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Abstract 

All state-of-the-art (SOTA) protein structure predictions rely on evolutionary information captured in 

multiple sequence alignments (MSAs), primarily on evolutionary couplings (co-evolution). Such information 

is not available for all proteins and is computationally expensive to generate. Prediction models based on 

Artificial Intelligence (AI) using only single sequences as input are easier and cheaper but perform so poorly 

that speed becomes irrelevant. Here, we described the first competitive AI solution exclusively inputting 

embeddings extracted from pre-trained protein Language Models (pLMs), namely from the transformer pLM 

ProtT5, from single sequences into a relatively shallow (few free parameters) convolutional neural network 

(CNN) trained on inter-residue distances, i.e. protein structure in 2D. The major advance originated from 

processing the attention heads learned by ProtT5. Although these models required at no point any MSA, they 

matched the performance of methods relying on co-evolution. Although not reaching the very top, our lean 

approach came close at substantially lower costs thereby speeding up development and each future prediction. 

By generating protein-specific rather than family-averaged predictions, these new solutions could distinguish 

between structural features differentiating members of the same family of proteins with similar structure 

predicted alike by all other top methods.  

Introduction 

Protein structure prediction problem solved.  The 

bi-annual meeting for Critical Assessment of 

protein Structure Prediction (CASP) has been 

serving as a gold-standard for the evaluation of 

protein structure prediction for almost three 

decades (Moult et al., 1995). At its first meeting 

(CASP1 Dec. 1994), the combination of machine 

learning (ML) and evolutionary information 

derived from multiple sequence alignments (MSAs) 

reported a major breakthrough in secondary 

structure prediction (Rost & Sander, 1995). This 

 
 Key words: protein structure prediction, deep learning, 

machine learning, protein language model, multiple sequence 

alignments.  

Abbreviations used: 2D, two-dimensional; 2D structure: inter-

residue distances/contacts; 3D, three-dimensional; 3D structure: 

concept, expanded into deep learning inter-residue 

distances (Jones et al., 2015; Li et al., 2021; Wang et 

al., 2017) which through Alphafold’s deep dilated 

residual network became so accurate to serve as 

constraints for subsequent folding pipelines 

(Kryshtafovych et al., 2019; Senior et al., 2020). 

Now, DeepMind’s AlphaFold 2 (Jumper et al., 2021) 

has combined more advanced artificial intelligence 

(AI) with larger and more complex MSAs to 

essentially solve the protein structure prediction 

problem: at least in principle, predictions now can 

directly support experimental structure 

coordinates of atoms in a protein structure; APC, average product 

correction; CASP, Critical Assessment of protein Structure 

Prediction; CNN, convolutional neural network; DCA, direct 

coupling analysis; DL, Deep Learning; LM, Language Model; LR, 

logistic regression, MSA, multiple sequence alignment; pLM, 

protein Language Model; SOTA, state-of-the-art. 
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determination (Flower & Hurley, 2021). However, 

even this pinnacle of 50 years of research has two 

major shortcomings: (i) predictions are more family-

specific than protein-specific, (ii) structure 

prediction requires substantial computing 

resources, although 3D structure predictions have 

been made available for 20 entire proteomes with 

more to come soon (Tunyasuvunakool et al., 2021).  

 All competitive structure prediction methods, 

including AlphaFold 2, rely on correlated mutations 

(Marks et al., 2011). Direct Coupling Analysis 

(DCA) sharpens this signal (Anishchenko et al., 

2017) either through pseudolikelihood 

maximization (Balakrishnan et al., 2011; Seemayer 

et al., 2014) or through sparse inverse covariance 

estimation (Jones et al., 2011). This fails for MSAs 

lacking diversity (too little signal) and is challenging 

for families with too much diversity (too much 

noise). The differentiation of co-evolving residue 

pairs arising from intra-protein contacts or inter-

protein interactions further complicates de novo 

structure prediction (Uguzzoni et al., 2017). One 

solution is to generate multiple MSAs with different 

parameters, alignment tools and databases (Jain et 

al., 2021; Zhang et al., 2020), rendering the input 

generation even more time-consuming, e.g. 212 

minutes for our test sets of 31 proteins on an Intel 

Xeon Gold 6248 (Results). 

