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Abstract 

Background 

Gene fusions play a key role as driving oncogenes in tumors, and their reliable discovery and 

detection is important for cancer research, diagnostics, prognostics and guiding personalized 

therapy. While discovering gene fusions from genome sequencing can be laborious and costly, 

the resulting “fusion transcripts” can be recovered from RNA-seq data of tumor and normal 

samples. However, alleged and putative fusion transcript can arise from multiple sources in 

addition to the chromosomal rearrangements yielding fusion genes, including cis- or trans-

splicing events, experimental artifacts during RNA-seq or computational errors of transcriptome 

reconstruction methods. Understanding how to discern, interpret, categorize, and verify predicted 

fusion transcripts is essential for consideration in clinical settings and prioritization for further 

research. Here, we present FusionInspector for in silico characterization and interpretation of 

candidate fusion transcripts from RNA-seq, enabling exploration of sequence and expression 

characteristics of fusions and their partner genes.  

Results 

We applied FusionInspector to thousands of tumor and normal transcriptomes, and identified 

statistical and experimental features enriched among biologically impactful fusions. Through 

clustering and machine learning, we identified large collections of fusions potentially relevant to 

tumor and normal biological processes. We show that biologically relevant fusions are enriched 

for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and 

canonical splicing patterns, and are deficient in sequence microhomologies detected between 

partner genes.  

Conclusion 
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We demonstrate FusionInspector to accurately in silico validate fusion transcripts, and to help 

identify numerous understudied fusions in tumor and normal tissues samples. FusionInspector is 

freely available as open source for screening, characterization, and visualization of candidate 

fusions via RNA-seq. We believe that this work will continue driving the discipline of 

transparent explanation and interpretation of machine learning predictions and tracing the 

predictions to their experimental sources. 
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Background 

Gene fusions are intensely studied for their relevance to disease and normal cellular biology. In 

cancer, gene fusions typically result from chromosomal rearrangements, including well-known 

drivers of cancer, such as BCR--ABL1 in chronic myelogenous leukemia (CML) (1, 2), 

TMPRSS2--ERG in prostate cancer (3, 4), and SS18--SSX1 or SS18--SSX2 in synovial sarcoma 

(5, 6). Charting the diversity of fusion transcripts present in tumor and normal tissue is important 

for our basic understanding of the complexity and biological function of the transcriptome in 

normal and disease states, molecular diagnostics of cancer patients, and neoepitope discovery for 

targeting in personalized immunotherapy with cancer vaccines or T cell therapy (7, 8). 

 

The structural rearrangements leading to gene fusions can be detected or inferred through whole 

genome sequencing or from the presence of “fusion transcripts” in whole transcriptome 

sequencing (RNA-seq) (9, 10). Given the easier and economical nature of RNA-seq compared to 
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whole genome sequencing, and the effective methods for transcript assembly, RNA-seq has 

emerged as a leading experimental method for fusion transcript discovery and detection in both 

cancer research and molecular diagnostics. Fusions detected at the RNA level may also be 

causally responsible for functional and phenotypical changes. Dozens of computational tools 

have been developed to mine fusion transcripts from RNA-seq data (as referenced in (11)), and 

there have been multiple efforts to build catalogs of fusions across tumor and normal tissues (12-

17). In general, tumor-specific fusion transcripts are presumed to derive from chromosomal 

rearrangements as commonly encountered in tumor samples, whereas fusions identified in 

normal samples are considered more likely to be derived from normal karyotypes, thus reflecting 

other underlying causes, such as read-through transcription and cis- or trans-spliced products.  

 

However, predicting fusions from RNA-seq data is challenging and the various methods 

developed to predict fusion products from RNA-seq vary tremendously in their accuracy for 

fusion detection, leading to both false positives and false negatives (11, 18, 19). False positives 

can be driven by experimental artifacts that arise during reverse transcription or PCR 

amplification, and by computational mis-mapping of reads to target gene sequences (20), as well 

as specific differences in prediction tools. Moreover, as sequencing depth increases, the 

probability of detecting rare reads that support a fusion transcript prediction increases. This may 

be due to either lab artifacts or to real, low-rate trans-splicing of little functional relevance. Thus, 

there is an urgent need to understand the features that drive fusion detection and to generate high 

quality catalogs of well supported fusions. 
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Here, we describe FusionInspector, a method to assess and document the evidence for fusions. 

We subsequently demonstrate its applicability to understand the features of reliable fusion 

transcript predictions and to generate a large catalog of predicted fusions across tumor and 

healthy tissues. FusionInspector reassesses the read alignment evidence supporting pre-specified 

candidate fusion transcripts, compares the relative alignment evidence for a fusion transcript vs. 

its unfused partner transcripts. FusionInspector further evaluates the fusion transcript breakpoints 

in relation to sequence features considered representative of experimental and bioinformatic 

artifacts (21, 22), including canonical splicing sequences, reference exon gene structures, and 

regions of microhomology between partner genes. We integrate FusionInspector with our fusion 

prediction tool STAR-Fusion (11), where it can be used either for in silico validation of STAR-

Fusion predictions, or as a standalone utility for evaluating other fusion predictions or screening 

a user-defined panel of fusions of interest. We show that FusionInspector’s evaluation increases 

transparency and overall fusion prediction accuracy of an individual method or across an 

ensemble of methods. Finally, we apply FusionInspector to examine recurrent fusions predicted 

among thousands of tumor and normal samples and identify new groups of fusions potentially 

relevant to tumor and normal tissue biology. 

 

Results 

 

Development of FusionInspector for in silico evaluation of predicted fusion transcripts  

FusionInspector (Figure 1) performs a supervised in silico evaluation of a specified set of 

candidate fusion transcripts, either predicted by STAR-fusion or another method from RNA-seq 

data, or a user-defined panel. FusionInspector captures all read alignments in the RNA-seq that 
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provide evidence for the specified fusions or for the unfused partner genes, and further explores 

the candidate fusion genes for regions of microhomology (defined as short identical sequence 

matches of length k (here k=10)), and the proximity of microhomologies to putative fusion 

breakpoints. 

 

To capture evidence supporting candidate fusions, FusionInspector identifies those reads that 

align concordantly between fusion genes as juxtaposed in their fused orientation and provide 

concordant alignments that span the two genes in this rearranged context. There are two types of 

fusion-supporting alignments: (1) split-reads that define the fusion breakpoint, and (2) spanning 

fragments, where each paired-end read aligns to an opposite partner gene and the fragment 

bridges the fusion breakpoint (Figure 1). FusionInspector leverages STAR aligner (23), which 

we enhanced here to support FusionInspector's mode of action. As input to STAR, we provide 

the entire reference genome along with a set of fusion contigs constructed by FusionInspector 

(based on the list of specified fusion candidates), and STAR aligns reads to the combined 

genome targets and reports those aligned to the fusion contigs for further evaluation by 

FusionInspector (Methods). 

