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Abstract 

Micro-RNAs (miRNA) are critical in development, homeostasis, and diseases, including cancer. 
However, our understanding of miRNA function at cellular resolution is thwarted by the inability of 
the standard single cell RNA-seq protocols to capture miRNAs. Here we introduce a machine 
learning tool -- miRSCAPE -- to infer miRNA expression in a sample from its RNA-seq profile. We 
establish miRSCAPE’s accuracy separately in 10 tissues comprising ~10,000 tumor and normal 
bulk samples and demonstrate that miRSCAPE accurately infers cell type-specific miRNA 
activities (predicted vs observed fold-difference correlation ~ 0.81) in two independent datasets 
where miRNA profiles of specific cell types are available (HEK-GBM, Kidney-Breast-Skin). When 
trained on human hematopoietic cancers, miRSCAPE can identify active miRNAs in 8 
hematopoietic cell lines in mouse with a reasonable accuracy (auROC = 0.67). Finally, we apply 
miRSCAPE to infer miRNA activities in scRNA clusters in Pancreatic and Lung cancers, as well 
as in 56 cell types in the Human Cell Landscape (HCL). Across the board, miRSCAPE 
recapitulates and provides a refined view of known miRNA biology. miRSCAPE is freely available 
and promises to substantially expand our understanding of gene regulatory networks at cellular 
resolution.  
 

Introduction 
MiRNAs are small non-coding RNAs that typically bind to 3’ UTR of its target mRNAs and regulate 
their expression via diverse mechanisms including mRNA degradation1, translational inhibition2, 
as well as mRNA stabilization3. Additionally, miRNAs can also serve as decoys to indirectly 
regulate transcription4. miRNAs play critical roles in most fundamental cellular processes, from 
development to homeostasis2,5 and consequently are implicated in several diseases, including 
cancer6.  
 
Single-cell RNA sequencing (scRNA-seq) technologies have advanced our understanding of 
molecular mechanisms at the single-cell level7, revealing cellular heterogeneity and identifying 
previously unknown cellular subpopulations in a variety of contexts7,8. However, these 
technologies are yet to benefit the field of miRNAs, as the reverse transcription stage of the 
current scRNA-seq protocol relies on poly(A) capture, which mature miRNAs lack. This limitation 
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has precluded the standard scRNA technologies from profiling miRNAs, and consequently, there 
are only a handful of studies that have profiled miRNA at single-cell resolution9,10. The general 
unavailability of miRNA expression in single cells severely limits our understanding of miRNAs 
function and dynamics at cellular resolution.  
 
Previous attempts to infer miRNA expression from the expression of protein-coding genes have 
relied on the assumption that a reduced expression of the putative targets of a miRNA, where the 
miRNA targets are ascertained based on various sequence-based approaches11-13, is indicative 
of the miRNA activity14,15. Such approaches are similar in spirit to SCENIC16 which infers activity 
of a transcription factor in a cell based on the expression of its putative targets. However, due to 
(i) highly incomplete and noisy nature of miRNA-target relationships, (ii) a highly variable effect of 
miRNA induction on its targets’ expressions17, and as mentioned above, (iii) highly diverse 
mechanisms underlying the effect of a miRNA on its targets, reliance on putative targets alone to 
infer miRNA activity is far from ideal; we explicitly demonstrate this assertion. Instead, we 
hypothesize that the complex direct and indirect regulatory links between miRNAs and the 
expression of other mRNAs (both protein-coding and non-coding) can be exploited to infer 
miRNAs at a single-cell level much more effectively than based on putative targets alone. Here, 
we report a computational tool -- miRSCAPE - to infer miRNAs in single cells from the scRNA-
seq data.   
 