 

Protein language models (pLMs) decode aspects of 
the language of life.  In analogy to the recent leaps 

in Natural Language Processing (NLP), protein 

language models (pLMs) learn to “predict” masked 

amino acids given their context using no other 

annotation than the amino acid sequences of 10^7-

10^9 proteins (Alley et al., 2019; Asgari & Mofrad, 

2015; Bepler & Berger, 2019, 2021; Elnaggar et al., 

2021; Heinzinger et al., 2019; Madani et al., 2020; 

Ofer et al., 2021; Rao et al., 2019; Rives et al., 2021; 

Wu et al., 2021). Toward this end, NLP 

words/tokens correspond to amino acids, while 

sentences correspond to full-length proteins in the 

current pLMs. Embeddings extract the information 

learned by the pLMs. In analogy to LMs in NLP 

implicitly learning grammar, pLM embeddings 

decode some aspects of the language of life as 

written in protein sequences (Heinzinger et al., 

2019; Ofer et al., 2021) which suffices as exclusive 

input to many methods predicting aspects of protein 

structure and function without any further 

optimization of the pLM using a second step of 

supervised training (Alley et al., 2019; Asgari & 

Mofrad, 2015; Elnaggar et al., 2021; Heinzinger et 

al., 2019; Madani et al., 2020; Rao et al., 2019; Rives 

et al., 2021), or by refining the pLM through 

another supervised task (Bepler & Berger, 2019, 

2021; Littmann, Heinzinger, et al., 2021). 

Embeddings can outperform homology-based 

inference based on the traditional sequence 

comparisons optimized over five decades (Littmann, 

Bordin, et al., 2021; Littmann, Heinzinger, et al., 

2021). With little additional optimization, methods 

using only embeddings without any MSA even 

outperform advanced methods relying on MSAs 

(Elnaggar et al., 2021; Stärk et al., 2021). In the 

simplest form, embeddings mirror the last “hidden” 

states/values of pLMs. Slightly more advanced are 

weights learned by a particular type of LM, namely 

by transformers; in NLP jargon, these weights are 

referred to as the “attention heads” (Vaswani et al., 

2017). They directly capture complex information 
about protein structure without any supervision 
(Rao et al., 2020) relating to Potts-models 

(Bhattacharya et al., 2020). Transformer models 

can also process MSAs to improve predictions 

(Jumper et al., 2020; Rao et al., 2021), an advantage 

at the price of the aforementioned issues with MSA-

based predictions. 

 Here, we introduced a novel approach toward 

using attention heads (Ahs) from pre-trained 

transformer pLMs to predict inter-residue distances 

without MSAs at levels of performance similar to 

top methods relying on large MSAs and 

evolutionary couplings/DCA. Thereby, this 

approach enables accurate predictions of protein 3D 

structure substantially faster and at lower 

computing costs.  

 

Methods 

Data set.  We obtained 77,864 high-resolution 

experimental three-dimensional (3D) structures from 

ProteinNet12 (AlQuraishi, 2019) compiled from the PDB 

(Burley et al., 2017) before the CASP12 submission 

deadline (Moult et al., 2018) thereby replicating the 

CASP12 conditions. To save energy, we trained on a 

redundancy-reduced dataset by selecting cluster 

representatives using MMseqs2 (Steinegger & Söding, 

2017) at 20% pairwise sequence identity (PIDE), 

ultimately training on 21,240 of the 77,864 proteins 

(SetTrnProtNet12). 

 ProteinNet12 included a validation set with 41 

protein chains from the CASP12 targets for model 

optimization (SetValCASP12). We used the free-
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modeling and so called “template-based modeling-hard” 

(TBM-hard) targets from CASP13 (Kryshtafovych et al., 

2019) and CASP14 with publicly available experimental 

structures (15 for CASP13: SetTstCASP13, 16 for CASP14: 

SetTstCASP14) as test sets to assess performance.  

 For the baseline model comparison, we used an in-

house model trained on co-evolution/evolutionary 

couplings. We used the MSAs provided by ProteinNet12 

and generated alignments for our additional CASP test 

sets using the EVcouplings webserver (Hopf et al., 2019) 

on UniRef100 (Suzek et al., 2015) with bitscore thresholds 

between 0.1 and 0.7. CCMpred (Seemayer et al., 2014) 

optimized Potts model hyperparameters.  