 

Next, FusionInspector computes a number of features associated with the fusion based on these 

alignments. First, it uses the number of reads exclusively supporting each fusion as a proxy for 

the expression of the fusion transcript (similarly, read alignments overlapping the fusion 

breakpoint and exclusively supporting the unfused partner genes are a proxy for the expression 

levels of the unfused partner genes). Second, it computes the fusion allelic ratio (FAR) for the 

fusion with respect to each (5’ or 3’) partner transcript (5’-FAR and 3’-FAR) as the ratio of 
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mutually exclusive reads supporting the fusion vs. each unfused partner gene (Figures 1, S1). 

Third, it examines fusion breakpoints inferred from the read alignments for canonical 

dinucleotide splice sites at boundaries of the breakpoints in each partner gene and for agreement 

with available reference gene structure annotations. When there is evidence that supports 

multiple fusion transcript isoforms for a given fusion gene, FusionInspector uses an expectation 

maximization (EM)-based algorithm to fractionally assign mutually compatible spanning 

fragments to the corresponding isoforms (Methods). It then filters fusion candidates according to 

minimum evidence requirements (at least one split read to define the junction breakpoint, and at 

least 25 aligned bases supported by at least one read on both sides of the fusion breakpoint; 

Methods). Finally, it captures microhomologies between putative fusion genes and determines 

the proximity of a fusion breakpoint to the nearest site of microhomology. Using these sequence 

and expression attributes of fusions and known characteristics of biologically relevant fusions 

(below), FusionInspector further predicts whether each in silico validated fusion candidate is 

likely to be biologically relevant or alternatively has features consistent with experimental or 

bioinformatic fusion artifacts. 

 

We illustrate these features in the context of two contrasting examples of fusion types (Figure 

2). Fusion EML4--ALK, a known cancer driver prevalent in lung adenocarcinoma (24, 25), has 

evidence of multiple transcript isoform structures, and while microhomologies are found 

between the EML4 and ALK genes, they tend to be distal from the fusion isoform breakpoints 

(Figure 2a). The EML4--ALK fusion breakpoints are all found at consensus dinucleotide splice 

sites that coincide with exon boundaries of reference gene structure annotations. In contrast, 

FusionInspector captures many reads supporting a putative fusion KRT13--KRT4, but the 
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breakpoints inferred from split read alignments mostly have non-consensus dinucleotide splice 

sites and coincide with sites of microhomology, additionally, split reads with consensus 

dinucleotide splice sites mostly do not coincide with reference exon boundaries (Figure 2b). 

Because KRT13 and KRT4 are only distantly related with no easily detected nucleotide-level 

sequence conservation, their fusion may not be discarded by fusion transcript predictors. 

However, given that most fusion evidence coincided with sites of microhomology and the lack of 

consensus splicing at breakpoints, we infer that the putative KRT13--KRT4 fusion is artifactual. 

Another particularly compelling example of a similarly misleading and likely artifactual fusion is 

COL1A1--FN1, which is detected as prevalent in cancer-associated fibroblast cell lines (Figure 

S2). Further consideration of fusion and partner gene expression levels can aid in evaluating and 

prioritizing fusion candidates for further study, as we pursue below. 

 

In silico benchmarking of FusionInspector validation accuracy 

 

We benchmarked FusionInspector for fusion detection and analysis across 60 cancer cell line 

transcriptomes, using our previously established benchmarking framework (11). We assessed 

FusionInspector in two modes: using STAR-Fusion (current v1.9.1) predictions as the exclusive 

targets, or using the union of 24 different prediction methods (Table S1).  

 

Using FusionInspector following STAR-Fusion consistently yielded better performance 

compared to our earlier evaluated prediction methods (Figure S3). While FusionInspector in this 

execution mode cannot find additional fusions not initially predicted by STAR-Fusion, it 
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increased its positive predictive value (Figure S3a) by eliminating fusion predictions based on 

alternative assessments of read support, while largely retaining sensitivity. 

 

Applying FusionInspector in fusion screening mode by providing it with all fusions predicted by 

any of 24 different methods (as in Table S4 of (11), Methods), FusionInspector had high 

accuracy and was among the top performing methods (Figure S3b). This allowed 

FusionInspector to also capture likely true fusions not captured by STAR-Fusion but predicted 

by other methods (Table S1). 

 

A high-quality catalog of recurrent fusion transcripts from cancer and healthy tissue using 

FusionInspector 

 

We next used FusionInspector to create a vetted catalog of recurrent fusion transcripts based on 

RNA-Seq from tumors (from TCGA (26)) and matched healthy tissue (from TCGA and GTEx 

(27)). We first predicted fusion transcripts with STAR-Fusion (v1.7) across 9,426 tumor and 707 

normal samples from TCGA, and 8,375 normal samples from GTEx (Table S2). We initially 

applied lenient fusion evidence requirements to maximize sensitivity (Methods). As a result, 

putative fusion transcripts were detected in nearly all tumor and normal samples. After applying 

a minimum expression level threshold (0.1 FFPM), we detected a significantly higher number of 

fusions in tumors vs. paired normal samples in several TCGA tumor types (Figure S4a), 

although there were similar median numbers of predicted fusions per sample type in TCGA 

tumor and GTEx normal samples (t-test, p=0.5, Figure S4b). We readily identified known 

cancer fusions included in the COSMIC fusion collection (28, 29) (“COSMIC-fusions”, Figure 
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3a) according to known disease associations and prevalence, such as TMPRSS2--ERG identified 

in roughly half of prostate cancers (3), FGFR3--TACC3 in glioblastoma (30), and PML--RARA 

in the acute promyelocytic leukemia subtype of acute myeloid leukemia (31). COSMIC fusions 

were more highly expressed than most predicted fusions, which had low estimated expression 

levels and few supporting reads (Figure 3b-d).  

 

Next, we used FusionInspector to examine the sequence and expression features of fusion 

transcripts that were recurrently detected across tumor and/or normal samples, in order to 

distinguish biologically impactful fusions (akin to the COSMIC fusions) from experimental or 

computational artifacts, or from low levels of cis- or trans-splicing from highly expressed genes. 