First, based on paired miRNA-mRNA profiles in ~5,000 samples in TCGA spanning 10 cancer 
types and ~4,500 samples in the corresponding healthy tissues in GTEx18, we establish the cross-
validation accuracy of miRSCAPE in multiple scenarios. Within a test sample, miRSCAPE can 
accurately rank miRNAs by expression level (average cross-miRNA correlation in predicted and 
actual ranks within a sample ~ 0.93). For a given miRNA, the correlation between the predicted 
and the observed expression across the test samples is 0.45 on average, which, as we show in 
single cell application, is sufficient for an accurate identification of miRNAs that are differentially 
expressed between two sets of samples. Next, in two independent datasets where cell type-
specific miRNA profiles are available (HEK-GBM9, Kidney-Breast-Skin19), along with the mRNA 
profiles of those cell types, we show that miRSCAPE, trained on TCGA data, can accurately infer 
cell type-specific miRNA activities with an average correlation between predicted and observed 
inter-cell type fold-difference ~ 0.81. Very encouragingly, miRSCAPE is applicable across 
species; when we trained miRSCAPE on data from 151 samples for human hematological cancer 
in TCGA and uniformly applied it to 8 hematopoietic cell lines from mice, miRSCAPE significantly 
distinguished active from inactive miRNAs in each case. Finally, we demonstrate the general 
utility of miRSCAPE by applying it to scRNA-seq data from Pancreatic Ductal Adenocarcinoma 
(PDAC), Lung cancers, as well as in 56 cell types in the Human Cell Landscape7 (HCL). In each 
of these applications, miRSCAPE accurately recapitulated the miRNAs previously implicated in 
each of these contexts and in many cases revealed a cell type-specific role of individual miRNAs.   
 
Overall, miRSCAPE is a versatile and robust computational tool to infer miRNA expression from 
scRNA-seq data. Application of miRSCAPE to the vast collections of available scRNA-seq will 
substantially expand our understanding of gene regulatory networks at cellular resolution. 
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miRSCAPE is freely available as a stand-alone tool for the community at 
https://github.com/hannenhalli-lab/miRSCAPE .  
 

Results 

Overview of miRSCAPE 
 
Fig 1A illustrates the overall schematic of miRSCAPE. Details are in the Methods section, but 
briefly, given a large compendium of paired miRNA-mRNA bulk RNA-seq data (Supplementary 
Table S1), for each miRNA independently, we train an eXtreme Gradient Boosting (XGBoost) 
model to infer the miRNA expression based on the global mRNA profile of the sample (Methods). 
We estimate the model accuracy by comparing the predicted and the observed miRNA expression 
using Spearman rank-order correlation, either within a sample across miRNAs or for a miRNA 
across samples. In single-cell applications, where both miRNA and mRNA are profiled for multiple 
cell types, to quantify the model accuracy, we assess the extent to which the cross-cell-type fold-
differences of the predicted miRNA expression values are correlated with those of the observed 
miRNA expression values. Of note, we use all genes as features to train the model instead of 
using only the experimentally known targets of a miRNA14, because, as we show, the model based 
on all genes consistently outperforms the target-only model (Supplementary results 1). 
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Fig 1: A. miRSCAPE workflow. See text for details. B. miRSCAPE cross-miRNA per sample 
accuracy in 10 cohorts. Cross-miRNA spearman rho between the observed and the predicted 
expressions in each test sample (y-axis) are measured in ten cancer types (x-axis). C. 
miRSCAPE cross-sample per miRNA accuracy in 10 cohorts. Spearman Correlation 
Coefficients between the observed and the predicted expression across the test samples for each 
miRNA (y-axis) are calculated in hundreds of samples of ten cancer types in TCGA (x-axis) in a 
5-fold cross-validation fashion. D. miRSCAPE accuracy comparison using all versus target-
only genes as features. In the scatter plots target-only-based accuracy (x-axis) is contrasted 
with all genes-based accuracy (y-axis) for two tissues; each dot represents a miRNA. E. Cross-
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tissue prediction accuracy. Prediction accuracy when the model is trained on four tissues and 
applied on the remaining tissue. The heatmap shows the prediction accuracy for each miRNA 
(rows).  