 

Input.  As input for the prediction of inter-residue 

distances, we compared two different types of hidden 

states derived from pre-trained pLMs: (1) The hidden 

state output by the last layer of the pLM (for SeqVec 

(Heinzinger et al., 2019) the last LSTM layer; for the 

transformer-based models, ProtBert, ProtAlbert, and 

ProtT5 (Elnaggar et al., 2021), the last attention layer), or 

(2) the attention scores of each of the attention heads 

(Ahs) of transformers (not for SeqVec). The advantage of 

the latter is that we make use of the attention’s all-against-

all comparisons between all tokens/residues in 

sentence/sequence which automatically results in a L-by-

L representation for a sequence of length L. As detailed 

elsewhere (Elnaggar et al., 2021), we used only the 

Encoder-part of the ProtT5 and created embeddings in 

half-precision mode to speed-up the embedding 

generation.  

 When training on attention heads extracted from 

ProtT5, the resulting pairwise tensors of shape LxLx768 

(24 attention layers, each with 32 attention heads 

resulting in a total of 768 attention score matrices) would 

require immense memory and substantially increase 

training time. To save resources, we trained a logistic 

regression (LR) model on 200 randomly selected samples 

from our training set to predict distance probability 

distributions, evaluated performance on medium- and 

long-range contact performance for the CASP12 

validation set and selected the Top-50, Top-100 and Top-

120 attention heads based on the absolute value of the 

learned weights of the LR. As attention scores may be 

asymmetric, we enforced symmetry by applying average 

product correction (APC) as suggested previously (Rao et 

al., 2020). For each attention head of shape LxL, we 

computed the APC as follows: 

𝐹𝑖𝑗
𝐴𝑃𝐶 = 𝐹𝑖𝑗 −

𝐹𝑖𝐹𝑗

𝐹
 (Eqn. 1) 

where 𝐹𝑖 is the sum over the i-th row, 𝐹𝑗 is the sum over 

the j-th column and 𝐹 the sum over the full matrix. 

 
Model architecture. Irrespective of the input, our deep 

learning (DL) models consisted of deep dilated residual 

networks similar to AlphaFold 1 (Senior et al., 2020). Each 

residual block consisted of three consecutive layers (Fig. 

1): (1) a convolution with kernel size 1 reduced the 

number of feature channels from 128 used in the residual 

connections to 64, (2) a dilated convolution with kernel 

size 3 (Yu & Koltun, 2015), and (3) a convolution scaling 

the number of feature channels back up to 128. The 

dilation factor cycled between 1, 2, 4 and 8 in successive 

residual blocks. In each layer, we used batch 

 
 

Fig. 1: Sketch of approach.  The residual CNN (ResNet, yellow-orange) is similar across models (Fig. SOM_1). Models 

using 1D protein embeddings from ProtT5 (shown here), ProtBERT, ProtAlbert, or SeqVec adapted their architecture 

to account for expansion from 1D to 2D (Methods). The red square illustrates that proteins were split into overlapping 

crops of size 64x64 (64 consecutive residues) as introduced by AlphaFold 1 (Senior et al., 2020). For each crop the CNN 

(ResNet) predicted the corresponding patch of the distogram. The example above shows the average over the attention 

heads after applying symmetry and APC for T1026 (CASP14), suggesting that ProtT5 already learned aspects of protein 

structure without supervision. Our baseline model trained on information from co-evolution for comparison replaced 

the modules marked by a dashed blue line by the generation of MSAs and estimation of parameters for the Potts model. 
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normalization, followed by exponential linear units (ELU) 

for non-linearity (Fig. 1). Expecting the optimal number 

of residual blocks necessary to vary for different inputs, 

we tried depths between 4 and 220 blocks. 

 Inputting co-evolution information, a narrow 

window/square around a pair of residues suffices to 

correctly infer contacts (Jones & Kandathil, 2018). As 

AlphaFold 1, we addressed this through cropping, i.e. by 

training and evaluating on patches of 64x64 residue pairs 

extracted from the full distance map.  