To this end, we analyzed 53,240 fusion isoforms (38,591 fusion occurrences and 14,649 

alternatively spliced fusion isoforms) from 628 TCGA and 530 GTEx representative samples 

(Methods). For each fusion candidate, FusionInspector identified the number of reads supporting 

the fusion and those supporting the unfused partner genes at putative breakpoints, identified 

regions of microhomology between partner genes, and determined the following features: 

inferred fusion expression level (FFPM), 5’ and 3’ fusion allelic ratios (5’-FAR, 3’-FAR), 5’ and 

3’ unfused gene expression levels (5’-counter-FFPM and 3’-counter-FFPM), presence of 

consensus vs. non-consensus dinucleotide splice sites at fusion breakpoints, agreement or 

disagreement with reference gene structure exon boundaries at splice junctions, number of 

microhomologies observed between the two partner genes, and the distance of each inferred 

fusion breakpoint to the nearest site of microhomology. 
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To distinguish fusion artifacts from those with features consistent with biologically impactful 

fusions, we clustered fusions by their feature profiles (Figure 4a, Table S3, Methods). The 

clustering procedure produced 61 high granularity clusters, which we further grouped by 

hierarchical clustering according to median fusion attribute values in each fine cluster (Figure 

4b). We then focused on examining clusters enriched for COSMIC fusions as a proxy for 

biologically impactful fusions.  

 

One fusion cluster (C4) was significantly enriched with COSMIC fusions, harboring 57% of our 

detected instances of COSMIC fusions among these samples, but only 4% of all called fusions (p 

< 10-90, Fisher's Exact one-sided test) (Figure 4b). Fusions in this cluster had splice breakpoints 

consistent with consensus splice sites and matching known reference gene structure exon 

boundaries, were relatively highly expressed, and were deficient in microhomologies between 

fusion partner genes. Most of the COSMIC fusions in C4 also have a 3’-FAR that exceeds the 5’-

FAR, consistent with the fusion transcript being driven from an active 5' partner's promoter and a 

3' unfused partner expressed at lower levels (Figure S5). Sixteen additional clusters, all but one 

(C10) of which are members of one large hierarchical cluster with related features, had at least 

two COSMIC fusions per cluster and spanned 34% of the fusions overall.  

 

Conversely, other fusion clusters had features indicative of experimental or computational 

artifacts, especially enrichment in microhomologies that could confound alignment or contribute 

to RT mis-priming, and had no COSMIC fusions. We thus consider those fusions as putative 

artifacts. These clusters encompassed 3% of all fusion occurrences (restricted to the highest 

expressed fusion isoform per occurrence): 2/3 (2% of all fusions) had moderately-to-highly 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454639doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454639
http://creativecommons.org/licenses/by/4.0/


 12

expressed partner genes, suggesting origination from RT mis-priming, and a 1/3 with little 

evidence for partner gene expression, suggesting read misalignments artifacts. The low portion 

of such presumed artifacts is a testament to STAR-Fusion's rigorous filtering (11). Finally, 

another 1% of fusions involve highly expressed partner genes, where the detected fusion 

represented a small fraction of the total expression from these loci. These fusions may result 

from low levels of cis- or trans-splicing from the highly expressed partner genes.  

 

Targeted screening for novel COSMIC-like fusions by a classifier 

 

We reasoned that the set of 1,511 predicted fusion occurrences (835 distinct gene pairings) that 

were members of the COSMIC enriched cluster C4, are likely enriched for fusions of functional 

significance and should be prioritized for further study. Some are already known to be relevant to 

cancer but not yet included in the COSMIC database, such as EGFR--SEPT14 (32), PVT1--

MYC (33-35), and TPM3--NTRK1 (36). Others are reciprocal fusions for COSMIC fusions that 

could result from balanced translocations, including reciprocal ABL1--BCR1 of COSMIC 

BCR1--ABL1, BRAF--SND1 of COSMIC SND1--BRAF, and PPARG--PAX8 of COSMIC 

PAX8--PPARG. This fusion cluster is also enriched for fusions exclusively identified in 

pancreatic tissue (explored below). 

 

To gain further insights into the characteristics of the COSMIC-like fusions in C4, we screened 

additional TCGA and GTEx samples to characterize additional occurrences of C4 representative 

fusions. We refocused FusionInspector on 236 key fusions (231 C4 recurrent fusion gene pairs 

including 26 COSMIC fusions, and another five COSMIC fusions not included in C4, Methods, 
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Table S4 (37)). We screened each of 2,764 TCGA and 1,009 GTEx representative samples for 

these 236 fusions (Methods), using FusionInspector’s screening modality, collecting 

FusionInspector validations and attributes for 37,211 additional fusion occurrences (Figure 5, 

Figures S6a-e, Table S5), and ranked fusions by the difference in their initial STAR-Fusion 

detected prevalence in tumors vs. normal samples. Finally, to determine whether additional 

occurrences of these fusions have characteristics consistent with C4 fusions, general COSMIC-

like fusions, are artifact-like, or belong to another category, we trained a random forest classifier 

using examples of fusions from the initial analysis to predict the labels of each of 61 Leiden 

clusters and applied it to predict the cluster labels of fusion isoforms examined in this expanded 

targeted survey. Finally, we categorized each fusion occurrence by the overall category (e.g., 

“COSMIC-like”) of the hierarchical cluster to which the Leiden cluster label it was classified to 

belongs (Figure 5a, Methods). In this way, we could distinguish individual fusion isoforms by 

their characteristics in the context of all the analyzed fusions. 

 

FusionInspector-screened occurrences of known COSMIC fusions were mostly tumor-enriched 

with few to no normal samples identified with evidence (noting all 1,009 GTEx normal samples 

were screened by FusionInspector for an identical list of the COSMIC fusions). For most (27/31) 

known COSMIC fusions, at least 80% of fusion occurrences were classified as COSMIC-like, 

with the remaining four having at least half of occurrences classified as COSMIC-like, and none 

were classified as artifacts (Figure 5a, Table 6S). All but 31 of the 236 fusions had instances 

classified as C4, and all but 39 had at least 50% of their occurrences classified as COSMIC-like. 

Only 7 fusions had at least 10% of their occurrences classified as having high counter-evidence 
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(C49 or C51), and only 9 fusions had any occurrences predicted as artifacts, with both categories 

enriched for pancreas-specific fusions (further discussed below). 

 

This analysis highlighted intriguing, well supported fusions for further study. For example, while 

the top-ranked tumor-enriched fusion, FGFR3--TACC3 (rank 1, 70 tumor samples, 0 normal) is 

a known oncogenic driver (30), other top ranking fusions, such as CCAT1--CASC8 (rank 2, 42 

tumors - mostly lung and stomach cancers, 0 normal) and VCL--ADK (rank 3, 36 tumors - also 

mostly lung and stomach cancers, 0 normal) have not yet been extensively studied. CCAT1--

CASC8 was only recently reported in the fusion catalog generated by DEEPEST fusion (17), and 

VCL--ADK was only previously reported in a study of cancer cell lines (12).  

 

Some fusion transcripts are prevalent in normal tissues and may not be oncogenic 

Approximately half of the 236 C4 targeted fusions in our analysis were robustly detected in 

normal tissues; these may not be particularly relevant to cancer biology, but may play a role in 

normal biological processes. Of these, 61 fusions are broadly expressed across at least five 

tissues, involve intra-chromosomal pairs of genes, and can be largely explained by read-thru 

transcription, local rearrangements or trans-splicing of neighboring transcripts.  