miRNA Prediction in Bulk Data 
 
We first benchmarked the accuracy of miRSCAPE in cancer bulk paired miRNA-mRNA RNAseq 
data from TCGA. We selected 10 cancer types from TCGA having at least a hundred matched 
pairs of miRNA and mRNA data, and in each cancer type independently, we estimated the 5-fold 
cross-validation (CV) prediction accuracy of miRSCAPE. The miRNAs expressed in fewer than 
half of the samples within each cancer type were excluded. Within a test sample, miRSCAPE-
predicted expression correlates very highly with the observed expressions across miRNA 
(average Spearman correlation across all tissues ~ 0.93; Fig 1B). When comparing the predicted 
and observed expression of a given miRNA across test samples, miRSCAPE achieved an 
accuracy of 0.45 Spearman correlation (Methods) on average, ranging from 0.39 and 0.51 across 
the 10 cohorts (Fig 1C). Fig 1D illustrates for two cancer types that using all genes as features 
consistently outperforms the model based on only the known or putative targets, as was done 
previously14; additional information is provided in Supplementary results 1). Additionally, we find 
a minimal effect of sample size on miRSCAPE accuracy (Supplementary Fig S2).  
 
In many practical instances, there may not be bulk data available to train the model for a specific 
cell/tissue type in which one wants to predict miRNA expression. To assess miRSCAPE’s 
applicability in such a scenario, we trained the model using samples from four of the five tissue 
types and predicted miRNA expression levels in the fifth left-out tissue. Across the five cancer 
types, and across miRNAs, miRSCAPE achieved an average accuracy of 0.27 (Fig 1E), 
supporting its broader utility. A relatively lower performance in breast cancer when trained on 
other cancers is consistent with the fact that the breast cancer samples are transcriptionally the 
most diverged from other cancers (Supplementary Fig S3). 
 
 

Characterizing broadly predictable miRNAs and important gene 
features  
 
Next, we assessed the extent to which the highly predictable miRNAs and important features 
(genes) underlying those predictions are shared across cancer tissues. Fig 2A shows the number 
of highly predictable miRNAs in each tissue at two accuracy thresholds and Fig 2B shows that, of 
the 10 tissues, on average each miRNA is predictable with rho > 0.3 in 8 tissues and with rho > 
0.5 in 5 tissues. miRSCAPE additionally reports the most important features underlying the 
prediction of each miRNA. First, we assessed whether experimentally known targets of a miRNA 
are preferentially deemed important by miRSCAPE. Toward this, for a given miRNA, we rank all 
genes based on the number of tissues in which the gene is identified as an important feature for 
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the miRNA and tested, using Wilcoxon test, whether known targets rank higher than the rest of 
the genes. Indeed, we found this to be the case for 67% of the miRNAs. Next, we compared, for 
each pair of cancers, the most important features in each cancer type (those that are deemed 
important for at least 20% of the miRNAs in the tissue). As shown in Fig 2C, while each cancer 
has specific important features, there is also a substantive overlap in important features across 
cancer types (Jaccard similarity ranges from 0.69 to 0.86); only considering the features deemed 
important for at least 80% of the miRNAs (Supplementary Fig S4), Jaccard similarity remains 
substantially high ranging from 0.34 to 0.72). Additionally, we observed that tissue-specific 
important features for a highly predictable miRNA (rho > 0.8) are specifically expressed in the 
tissue (Supplementary results 2). Lastly, we defined a set of globally important features as those 
deemed important for at least 20% of the miRNAs in at least 5 cancer types and performed 
functional enrichment analysis. As shown in Fig 2D, the globally important gene feature genes 
are largely related to metabolic processes among others. 
 