 The two different types of input, 1D protein 

embeddings (string of numbers) and 2D attention heads 

(matrix of probabilities), required two different 

architectures. The architecture predicting distances from 

2D attention heads resembled AlphaFold 1 (Fig. SOM_1), 

that inputting 1D protein embeddings accounted for the 

change in input shapes as follows (A) The architecture for 

1D embeddings used residual blocks (Fig. 1, Fig. SOM_1), 

with 1D convolutions for the first half of all residual 

blocks (e.g. for 120 blocks, 60 residual blocks were 1D 

convolutions, another 60 blocks were 2D convolutions). 

Between the 1D and 2D parts, the 1D representations with 

length L were expanded to pairwise representations of 

shape LxL. (B) Our models inferred a distance probability 

distribution (distogram) over 42 bins representing 

distance intervals between 0-22 Ångstrøm (2.2 nm). The 

40 central bins represented distance intervals of 0.5 

Ångstrøm, the first 0.2nm (0-2 Ångstrøm) and the last 

everything else (>22 Ångstrøm). To also assess the 

performance in predicting contacts rather than distances, 

we summed the predicted probabilities of the first 14 bins 

representing distances below 8 Ångstrøm (Wang et al., 

2017). 

 We trained deep learning systems on protein 

embeddings from a variety of pLMs as well as on co-

evolution inputs for baseline comparison. We confirmed 

220 residual blocks as optimal when using co-evolution as 

input (Senior et al., 2020). Seqvec and ProtAlbert 

embeddings already reached their peak performance with 

110 blocks, while ProtBert-BFD (subsequently referred to 

as ProtBert) required 220. Using ProtT5-U50 

(subsequently referred to as ProtT5) we could already 

reach peak performance with 80 blocks (Table 2), both for 

embeddings and attention head inputs respectively. 

 We trained on non-overlapping crops, including 

patches up to 32 residues off-edge with zero-padding and 

masking at the edges. To avoid introducing bias by similar 

structural motifs in the protein ends, we randomly picked 

the initial offsets for each training sample between -32 

and 0 (Senior et al., 2020). 

 We used overlapping crops with a stride of 32 for 

training and evaluation (cross-training, i.e. hyper-

parameter optimization) and 16 for the final inference for 

testing/performance estimation. As the number of strides 

inversely correlated with compute time, this sped up 

training while providing more reliable predictions at the 

end. Predictions for residue pairs were averaged across 

patches to obtain full distance maps. Since distances near 

the center of each crop were predicted better (more local 

information available), we computed the weighted 

average of overlapping predictions by using a Gaussian 

kernel, giving higher emphasis to central pairs. 

 

Training. We trained using the Adamax optimizer with 

an initial learning rate of 1e-2 and a batch size of 75. We 

performed early stopping and saved the best model 

checkpoint when the MCC on our validation set 

(CASP12) did not improve over ten iterations. 

 

Input. The main input features for our models were either 

protein representations derived from our pLMs or, for 

comparison to a baseline, the co-evolution signal in the 

form of Potts model parameters. To both, we added 

normalized residue positions (relative position in the 

protein between 0 and 1), normalized protein length and 

the log-normalized number of effective sequences as 

additional input channels. We also masked residues not 

resolved experimentally, both as single amino acid input 

and as residue pair during the loss computation. 

 

3D predictions. We used pyRosetta (Chaudhury et al., 

2010) to compute 3D structures by using a modified 

version of the trRosetta folding protocol (Yang et al., 

2020). In contrast to trRosetta, we dropped any 

constraints on angular information and we adapted the 

script such that C-alpha instead of C-beta distances were 

used as constraints. We first generated 150 coarse-grained 

decoys using short-, mid- and long-range distances from 

our predicted distograms at varying levels of distance 

probability thresholds (here: [0.05, 0.5]) as constraints and 

relaxed 50 models by using pyRosetta’s FastRelax 

protocol. Decoy selection as well as the selection of the 

final model were based on the lowest total energy 

reported by Rosetta. 

 For comparison with state-of-the-art (SOTA) methods 

using MSAs, we obtained 3D models and distance 

predictions for our test sets (SetTstCASP13 + 

SetTstCASP14) from the Raptor-X web server (Wang et 

al., 2017) (accessed June 2021). We only submitted the 

original query sequences instead of MSAs to allow Raptor-

X to follow its own protocol. 