 

Some other putative fusions that are prevalent in normal tissues may in fact represent normal 

structural variation in the human genome, which is not accounted for when performing read 

alignment to a single human reference. For example, Fusion KANSL1--ARL17, which would 

require a local rearrangement in the human reference genome, is prevalent across both tumor and 

normal tissues (median of 31% of individuals, Figure S7), and is known to correspond to a 
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common haplotype involving a locally rearranged genomic region observed in populations of 

European descent (38). An earlier report identified KANSL1--ARL17 in diverse tumor samples 

and proposed that it may be a cancer predisposition germline fusion specific to Europeans (39). 

Note, however, that no specific human genetic association evidence was shown for 

predisposition thus far, and we observe slightly higher prevalence of KANSL-ARL17 among 

GTEx normal samples than tumors from TCGA (Figure S7). Another normal fusion due to a 

rarer germline structural variation is TFG--GPR128, previously associated with a copy number 

variation and a haplotype frequency estimated at around 2% of European descent (40). 

Consistently, we find TFG-GPR128 broadly expressed across tumor and normal tissues and 

represented similarly at a median of 2% of all tissues examined (Figure S8). As more evidence 

of common structural variation becomes available, other prevalent fusions found in normal 

tissues may be more easily explained. 

 

Another set of fusions that are less easily explained involve those we found only in normal 

pancreas and pancreatic carcinoma (Figures 4, S5e), involving various pairwise combination of 

CPA1, CPA2, CLPS, CELA2A, CELA3A, CTRB1, CTRB2, and CTRC (e.g., CELA3A--CPA2, 

CELA3B--CELA2A, and CELA3A--CELA2A) fused to generate in-frame fusion products. 

These genes are among the highest expressed in pancreas and mostly on different chromosomes, 

suggesting trans-splicing may be the predominant underlying mechanism. While the transcripts 

were within the COSMIC-peak-enriched fusion cluster, the random forest based fusion classifier 

did not predict their newer instances as COSMIC-like, and some of them (e.g., CELA3A--

CTRC) have high fractions of occurrences predicted as 'high-counter-evidence' or 'artifact-like' 

types (Figures 5, S6e, Table 6S). 
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Some well-established oncogenic fusions are also reliably detected in normal samples 

Several of the COSMIC fusions or other tumor-enriched fusions with known ties to cancer were 

surprisingly identified in both tumor and normal samples. For example, the prostate cancer 

fusion TMPRSS2—ERG, identified as our fourth most tumor-enriched fusion (182 of 465 

TCGA prostate tumor samples), is also detected in six normal prostate samples (5 TCGA, 1 

GTEx) (Figure S6a). TMPRSS2—ERG was only identified by FusionInspector in prostate 

tumors or normal prostate, reflecting both its high tumor-specificity and high specificity of 

fusion-calling.  

 

In another example, COSMIC fusion PVT1--MYC was originally identified by STAR-Fusion in 

21 samples (14 TCGA tumor, 1 TCGA normal, and 5 GTEx samples). Interactions between 

PVT1 and MYC including their fusion are well-known contributors to tumorigenesis (33-35). 

Through subsequent screening of PVT1--MYC with FusionInspector, we identify additional 

samples, totaling 32 samples (+9 TCGA tumor, +1 TCGA normal, and +3,-1 GTEx). Most 

(21/32) are expressed at low levels (below 0.1 FFPM), and we do not find strong evidence for 

expression to be generally higher in tumor samples than normals (p < 0.07, Wilcoxon rank sum 

test). However, five of the 32 PVT1--MYC occurrences were identified in cervical cancer 

tumors, and all were significantly more highly expressed than the other samples (p < 0.02), with 

the most highly expressed at 19 FFPM (Figure S9). PVT1 and MYC are co-localized to a 

proximal region in the bottom arm of chromosome 8 and a PVT1--MYC fusion would likely 

involve local restructuring at the locus in tumors to generate the fusion product. Interestingly, 

this chromosome 8 region is a known hotspot for insertion of human papilloma virus (HPV) (41), 
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the leading cause of cervical cancer (>90% of cases). Most of the TCGA cervical cancer samples 

we identified with PVT1--MYC have HPV insertions at this hotspot (see Table S3 of (41)). 

Thus, we hypothesize that HPV insertion contributes to the formation of the PVT1--MYC 

fusions. We did not find evidence for HPV insertion in the breast cancer sample with similar 

levels of PVT1--MYC expression (data not shown). 

 

COSMIC fusion VTI1A--TCF7L2, originally identified as an oncogenic fusion in colorectal 

cancer (42), was most abundant in stomach, colon, and esophageal carcinoma samples, but also 

detected in seven individual GTEx normal samples (brain, whole blood, tibial nerve, tibial artery, 

prostate, and breast) (Table S5). While VTI1A--TCF7L2 was not enriched for detection in 

tumors vs. normal, only those fusions in colon cancer were highly expressed (> 0.15 FFPM), 

whereas other tumor and normal instances were lowly expressed (<0.05 FFPM; many at the limit 

of detection; Figure S10), supported by a single split read defining the fusion breakpoint (Table 

S5). This could be consistent with a very low proportion of cells in the normal tissue expressing 

the fusion, compared to a large clone in the tumor. 

 

Surprisingly, COSMIC fusion BCR--ABL1 was not tumor-enriched in our analysis, likely due to 

paucity of the relevant tumors in TCGA. In particular, BCR--ABL1 occurs in >95% of chronic 

myeloid leukemia (CML) cases (1, 2), but TCGA lacks CML samples. Indeed, the four TCGA 

tumors with BCR--ABL1 likely correspond to another subtype of AML defined with this fusion 

(43). Three of these AML tumors also have evidence of the reciprocal ABL1--BCR fusion, and 

the oncogenic BCR--ABL1 is expressed at higher levels than the reciprocal counterpart in each 

sample. Interestingly, we detected eight instances of the oncogenic BCR--ABL1 fusion (and 
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none of the reciprocal) in seven different GTEx normal tissues (1 each of adipose, breast, nerve, 

prostate, and thyroid and 2 pancreas). We observed no sequence or expression features 

distinguishing these fusions from those we identified in AML, and fusion breakpoints for those 

in GTEx normal tissues are identical to those found in AML. In general, when we find COSMIC 

fusions in GTEx normal samples, they are found at low frequencies (< 1% prevalence in a tissue 

type). 