  
Fig 2: Predictable miRNAs and the contributing gene features. A. The fraction of predictable 
miRNAs for each tissue type at two accuracy correlation cutoffs. B. The distribution of the number 
of tissues (x-axis) in which a miRNA is predictable for two different accuracy correlation cutoffs. 
C. Cross-tissue similarity (Jaccard index) in important features. D. Top 25 enriched biological 
processes among the globally most important gene features. 
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Greater sample heterogeneity results in improved model accuracy 
 
To assess the effect of sample heterogeneity on prediction accuracy, we quantified the model 
performance on 8,089 samples pooled across five cancer types (brain, breast, colon, liver, lung). 
Fig 3A shows that, across all miRNAs, the pooled model performs substantially better than the 
cancer type-specific model - the average increase in CV accuracy is 0.2. The improved 
performance is likely because the model can capture the major differences in miRNA and other 
gene expression values across tissue types. This is however not explained by the higher sample 
size in the pooled set (Supplementary Fig S2).    
 
Given a greater cross-sample heterogeneity in cancer compared with the healthy counterpart, we 
compared the prediction accuracies in five cancer types from TCGA with the accuracies in their 
healthy counterparts from GTEx18, as well as with the accuracy on pooled normal and cancer 
samples. We excluded miRNAs expressed in fewer than 10% of the samples in either the normal 
or the cancer cohort. As expected, a greater expression variability in cancer results in a more 
informative model yielding greater CV accuracy (Fig 3B), with an average accuracy of 0.34 in 
cancer and 0.18 in normal samples. When we pool the normal and the cancer samples, 
presumably due to differential expression between normal and cancer and further increase in 
variability, the prediction accuracy is substantially increased to 0.54 on average (Fig 3C); this 
improved accuracy in the pooled data is consistent with the results obtained above when pooling 
multiple tissue types (Fig 3A). We further observed that the accuracy of a model trained on cancer 
samples and tested on corresponding normal samples is substantially better than the converse, 
again implicating greater heterogeneity in cancer on model accuracy (Fig 3D). However, 
consistent with our leave-one-tissue-out benchmarking above (Fig 1E), we observed that the 
cross-cohort accuracy is lower than within-cohort cross-validation accuracy, suggesting 
substantive transcriptional and regulatory differences across tissues as well as between normal 
and cancer samples of the same tissue. Overall, these results suggest context-specificity of the 
model as well as a substantive positive impact of sample heterogeneity on the model accuracy.  
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Fig 3. Effects of the inter-sample heterogeneity on model accuracy. A. Analysis on the 
pooled samples across five cancer types. The histogram shows the accuracy for the pooled 
model, and the scatter plot compares the accuracy for the pooled model (y-axis) with that for 
tissue-specific models (x-axis); each dot represents a miRNA. B. Comparison of the cancer 
tissues with their normal counterparts. Bottom-left: Scatter plot compares model accuracy for 
cancer samples (x-axis) to that in healthy samples of the same tissue in GTEx (y-axis). Bottom-
right: The boxplots show the distribution of the normal accuracies whereas the boxplots on the 
top left show the distribution of the cancer accuracies. The difference between the two models is 
provided in the boxplots on the top right. C. TCGA versus pooled TCGA + GTEx models. The 
scatter plots compare the cancer model accuracy (x-axis) with healthy+cancer pooled accuracy 
(y-axis). D. Cross-application of the model. The scatter plot shows the comparison between 
models if it is applied to the cross data, the labels represent the data type that the model was 
trained on. The boxplot on the bottom right shows the distribution of the cross-analysis accuracies 
when the data is trained on GTEx whereas the boxplot on the top left shows the same when the 
data is trained on cancer. The difference between the two models is provided in the boxplot on 
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the top right. Rightmost boxplots show the difference between the accuracy when the model is 
trained and tested on the same data minus the corresponding model tested across data.  

miRSCAPE accurately predicts cell type-specific miRNA 
expression  
Having established the accuracy of miRSCAPE in the bulk data, next we assessed the extent to 
which miRSCAPE, trained on bulk data, can infer miRNA expression in particular cell types (Fig 
4A and Methods). We tested this in three independent datasets where miRNA and mRNA profiles 
are available for individual cell types based on either single cell profiling or bulk profiling of purified 
cell types.  
 