 

Performance measures. We used performance metrics 

established by CASP to evaluate the performance of our 

models, including precision (Eqn. 2), recall (Eqn. 3), F1-

score (Eqn. 4), Matthew’s correlation coefficient (MCC, 

Eqn. 5) and Top-L precision, which measures the positive 

predictive value of the L long-range contacts predicted 

with the highest probability (L representing protein 

length). Specifically, we reported the performance on the 

L/1, L/2, L/5 and L/10 residue pairs per protein. We 

adopted the common thresholds of >4 and >23 residues 
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sequence separation to define medium- and long-range 

contacts respectively and omitted evaluating short-range 

contacts (|i-j|≤4). 

 𝑃 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (Eqn. 2) 

 𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 100 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Eqn. 3) 

 𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (Eqn. 4) 

 𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (Eqn. 5) 

3D predictions resulting from predicted distances, were 

assessed through TM-align (Zhang & Skolnick, 2005). 

 

Error estimates.  We computed the standard error as 

usual: 

 𝑠𝑡𝑑𝑒𝑟𝑟 =
𝑠𝑡𝑑𝑑𝑒𝑣

√𝑛
 (Eqn. 6) 

 

With n as the number of proteins, and stddev the standard 

deviation obtained by NumPy (Harris et al., 2020). We 

reported the 95% confidence interval (CI95), i.e. 1.96 

standard errors in results: 

 𝐶𝐼95 = 1.96 ∗ 𝑠𝑡𝑑𝑒𝑟𝑟 (Eqn. 7) 

 

Results & Discussion 

Top 100 attention heads (AHs) almost as good as all 

768 at lower costs.  A Logistic Regression (LR) using 

a subset of the training set and only the validation 

set (SetValCASP12) for optimization suggested that 

about a one-seventh of all 768 attention heads (AHs) 

sufficed to get close to saturation in performance 

although using 7-times fewer parameters (Table 1). 

This reduced the total storage requirement for 

training (3.1 TB to 406 GB), in turn enabling local 

storage for faster data loading, thereby speeding up. 

That a model as simple as the LR sufficed, 

highlighted the remarkably strong structural signal 

readily available from the attention heads of ProtT5 

(Elnaggar et al., 2021). Although trained only on a 

minute set of 200 proteins (100-fold smaller than 

the 21,240 in the training SetTrnProtNet12), the 

resulting model outperformed convolutional neural 

networks (CNNs) completely trained on less 

complex embeddings (Seqvec (Heinzinger et al., 

2019) and ProtAlbert (Elnaggar et al., 2021); Fig. 

2B). 

 

AHs clearly improved contact predictions. Even 

relatively shallow CNNs (relatively few free 

parameters) performed well when enriching the 

embeddings by using ProtT5 attention heads (AHs) 

rather than using embeddings without AHs (Fig. 

2A). Smaller CNNs with 80 ResNet blocks (Fig. 1) 

even reached numerically higher MCCs than 50% 

larger CNNs with 120 ResNet blocks (Fig. 2A; 

difference not statistically significant). 

Nevertheless, all results given in the following were 

obtained for the less accurate version with 120 

ResNet because we tested smaller CNNs after those 

results had been collected and decided to reduce 

energy-consumption not expecting significant 

improvements.  

 Comparing embeddings from different pLMs, 

Seqvec (based on ELMo (Peters et al., 2018)) and 

ProtAlbert (based on Albert (Lan et al., 2020), a 

leaner version of BERT (Devlin et al., 2019)) 

performed significantly worse than other 

transformers (Fig. 2B). Top were CNNs using the 

attention heads of ProtT5 (based on T5 (Raffel et al., 

2020)) as input (Fig. 2B). Although this method 

never used any MSA for predicting inter-residue 

distances, it numerically even outperformed our in-

house CNN dependent on evolutionary couplings 

(DCA, Fig. 2B).  

 Given that our method (ProtT5dst) used no 

MSA, and that it reached a similar average 

performance as our in-house CNN using 

evolutionary couplings (DCAdst), we expected 

embeddings to perform better for proteins from 

families with little sequence diversity (weak 

evolutionary coupling) and worse for those with 

large diversity (strong evolutionary coupling). 