 

Novel COSMIC-like fusion potentially relevant to breast and nasopharyngeal cancer  

Other fusions clustered outside of C4 and found tumor enriched may also warrant further 

attention. For example, novel COSMIC-like fusion FSIP1--RP11-624L4.1 was detected in 22% 

of breast cancer tumors studied (240 of 1,086). While it was also detected in 14 normal breast 

samples (3 TCGA, 11 GTEx) and two additional samples (prostate and esophagus), its 

expression was significantly higher in tumors than normal tissue (Figure 6a, Benjamini 

Hochberg FDR < 0.004, Wilcoxon rank sum test). FSIP1 (fibrous sheath interacting protein 1) 

was previously identified as a prognostic marker for HER2-positive breast cancers and its high 

expression is associated with poor patient outcomes (44). Fusion partner RP11-624L4.1 is a 

lncRNA, which is collinear and 170kb downstream from FSIP1, and was recently identified as 

an oncogene relevant to nasopharyngeal carcinoma (45). FSIP1 and RP11-624L4.1 expression is 

positively correlated in both tumor and normal tissues (Pearson r = 0.6) and the fusion FSIP1--

RP11-624L4.1 is found only among those samples most highly expressing both fusion partners 

(Figure 6b). 

 

Discussion 
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We developed FusionInspector to enable exploration of the evidence supporting candidate 

fusions, flag likely artifacts, and identify those fusions with sequence and expression features 

similar to known biologically relevant fusion transcripts. Given a list of candidate fused gene 

pairs, FusionInspector captures RNA-seq read alignments that support either the fused genes or 

the unfused partner genes. From the fusion and partner gene expression evidence coupled with 

sequence features relating to the fusion breakpoint, FusionInspector helps the user to reason 

about the nature and quality of any target fusion transcript.  

 

Clustering fusions by shared sequence and expression features identified a cluster of fusions 

highly enriched for COSMIC fusions. Fusions in this COSMIC “peak enriched” cluster had 

relatively high fusion expression with 3’-FAR generally exceeding 5'-FAR, suggesting 

oncogenic activity from the 3'-fused transcript. Analysis initiated by fusions in the COSMIC 

peak enriched cluster highlighted several putative novel or less appreciated oncogenic fusions, 

including CCAT1--CASC8 and VCL—ADK, based on their feature similarity to other well-

known tumor-enriched fusions. Only ~3% of initially predicted fusions were members of clusters 

likely enriched for artifacts based on features such as high partner gene expression or sites of 

microhomology at or near the fusion breakpoint. The low artifact rate is likely due to the strong 

filtering of the initial input catalog from STAR-Fusion.  

 

While we focused on fusions identified in the COSMIC-peak-enriched cluster, other COSMIC-

like fusion clusters also harbor important oncogenic fusions. For example, the COSMIC fusions 

SS18--SSX1 and SS18--SSX2, known drivers of synovial sarcoma (5, 46), are in other clusters 
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(C38 & C39), due in part to their higher 5’-FAR. Another fusion of interest, FSIP1--RP11-

624L4.1 is present in 240 (22%) of breast tumors analyzed and in 16 normal breast tissues 

samples, where it is expressed at significantly lower levels. While the individual fusion partners 

have cancer associations (44, 45), any role for this newly identified fusion transcript deserves 

consideration in further exploring the roles of both genes in disease. 

 

In some cases, fusions that were found in both tumor and normal tissues might reflect a low level 

of oncogenic events. For example, hallmark driver fusions including TMPRSS2--ERG and BCR-

-ABL1 are also detected in GTEx normal tissue samples, which may reflect low proportion of 

pre-malignant or transformed cells (47). We also detect COSMIC fusion VTI1A--TCF7L2 across 

multiple tumor and normal tissue types (consistent with (48)), but only highly expressed in colon 

cancer samples where it is a postulated oncogenic driver (42, 49). Whether such a fusion could 

contribute to tumorigenesis in a different tissue with different cellular circuitry remains 

unknown.  

 

Fusions that were prevalent among normal tissues can mostly be explained by read-through 

transcription and cis-splicing of colinear genes, but some may simply reflect natural germline 

structural variations that may exist in the population. With ongoing advancements in methods for 

detecting and cataloguing of structural variants(50, 51), we may soon better understand the 

structural basis for many naturally occurring fusion transcripts. Access to matched RNA-seq and 

whole genome sequencing of the same samples across individuals would greatly facilitate such 

efforts. 
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Pancreas stood out as a clear outlier among all normal tissues explored for fusions. While we 

suspect some of the putative fusions detected in pancreas are derived from RT or alignment 

artifacts, several did have features consistent with trans-splicing of highly expressed partner 

genes, with trans-spliced products yielding in-frame proteins. In general, these fusion 

occurrences do not have COSMIC-like sequence and expression features. Trans-spliced in-frame 

fusion transcripts have the potential to expand functional diversity from our otherwise linear 

genomes (52), and even if these pancreas specific candidates failed to ultimately reach our 

COSMIC-like prioritization status, they may be worth additional studies.  

 

FusionInspector opens the way to further explore the biological impact of the predicted fusions 

and the tissues and gene expression networks in which they are phenotypically relevant. 

FusionInspector helps illuminate the evidence supporting fusions in RNA-seq, or to sensitively 

and accurately screen for relevant fusions in samples of interest. Since short reads remain limited 

in their capacity to represent full length fusion transcripts, FusionInspector further integrates 

Trinity (53, 54) for de novo reconstruction to optionally reconstruct more full-length fusion 

transcripts from RNA-seq data aligned to each fusion contig. FusionInspector is available as a 

stand-alone application for screening lists of candidate fusion transcripts, and is also 

incorporated into STAR-Fusion for in silico validation or visualization of STAR-Fusion 

predicted fusion transcripts. This facilitates analysis of fusions from both bulk and single cell 

RNA-Seq, as we have recently demonstrated (55). 

 

Long read transcriptome sequencing may eventually obviate short read sequencing for fusion 

detection, thus removing the need for de novo reconstruction of full-length fusion transcripts (56, 
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57). Full-length single molecule direct RNA-Seq (58) should also avoid RT amplification 

artifacts. Conversely, other features scored by FusionInspector, such as expression characteristics 

of fusion transcripts with respect to partner genes, will remain relevant and easily adapted for 

long read RNA-seq. 

 

Machine learning is likely to play an increasingly important role in biomedical science and its 

clinical applications. In this paper we emphasize an important companion direction to machine 

learning, namely generating transparent and interpretable predictions, loosely referred to as 

explanations. The area of explanations and causal interpretation is growing rapidly in AI (59). 

We need to keep a reproducible trace of facts, predictions, and hypotheses from gene to function 

in the era of big data. 

 

We hope that the practical applicability of FusionInspector will help drive transparency and other 

explanatory efforts in predictive areas in genomics and personalized medicine more generally. 

FusionInspector is freely available as open source on GitHub, provided in container form via 

Docker and Singularity, and accessible on the Terra cloud computing framework for secure and 

scalable application across large compendiums of sample collections or patient-derived RNA-seq 

data.  

