to deal with 469 

the burden of multiple testing which has long been a problem of conventional GWAS. 470 

One limitation of the current study is the computation burden of the analyses which 471 

necessitates the pre-correction of the phenotypes with the whole-genome GRM before 472 

performing SNHap-RHM. This step involved 22 separate GREML analyses each fitting a whole-473 

genome GRM that excluded SNPs from one chromosome. Although this was done to speed 474 

up the analysis, this step was used as an approximation to account for the background 475 

polygenic effects of genetic markers outside each region; this would have been about 48,772 476 

separate GREMLs to account for each region. Also, although this study thoroughly evaluates 477 

the robustness of SNP and Haplotype RHM using simulation and demonstrates the utility of 478 

SNHap-RHM in real phenotype analysis, seeking replication in other cohorts could have 479 

improved our understanding and more importantly demonstrate that the analysis is portable 480 

across studies and genotyping platforms. 481 

Conclusions 482 

We have implemented a regional GREML analysis and undertaken analyses of regions 483 

in the genome delimited by recombination boundaries and shown by simulation that 484 

haplotype-based GRMs can capture genetic variance that may be missed by conventional 485 
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SNP-based GRMs. We then applied this method in the analysis of real phenotype data from 486 

GS: SFHS. Again, we show that the haplotype-based regional GREML model uncovers 487 

associations in regions of the genome that explain genetic variance missed by the SNP-based 488 

GREML model. In light of this, we went further to show that regional effects can still be 489 

captured when the two regional GRMs (SNP and haplotype-based) are fitted jointly: an 490 

analytical procedure we termed as SNHap-RHM. This SNHap-RHM presents an exciting new 491 

opportunity to analyse complex traits by allowing the joint mapping of novel genomic regions 492 

tagged by either SNPs or haplotypes, potentially leading to the recovery of some of the 493 

“missing” heritability.  494 
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Table 1. SNP-based association test of MDD in the MYRIP gene region. The columns are the SNP ID, 915 

chromosome, genome position of SNP, minor allele frequency, odds ratio, log of odds ratio, standard 916 

error of log odds ratio and association p-value.   917 

SNP information Depression association 

SNP ID Chr Pos MAF OR Log (OR) SE (logOR) p 

rs9842160 3 39844703 0.14 0.97 -0.030 0.013 0.02 

rs9858242 3 39847606 0.19 1.02 0.025 0.011 0.03 

rs1599902 3 39954674 0.41 1.02 0.019 0.009 0.04 

rs7618607 3 39947936 0.41 1.02 0.019 0.009 0.04 

rs9860916 3 39944942 0.41 1.02 0.019 0.009 0.04 

 918 

 919 

Table 2. Comparison of SNPs within significant regions identified by both models and published GWAS 920 

results for height and MDD.  The columns are the name of trait, number of SNPs in regions identified 921 

by SNP-RHM and Hap-RHM with p-value < 5	 × 10!" and SNPs in published GWAS (pubGWAS) for the 922 

traits, and the number of SNPs overlapping between the three.   923 

 Number of SNPS  Number of overlapping SNPS 
Trait SNP-RHM Hap-RHM pubGWAS SNP-RHM & 

Hap-RHM 
SNP-RHM & 
pubGWAS 

Hap-RHM & 
pubGWAS 

Height 1380 45 4960 0 57 0 

MDD 78 495 1815 0 0 0 

 924 

 925 
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Figure 1. A Schema outlying SNHap-RHM 

Estimate relationship coefficients using haplotypes shared

• Relationship values between individuals are based on 
haplotypes shared and haplotype frequencies

• Although 1 and 16 may share SNP alleles they are 
unrelated at the haplotype level.

Genomic relationship coefficients based on expected proportion of SNP 

alleles shared

• Average proportion of marker alleles in common over all 
SNPs
• Only identical by state – not descent 
• Scale to give greater weight to rare alleles

• Genome is broken into haplotype blocks delimited by 
recombination hotspots

• Haplotype – a set of linked SNP alleles in a haplotype block 
on same chromosome

• SNPs and haplotypes are used to construct regional 
relationship matrices.

SNP Haplotype Regional Heritability Mapping (SNHap-RHM)

genotypes

,…,

Phenotype = Fixed effects +++
Regional haplotype GRMRegional SNP GRM Genome-wide SNP GRM

SNHap-RHM Summary
• Use regions bounded by recombination hotspots
• Uses two regional GRMs and a genome-wide GRM
• Localizes regions with effect on phenotype
• Combined effect of rare or small effect variants may be detectable
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Figure 2. Plots of Likelihood ratio test (LRT) statistics at each QTL loci and 5 regions either side averaged for the 20 
simulations of each of the five QTL phenotypes. Plot (i) is SNP QTL phenotypes analysed using the SNP-RHM and plot (ii) is 
the haplotype QTL phenotypes analysed using the Hap-RHM. Both models can capture the simulated QTL effects for their 
respective SNP and haplotype phenotypes.

i. ii. 
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Figure 3. Plots of average LRT statistics over replicates of QTL loci across the chromosomes for the 20 simulations of each of the two SNP 
QTL phenotypes. The red dashed lines are genome-wide significance threshold (for 48,772 regions) and the black dashed lines are 
Bonferroni significance threshold (for 220 regions). The upper plot (i) is the 1-SNP QTL phenotype, and the lower plot (ii) is the multiple 
SNP QTL phenotype. The two phenotypes are analysed using both the SNP based model (SNP-RHM) (blue points) and the Haplotype based 
model (Hap-RHM) (red points). The Hap-RHM fails to capture the simulated effects for the SNP QTLs.

i.

ii.
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Figure 4. Joint analysis of the SNP and haplotype phenotypes using SNHap-RHM. The plot is an analysis of one replicate of each of the
simulated phenotypes. The LRT statistics are plotted over QTL loci across the chromosomes. The red dashed lines are genome-wide
significance threshold (for 48,772 regions) and the black dashed lines are Bonferroni significance threshold (for 220 regions).
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Figure 5. The genome-wide evidence of haplotype block association for height. Analysis done with SNHap-RHM, SNP-RHM and Hap-RHM.
The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The green lines are the 
Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold calculated to be p-
value < 1 ×10!". The top association hits at p-value < 5 ×10!" with genes located within the region are highlighted in blue for SNP-RHM 
and red for the Hap-RHM. 
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Figure 6. The genome-wide evidence of haplotype block association for Major Depressive Disorder. Analysis done with SNHap-RHM, SNP-
RHM and Hap-RHM. The points are plots of -log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The 
green lines are the Bonferroni-corrected genome-wide significance threshold and the red lines are the suggestive significance threshold 
calculated to be p-value < 1 ×10!". The top association hits at p-value < 5 ×10!" with genes located within the region are highlighted 
in blue for SNP-RHM and red for the Hap-RHM. 
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