Although, we observed evidence supporting this 

Table 1: Performance saturation reached for subset 

of attention heads (AHs)* 
 MCC  

(all) 
MCC  

(long-range) 

All 768 AHs 0.30 ± 0.04 0.25 ± 0.04 

Top-50 AHs 0.26 ± 0.04 0.24 ± 0.04 

Top-100 AHs 0.29 ± 0.04 0.24 ± 0.04 

Top-120 AHs 0.29 ± 0.04 0.25 ± 0.04 

 
* Logistic regression (LR) results based on attention heads 

(AHs) from ProtT5 for 200 randomly selected training 

samples for SetValCASP12.  Methods (rows): The first row 

shows results based on all 768 attention heads directly 

generated by ProtT5, while the lower three rows show 

results for the Top-50, Top-100 and Top-120 most 

informative AHs, respectively. Performance measures 

(columns): The ± values indicate ±1.96 standard errors, i.e. 

95% confidence interval (CI95; Eqn. 7) The Top-100 AHs 

reached baseline performance (within the standard error). 
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expectation (embeddings performed much better 

than evolutionary couplings for very small families), 

the attention head embeddings also  

performed better for some very large. We cannot 

explain this finding. One speculation is that very 

large families contain so much divergence in terms 

of sequence and structure that our embedding-based 

protein-specific predictions outperform the family-

averaged predictions using evolutionary couplings. 

If so, at least the members of such large families 

most diverged in structure from the family-average 

might be predicted better without alignments 

(MSAs). As methods using evolutionary couplings 

benefit from immense diversity (Marks et al., 2012), 

simply constraining “too large families” might not 

remedy such a shortcoming of MSA-based solutions. 

If this speculation were partially correct, we have 

no data whether this would only affect the 

performance of some proteins (outliers) or of most 

(although most proteins might define the average, 

almost all might deviate substantially enough from 

the average). 

 

ProtT5dst with AHs not using MSAs reached 
Raptor-X relying on MSAs.  For the CASP13 and 

CASP14 test sets (SetTstCASP13+14), we collected 

C-alpha contact predictions from Raptor-X, which 

is publicly available and performed well at CASP12 

and CASP13 (Wang et al., 2017). We submitted only 

the original sequences instead of MSAs to allow the 

server to optimize its MSA. Given the database 

growth, Raptor-X most likely performed better 

when we tested it (May 2021) than at the 

CASP12/13 deadlines (summers 2016 and 2018, 

respectively). Although numerically, the supervised 

method ProtT5dst using AHs outperformed the 

version not using AHs (Table SOM2: ProtT5dst vs. 

ProtT5dst_noAH), this difference was not 

statistically significant within the 95% confidence 

interval, i.e. the values for the two models were 

within ±1.96 standard errors of each other. For 

medium-range contacts (between residue i,j with 

12≤|i-j|≤23), AHs without MSAs numerically 

outperformed Raptor-X; for long-range contacts (|i-

j|>23), largely the opposite was the case. However, 

none of those differences were statistically 

significant (Table SOM2: ProtT5dst vs. Raptor-X). 

 Comparing the embedding-based approach 

using AHs and no MSA (ProtT5dst) with the state-

of-the-art Raptor-X using MSAs and post-

processing for evolutionary couplings in detail, 

revealed that MSA-free predictions did perform 

better for very small families (Fig. 3A, darkest points 

usually above diagonal). For some proteins, (e.g. 

T0960-D2 and T0963-D2; Fig. 3A, top left), 

ProtT5dst correctly predicted distances while 

 
Fig. 2: ProtT5 attention heads (AHs) best. Y-axes: Matthews Correlation Coefficient (MCC, Eqn. 4; for medium- and 

long-range contacts). Panel A: SetValCASP12; the x-axis gives the number of ResNet blocks; values on the left describe 

“shallow CNNs, i.e. those with fewer parameters (ranging from 235,306 for 4 blocks to 6,501,162 for 120 blocks). Both 

lines used the ProtT5 pLM: the upper blue line marks the method introduced here using the AHs, the lower red line 

embeddings without AHs. AHs already performed well with shallow architectures, while raw embeddings without AHs 

needed at least 40 residual blocks to reach MCC-levels above 0.5.  Panel B: SetValCASP12 + SetTstCASP13: the five 

violin plots for embeddings from four different pLMs (Elnaggar et al., 2021; Heinzinger et al., 2019) along with our in-

house method using evolutionary couplings (DCAdst). The markers indicate highest, lowest and average MCC 

respectively, while the width – light-blue background cloud - shows the overall distribution. 
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Raptor-X failed; for others, (e.g. T1049; Fig. 3A, 

bottom right), the opposite was the case. 