 

Conclusions 

FusionInspector helps users navigate the landscape of fusion transcript predictions, including 

screening and reassessment of evidence supporting fusion predictions, and visualization of the 

evidence via interactive reports (Figure S11). We demonstrated that FusionInspector can 
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successfully explore recurrent fusions in tumor and normal samples, and used it to identify 

clusters of fusions with features similar to those of known biological impact and potentially 

relevant to cancer or normal tissue biology, highlighting fusion transcripts that should be 

prioritized for further investigations. FusionInspector can be easily leveraged as an add-on 

component to any fusion transcript prediction pipeline, and is directly incorporated into STAR-

Fusion to facilitate execution as part of the Trinity Cancer Transcriptome Analysis Toolkit (60). 

 

Methods 

 

Fusion transcript prediction for TCGA and GTEx 

 

Fusions were predicted for TCGA and GTEx samples using STAR-Fusion (v1.7). First, the 

STAR (v2.6.1a) aligner was used to align RNA-seq reads from each sample to the human 

genome as follows:  

 

"STAR  --genomeDir ctat_genome_lib_build_dir/ref_genome.fa.star.idx --outReadsUnmapped 

None --chimSegmentMin 12 --chimJunctionOverhangMin 12 --chimOutJunctionFormat 1 --

alignSJDBoverhangMin 10 --alignMatesGapMax 100000 --alignIntronMax 100000 --

alignSJstitchMismatchNmax 5 -1 5 5 --runThreadN 16 --outSAMstrandField intronMotif --

outSAMunmapped Within --outSAMtype BAM Unsorted --readFilesIn reads_1.fastq 

reqds_2.fastq --outSAMattrRGline ID:GRPundef --chimMultimapScoreRange 10 --

chimMultimapNmax 10 --chimNonchimScoreDropMin 10 --peOverlapNbasesMin 12 --

peOverlapMMp 0.1 --genomeLoad NoSharedMemory --twopassMode Basic".  
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The resulting Chimeric.out.junction files generated by STAR containing candidate chimeric 

reads were then analyzed by STAR-Fusion like so "STAR-Fusion -J Chimeric.out.junction -O 

$output_dir/STARF --genome_lib_dir $ctat_genome_lib --min_FFPM 0 --no_annotation_filter" 

leveraging CTAT genome library GRCh38_gencode_v22_CTAT_lib_Sept032019.  

 

The parameters used here eliminated any filtering of fusions according to fusion expression 

levels or based on fusion annotations, so as to retain any fusions known to frequently occur in 

normal samples in both the normal and the tumor samples for further study. All STAR-Fusion 

predictions are provided in Table S1. 

 

Fusion tumor enrichment was computed for each fusion according to ( (# tumor with fusion + 1) 

/ (total tumor samples)) / ( (# normal with fusion + 1) / (total normal samples) ). 

 

FusionInspector method and implementation 

 

FusionInspector takes as input a list of candidate fusions and RNA-seq files in fastq format, with 

each fusion formatted as "geneA--geneB" indicating a candidate fusion between geneA (5’) and 

geneB (3’). Leveraging the companion CTAT genome library set of genomic resources (identical 

to that used with STAR-Fusion, including the human reference genome, gene structure 

annotations, and STAR genome index), FusionInspector constructs fusion contigs by extracting 

the genomic sequences for each geneA and geneB, and concatenating each geneA and geneB 

pair into a single contig in collinear transcribed orientation. Gene structure annotations for fusion 
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genes are similarly restructured to match the position and orientation of the corresponding genes 

in the fusion contigs. By default, long introns are shrunk to 1 kb in length by removing central 

regions of intron sequences, reducing the alignment search space and simplifying downstream 

visualizations.  

 

RNA-seq reads are aligned to the fusion contigs along with the whole reference genome by 

running STAR with both inputs, including the pre-indexed whole genome and a fasta file 

containing the fusion contigs. STAR first loads the whole reference genome index into RAM, 

then builds an index for the fusion contigs, and incorporates the fusion contig index into the 

whole genome index. Only those reads that align concordantly to the fusion contigs, while 

considering all alignments to the combined targets, are reported. Note, that in the fusion context, 

all fusion-supporting reads are aligned concordantly, but will align partially to one gene and 

partially to the adjacent gene. This functionality was implemented in STAR since version 2.5.0a 

to support FusionInspector functionality. STAR-Fusion directly executes STAR to align reads 

like so " STAR --runThreadN 4 --genomeDir ctat_genome_lib_build_dir/ref_genome.fa.star.idx 

--outSAMtype BAM SortedByCoordinate --twopassMode Basic --alignSJDBoverhangMin 10 --

genomeSuffixLengthMax 10000 --limitBAMsortRAM 47271261705 --alignInsertionFlush Right  

--alignMatesGapMax 100000 --alignIntronMax 100000 --readFilesIn reads_1.fastq.gz 

reads_2.fastq.gz --genomeFastaFiles finspector.fa --outSAMfilter KeepAllAddedReferences --

sjdbGTFfile finspector.gtf --alignSJstitchMismatchNmax 5 -1 5 5 --scoreGapNoncan -6 --

readFilesCommand 'gunzip -c' ", where 'finspector.fa' and 'finspector.gtf' correspond to the 

fusion contigs sequence and structure annotation files.  
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FusionInspector examines the aligned reads output by STAR and identifies read alignments 

supporting fusions between gene pairs represented by the fusion contigs. Candidate fusion 

breakpoints are identified by split read alignments having partial alignments that anchor to exons 

of the neighboring fusion genes. Spanning fragments are identified as paired-end reads having 

each read mapping entirely on opposite sides of the breakpoint. Alignments must meet minimum 

evidence criteria to be counted as evidence, and require at least 96% sequence identity and no 

more than 10 bases unaligned at their ends (soft- or hard-clipped bases). For split reads, at least 

10 bases must align adjacent to each breakpoint (anchor), and each anchor region must have 

sufficient sequence complexity, requiring entropy >= 1.2. For spanning fragments, each paired-

end read must have sufficient sequence complexity, requiring entropy >= 1.2. Preliminary fusion 

predictions are defined based on candidate fusion breakpoints and sets of compatible spanning 

fragments. RNA-seq fragments that span a candidate breakpoint but support transcription from 

an unfused partner gene are captured and stored as counter-evidence and used to compute the 

partner gene counter FFPM and fusion allelic ratio. 

 

There is often evidence for multiple fusion isoforms, and while the split reads are unique to and 

define each breakpoint, the spanning fragments are often compatible with multiple breakpoints 

and assigned ambiguously. We implemented an expectation maximization (EM) algorithm based 

on that described in kallisto (61) to fractionally assign RNA-seq evidence fragments to fusion 

isoforms according to maximum likelihood. Fusion expression values (FFPM) are then computed 

based on estimated RNA-seq fragment counts resulting from the EM.  
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Fusion candidates are then filtered according to defined minimum evidence requirement, with 

defaults set as requiring at least one split read to define the junction breakpoint, and at least 25 

aligned bases supported by at least one read on both sides of the fusion breakpoint. If the 

breakpoint involves non-consensus dinucleotide splice sites, then at least three split reads are 

required to support the breakpoint. Reads must also be found to align with at least 96% (default) 

sequence identity. A final filter of fusion predictions to exclude those containing overly 

promiscuous fusion partners (maximum 10) or those involving paralogs of more dominantly 

supported fusions is applied identically as previously described (62). 

 

Optionally, Trinity de novo assembly (53, 54) is integrated to de novo reconstruct candidate 

fusion transcripts based on reads aligning to the fusion contigs. When employed, Trinity-

reconstructed fusion transcripts are identified in the final FusionInspector report and the 

assembled transcripts are available for further study. In addition, FusionInspector integrates 

IGV-reports (63) to generate an interactive web-based summary (and fully self-contained html 

file) of predicted fusions coupled to a web-based interactive genome viewer to examine the read 

alignments found as evidence for the fusions. 

 

FusionInspector benchmarking 

 

FusionInspector (v2.4.0) was benchmarked in both execution modes: (1) as a post-process to 

STAR-Fusion and examining only those predictions generated by STAR-Fusion (v1.9.1), and (2) 

fusion screening mode, providing FusionInspector with a list of fusion candidates that we 

derived from a diverse set of prediction methods. Benchmarking was performed using cancer cell 
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line RNA-seq, as previously described (62), except STAR-Fusion and FusionInspector were both 

excluded from the list of methods whose intersections define the truth sets, and hence 

eliminating any potential bias of accuracy in favor of either STAR-Fusion or FusionInspector 

fusion predictions. For (2), fusion screening mode, lists of candidate fusions were generated per 

sample only requiring the fusion to be predicted by any of the 24 different prediction methods 

evaluated earlier on these samples (see Table S4 of (11)), and first filtered to remove likely read-

through fusions, fusions between paralogs, and any fusions found among normal tissue types - all 

as previously described in the earlier benchmarking (Table S4 of (11)). FusionInspector 

predictions on cancer cell lines used for benchmarking are provided in Table S1. 

 

Applications of FusionInspector to TCGA and GTEx 

 

FusionInspector v2.4.0 was applied to TCGA and GTEx samples in both execution modes: (1) an 

in silico validation of STAR-Fusion (v1.9.1) predictions, and (2) screening a specified set of 

fusion candidates. FusionInspector was run on TCGA v11 and GTEx v8 via Terra/AnVIL (64). 

Each execution mode is detailed below. 

 

First, FusionInspector was used to reexamine a subset of 628 TCGA and 530 GTEx samples 

identified as containing instances of recurrent STAR-Fusion (v1.7) predictions. Candidate 

samples were identified based on individual fusions (a) having minimum 0.1 FFPM and (b) 

found in tissue types with at least three occurrences and comprising at least 10% of samples of 

that tissue type, or (c) containing a COSMIC fusion. Samples were then greedily selected to 

maximize recurrent fusion content while minimizing numbers of selected samples, retaining up 
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to 10 samples per fusion. These samples were reexamined by executing the current STAR-

Fusion (v1.9.1) including FusionInspector (v2.4.0) as a post-process like so: "STAR-Fusion --

left_fq ${sample_name}_1.fastq --right_fq ${sample_name}_2.fastq --CPU 16 --genome_lib_dir 

ctat_genome_lib_build_dir --output_dir ${sample_name} --FusionInspector validate --

no_annotation_filter --min_FFPM 0 " leveraging companion CTAT genome library 

"GRCh38_gencode_v22_CTAT_lib_Apr032020". The FusionInspector abridged outputs were 

consolidated and presented as Table S3. These fusions were subsequently subject to Leiden 

clustering (65) (see Fusion Clustering and Class Prediction section below). 

 

Second, FusionInspector was run in fusion screening mode to explore instances of defined 

COSMIC-peak-enriched fusions (Leiden cluster 4 (C4) of the 61 fusion clusters found to be 

heavily enriched for COSMIC fusions). There were 231 instances of C4 fusions selected 

according to the following criteria: found in at least 3 samples, at least one fusion occurrence 

found clustered to C4, and at least 30% of occurrences annotated as COSMIC-like. These were 

further supplemented with five recurrent COSMIC fusions that are not members of C4 (ERC1--

RET, SLC34A2--ROS1, SS18--SSX1, SS18--SSX2, and VTI1A--TCF7L2), to a total of 236 

fusion gene pairs (Table S4). The 236 fusion gene targets were provided as input to 

FusionInspector for screening 2,764 TCGA and 1,009 GTEx samples, each with the same list of 

236 candidates. These samples were selected based on having a STAR-Fusion predicted 

occurrence of at least one of these fusions (from Table S2), and selecting a maximum of 50 

samples per-fusion gene-pairing (with samples sometimes containing multiple fusion types), 

except for pancreatic and prostate cancer (TCGA) and normal pancreas tissue (GTEx) for which 

all samples were selected as targets. FusionInspector was executed like so: "FusionInspector --
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fusions $Table_S4_fusions --genome_lib_dir ctat_genome_lib_build_dir -O ${sample_name} --

left_fq ${sample_name}_1.fastq --right_fq ${sample_name}_2.fastq --out_prefix 

${sample_name} --vis" leveraging companion CTAT genome library 

"GRCh38_gencode_v22_CTAT_lib_Apr032020", and results for screening of these samples are 

provided in Table S5. 

 

Fusion transcript clustering and attribute class prediction 

 

All 53,240 fusion isoforms surveyed by FusionInspector from our initial subset of TCGA and 

GTEx samples were clustered according to sequence and expression characteristics. 

Microhomologies defined as exact k-mers with k=10 were identified between candidate fusion 

gene pairs as represented in the FusionInspector-constructed fusion contigs (with introns shrunk 

to a max of 1 kb each for simpler visualizations). The Euclidean distance of each candidate 

fusion breakpoint to the nearest site of microhomology was determined in the FusionInspector 

fusion contig coordinate system. Attributes of interest for clustering fusions were: (1) the fusion 

expression level (FFPM), (2,3) partner gene fusion allelic ratios (5'-FAR and 3'-FAR), (4,5) the 

left and right unfused partner gene expression levels expressed as 5'- and 3'-counter-FFPM and 

computed based on the number of counter-reads observed as aligned at each corresponding gene 

breakpoint site, (6,7) indicators for consensus dinucleotides and agreement with reference gene 

structure exon boundaries at the fusion breakpoints, and (8) the number of microhomologies and 

(9) distance of the breakpoint to the nearest microhomology. These numerical values were 

centered and scaled to Z-scores, truncated within the interval [-2,2] to remove outliers, and then 
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rescaled so each attribute numerical vector would fill the interval [-2,2] simplifying our 

evaluation of metrics using a consistent low-to-high range for each attribute type.  