 

Good 3D structure predictions.  The trRosetta (Yang 

et al., 2020) pipeline with pyRosetta (Chaudhury et 

al., 2010) turned our predicted distance 

distributions (distograms) into 3D structure 

predictions. For the free-modeling and TBM-hard 

targets from CASP13 and CASP14, the similarity in 

terms of 2D predictions between ProtT5dst and 

Raptor-X remained essentially similar when using 

the predicted distances to predict 3D structure (Fig. 

3A vs. 3B), with an average TM-score of 0.47 ± 0.03 

for Raptor-X and of 0.46 ± 0.03 for ProtT5dst (Fig. 

3B). 

 

Case study: beta-barrel gene duplication.  All 

known transmembrane beta-barrel proteins, found 

in the outer membrane of Gram-negative bacteria, 

feature an even number of between 8 and 34 beta-

strands (Georg, 2002). For instance OmpX from 

Escherichia Coli (Outer membrane protein protein 

X; Swiss-Prot identifier ompx_ecoli (Boutet et al., 

2016)) has an 8-stranded beta-barrel. Gene in vitro 

duplication and selective removal of beta-hairpins 

produced new stable beta-barrel proteins, which 

folded in vitro with strand numbers between 8 and 

16 (Arnold et al., 2007). Since none of the 

experimental structures of OmpX were included in 

any of our datasets, we could validate our model on 

its known structure (PDB identifier 1Q9F 

(Fernández et al., 2004)). ProtT5dst distance 

predictions refined through trRosetta (Yang et al., 

2020) predicted the native OmpX structure 

accurately reaching a TM-score of 0.73 (Fig. 4 left). 

For three of the five engineered variants shown to 

fold in vitro (OmpX64c, OmpX66 and OmpX84), 

our predicted structures suggested a single larger 

barrel with 10 and 12 beta-strands (Fig. 4: three 

rightmost panels) that were confirmed 

 

Fig. 3: ProtT5dst beats Raptor-X for small families.  Data set: on SetTstCASP13 + SetTstCASP14 (methods): ProtT5dst (as 

introduced here: using AHs without MSAs), and Raptor-X (Wang et al., 2017).  Panel A: Per-protein comparison of 

MCCs (Eqn. 5) for medium- and long-range contact predictions.  Panel B: 3D structure prediction performance: TM-

align (Zhang & Skolnick, 2005) computed TM-scores for all predictions. Overall, the performance was similar for both 

methods. Panel C: Detailed comparison of 3D predictions vs. experiment for two proteins (T1008 and T1030; experiment: 

green, prediction: cyan). One protein gives an example for a small (T1008), the other for a large (T1030) family (T1008), 

and for both ProtT5 outperformed Raptor-X although overall the performance of these two was similar. For T1008 

(CASP13), both predictions captured the overall fold correctly, but Raptor-X incorrectly swapped the two helices, 

reducing the TM-score from 0.69 (ProtT5dst) to 0.42. Similarly, for the longer protein T1030 (CASP14), Raptor-X 

misplaced several helices. Images from PyMol (Schrödinger & DeLano, 2021). 
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experimentally (Arnold et al., 2007). As proof-of-

principle, these results suggested that our approach 

can even succeed in reliably predicting structures of 

transmembrane proteins that are inherently 

difficult to predict by comparative modeling and 

other methods due to their under-representation in 

the PDB (Kloppmann et al., 2012; Pieper et al., 

2013). The under-representation of membrane 

proteins in the PDB did not affect the pLMs 

underlying our predictions, because they only  

use sequence information and membrane proteins 

are likely not under-represented in UniProt 

(The UniProt Consortium, 2016). 