 

We calcuated the distance between fusions based on vectors with these values, constructed a k-

nearest-neighbor graph (k=50) of fusions, and clustered the graph by Leiden clustering (65) 

(resolution_parameter = 3). The impact of the resolution parameter on clustering and COSMIC 

fusion enrichment was examined (Figure S12), and the parameter with the most granular set of 

clusters was selected for further analysis. Clusters were manually reviewed and grouped and 

annotated according to median cluster attributes, with cluster annotation term assignments as 

"COSMIC-like" if clusters contained at least two COSMIC fusions, "COSMIC-peak-enriched" if 

predicted as cluster C4, "high-counter FFPM" indicating relatively high expression of the partner 

genes and potentially resulting from a low rate of trans-splicing, and categories "High FAR" and 

"Microhomology RT-induced artifact" to reflect likely bioinformatic or reverse-transcription 

related artifacts (as labeled in Figure 4b). 

 

A random forest classifier was built to predict Leiden cluster membership based on scaled fusion 

attributes. The classifier was constructed by randomly selecting a maximum of 300 fusions 

(median cluster size) from each cluster, and leveraging 2/3 of fusions for training and 1/3 for 

testing, all performed using Ranger (66). Fusions predicted to be assigned to any cluster noted 

earlier with a fusion cluster annotation (e.g., "COSMIC-like") are assigned a prediction 

according to that fusion cluster annotation term. Such fusion attribute cluster predictions are now 

incorporated into the latest FusionInspector (v2.6.0). 
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Figure Legends 

 

Figure 1. FusionInspector Overview. Top: Lists of fusion candidates derived from predictions 

of one or multiple fusion detection methods, or from a screening panel, are provided to 

FusionInspector as input along with RNA-seq in fastq format. For each candidate fusion gene, 

fusion contigs are generated by fusing the full-length gene candidates as collinear on a single 

contig. Intronic regions are by default each shrunk to 1 kb. RNA-seq reads are then aligned to a 

reference consisting of the entire genome supplemented with fusion contigs. Fusion-derived 

reads that would normally align discordantly as chimeric alignments in the reference genome 

(top example) instead align concordantly in the fusion contig context (bottom example). Middle: 

FusionInspector identifies split read alignments (light blue) and spanning pairs (purple) 

supporting the gene fusion in addition to read alignments that overlap the breakpoints and instead 

support the unfused fusion partners (fusion counter reads). Bottom: For those fusions where 

FusionInspector captures RNA-seq read support (“in silico validation”), it reports fusion 

sequence and expression characteristics including reference gene structure splice agreement, and 

renders each prediction as COSMIC-like, potential artifact, or other category (Methods). 

 

Figure 2. Features of fusion genes distinguish reliable and likely artifactual fusions.  

Fusion isoform expression level (dot size), splice type (dot color) and splice junction 

dinucleotide (dot shape) at each fusion breakpoint position involving the 5’ (x axis) and 3’ (y 

axis) partners of (a) EML--ALK (in COSMIC) and (b) KRT13--KRT4 (likely artifactual) 

fusions. Black dots: positions of microhomology (10 base exact match). Structures of collapsed 

isoforms for fusion partner genes are drawn along each axis. 
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Figure 3: COSMIC fusions show distinctive properties among STAR-Fusion predictions 

across TCGA and GTEx. (a) Tissue and tumor composition. Percentages of TCGA tumor or 

GTEx normal samples (y axis) with corresponding predicted COSMIC fusions (x axis). TCGA 

study abbreviation codes as in (67). (b,c) COSMIC fusions are more highly expressed than other 

predicted fusions. (b-d) Expression levels. (b) Distribution of fusion expression levels (y axis, 

FFPM; right-truncated at 1 FFPM) for all fusions predicted in TCGA tumors (purple), TCGA 

normal (blue), GTEx (green) and in COSMIC (red). (c) Cumulative fraction (y axis) of all 

predicted fusions at each minimum fusion expression (x axis, FFPM). (d) Distribution of fusion 

expression levels (y axis, FFPM) for each predicted COSMIC fusions (x axis). For a-d, fusions 

are restricted to the single highest expressed fusion isoform per sample occurrence, require 

reference annotation splice agreement at breakpoints, and have mitochondrial, HLA, and 

immunoglobulin gene containing fusions filtered. 

 

Figure 4. Fusions grouping by sequence and expression features distinguishes COSMIC-

like fusions from likely artifactual ones. (a) Fusion clusters. Uniform Manifold Approximation 

and projection (UMAP) of 53,240 fusion isoforms feature profiles (dots), colored by Leiden 

cluster. Red label: Cluster C4. (b) Cluster C4 is enriched for COSMIC fusions. Features 

(columns, right), number of COSMIC fusions (x axis, second from left), cluster size (x axis, 

second from right), and fraction of COSMIC fusions (x axis, right) for each fusion cluster (rows). 

Heatmap shows median scaled intensity values for each feature (color bar).   

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454639doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454639
http://creativecommons.org/licenses/by/4.0/


 44

Figure 5. Characteristic properties of recurrent C4 and COSMIC fusions can distinguish 

biologically meaningful fusions and fusion instances. 236 selected COSMIC-peak-enriched 

(C4) and additional COSMIC fusions (columns / x axis) rank ordered by tumor enrichment and 

shown with fraction of the instances of each fusion in each category based on predicted Leiden 

cluster labels (a, rows, top) or corresponding to presumed impact on coding sequence (a, rows, 

bottom); fusion structure type based on the fusion partner’s chromosomal location (b); fraction 

of instances that is in each tumor or tissue type in TCGA and GTEx (c, rows); presence in 

COSMIC (d, purple), significantly higher expression in tumors vs. normal tissues (e, Wilcoxon 

rank sum test applied to FFPM, Benjamini Hochberg FDR < 0.05 and median tumor FFPM > 

median normal FFPM, orange), number of tumor (seagreen) or normal (light red) samples (f, y 

axis) predicted by STAR-Fusion to contain the fusion, rank ordered by tumor enrichment (f, x 

axis, (Methods, gray). See Figures 6a-e for each fusion pair. 

 

Figure 6: FSIP1--RP11-624L4.1 fusion in breast cancer. (a) Expression level (FFPM, y axis) 

of FSIP1--RP11-624L4.1 fusion in tumor (blue) and normal (red) TCGA breast cancer samples, 

ranked by FSIP1--RP11-624L4.1 expression. (b) Expression levels of FSIP1 (x axis) and RP11-

624L4.1 (y axis) in each tumor (blue) and normal (red) samples (Pearson r=0.6, p-value < 2.2e-

16). Diamonds: samples where the fusion trsanscript is detected. Expression values were log2 

transformed upper-quartile normalized gene FPKM measurements obtained from the Xena 

platform (68).  
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