 

Saving computation time saves resources.  
Experimental high-resolution structures are so 

costly that good predictions are valuable even if 

they consume substantial amount of computing 

resources. The first compute-intensive tasks of 

state-of-the-art (SOTA) structure prediction 

methods is the generation of MSAs along with the 

processing of evolutionary couplings (Balakrishnan 

et al., 2011; Marks et al., 2011; Seemayer et al., 

2014). Depending on hardware, alignment method, 

and sequence database, the average time needed to 

create MSAs varies substantially. For the 31 test 

proteins (SetTstCASP13 + SetTstCASP14), the total 

computation needed to infer distance distributions 

from the query sequence included using HHblits 

(Steinegger et al., 2019) on UniClust30 (2018_8) 

(Mirdita et al., 2016) to obtain MSAs, CCMpred 

(Seemayer et al., 2014) to generate couplings and 

running our in-house DCAdst prediction method. 

This took 212 minutes on an Intel Xeon Gold 6248 

(100 GB RAM) and a single Nvidia Quadro RTX (46 

GB VRAM) with all data on a local SSD. In contrast, 

using ProtT5dst on the same hardware, pre-dictions 

completed in only 2 minutes and 11 seconds, 

corresponding to an almost 100-fold speed-up. The 

runtime measures included loading our pre-trained 

models, amounting to a one-time cost of ~25 

seconds regardless of the number of proteins 

predicted. We computed predictions for almost the 

entire human proteome (proteins with <3000 

residues due to GPU memory limits) in about eight 

days, using the same hardware. Obviously, the 

measures did not consider the time for pLM pre-

training (ProtT5) because that method had been 

made available before we started and has not been 

tailored in any way to predict protein structure. 

 

Distance predictions for almost all human proteins.  

Just when we had completed of inter-residue 

distance predictions for all human proteins below 

3k residues, the 3D predictions from AlphaFold 2 

were made available for all those proteins 

(Tunyasuvunakool et al., 2021). Does any reason 

remain to have our resource in parallel? Although 

we are currently unsure how we will proceed, i.e. 

whether or not we will invest any more computing 

 
Fig. 4: 3D predictions for OmpX and 3 variants (OmpX64x, OmpX66 and OmpX84). The experimental structure is shown 

in green, predictions in cyan (images generated using PyMol). Prediction and experiment matched with a TM-score of 

0.73 for the native protein of known structure. While the predictions for the protein-engineered sequence variants 

(OmpX64x, OmpX66, and OmpX84) suggested less compact structures, our predictions confirmed the experimental 

findings of larger single beta-barrels (Arnold et al., 2007). 
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resource to grow our database of 2D predictions, we 

clearly see an advantage in the simplicity of our 

resource. Although source code and Colab notebook 

are available for AlphaFold 2 (Tunyasuvunakool et 

al., 2021), applying those on your protein might be 

more challenging than applying the simple DCAdst 

2D-distance predictions to the protein of your 

interest (in case that is not already contained in the 

growing database of AlphaFold 2 predictions). It 

remains to be investigated, to which extent more 

protein-specific vs. more family-averaged 

predictions will matter. Will predictions based on 

simple embeddings be more useful for protein 

design (Wu et al., 2021) than those based on MSAs, 

or will the best use both approaches? Too early to 

tell. 

 

Conclusions 

We showed that 2D inter-distance predictions based 

on embeddings derived from single protein 

sequences improved significantly over recent years 

and now rival the performance of co-evolution 

methods. While our approach does not improve 

SOTA performance yet, the vast reduction in 

inference time without sacrificing prediction 

accuracy provides a crucial practical advantage. 

Even more importantly, our approach offers, for the 

first time, an accurate protein structure prediction 

based on single protein sequences that is 

competitive to family-centric approaches that rely 

on diverse MSAs. Since structure predictions can be 

obtained in mere seconds, our method could easily 

provide the basis for high-throughput analysis of 

protein structure predictions, such as in silico 

structure mutation. It is likely that approaches using 

embeddings and co-evolution information will co-

exists in the future and might provide mutual 

benefits. In the future, we will be investigating the 

feasibility of MSA refinement using our method by 

filtering aligned sequences by predicted structural 

differences. 

 

Availability 

Pre-trained models and the source code for the prediction 

pipeline are available at 

https://github.com/kWeissenow/ProtT5dst. 

Our predictions for all human proteins (<3000 residues) are 

stored at 

https://rostlab.org/~conpred/ProtT5dst/pred_all_human/ (work 

in progress). 
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