Faridani et al.9 (GSE81287) measured single-cell miRNA expression profiles in the brain (166 
cells) and kidney (45 cells). We trained miRSCAPE separately on the bulk brain and kidney 
cancers from TCGA and applied the models respectively to the scRNA-seq profiles of brain and 
kidney cells obtained from the HCL7, yielding inferred cell type-specific miRNA profiles. We then 
compared the kidney vs brain fold-change (FC) based on the predicted miRNA expression with 
those based on observed miRNA expression from Faridani et al.9 Fig 4B shows that across 262 
miRNAs, the predicted and the observed FC are highly correlated (Spearman rho = 0.8). Even 
when we used a single model trained on the pooled brain and kidney bulk data and applied the 
same model to predict the miRNA expression for both kidney and brain scRNA data, miRSCAPE 
achieved a high concordance between the predicted and observed FC (Spearman rho = 0.73; Fig 
4B).  
 
Isakova et al.19 have applied Smart-seq-total simultaneously to profile within the same cell both 
miRNAs as well as protein-coding mRNAs in the skin (277 cells), breast (90 cells), and kidney 
(245 cells). We trained cell-type-specific miRSCAPE models for skin, breast, and kidney from the 
samples for the corresponding cancer types in TCGA (Methods) and applied those models to the 
scRNA-seq data to predict cell-type specific miRNA profiles in the three cell types. For each cell 
type pair, as above, we compared the FC between the predicted and observed cell type-specific 
miRNAs. As shown in Fig. 4C, the Spearman rank correlation coefficient for each of the three 
comparisons range from 0.76 to 0.89.  
 
While in the above examples we compare highly diverged cell types, next we assessed 
miRSCAPE’s ability to infer different miRNA expression amongst relatively similar cell types within 
the hematopoietic system. Since we could not obtain both miRNA and mRNA profiles in human 
hematopoietic cell types, we instead assessed the extent to which miRSCAPE trained on human 
bulk data can infer miRNA activities in mouse hematopoietic cell types. Toward this, we trained a 
miRSCAPE on 151 Acute myeloid leukemia samples in TCGA. In Supplementary results 3, we 
provide substantiation of our model based on a miRNA knock-out data.  
 
 
We obtained transcriptional profiles of >15,000 mouse cells across 8 major immune cell types 
from Zilionis et al. study 20 (GSE127465), pooled and harmonized the data for each cell type, and 
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applied the miRSCAPE model to infer cell type-specific miRNA activities. Using purified bulk 
miRNA-seq data for the 8 hematopoietic cell types21, for each cell type individually, we assessed 
whether the inferred expression of miRNAs could distinguish the miRNAs having experimentally 
detectable levels of expression in the cell type from the undetected miRNAs. However, since only 
a relatively small fraction of miRNAs are detectable in a cell type, instead of quantifying accuracy 
using correlations, we used Wilcoxon test as well as quantified the classification accuracy using 
auROC. In all 8 cell types, this was indeed the case (Wilcoxon P <= 0.05, average auROC = 0.67) 
and Fig 4E shows the ROC curves and the auROC values for each cell type, clearly suggesting 
that a model trained in human bulk data can still identify cell type miRNAs in the mouse.  
 
Overall, in all independent validations in single-cell or bulk purified cell type datasets, our model 
trained on human bulk data, including cross-species application, achieved a high concordance 
between the predicted and the observed miRNA expression, firmly establishing the 
generalizability and robustness of the model.  
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Fig 4: miRSCAPE validation in independent single cell data. A. Validation pipeline. A model 
is learned for the matching bulk data and then miRNA expression is inferred from the single-cell 
mRNA data for individual cell types. To assess miRSCAPE predictability, for each miRNA, the 
fold-difference between two cell types using the observed and the predicted miRNA expression 
are estimated, and the two sets of fold differences are compared across miRNAs using Spearman 
correlation. B. Validation on Faridani et al data. Scatter plots comparing fold-difference across 
cell types using observed miRNA expression (X-axis) and predicted expression (y-axis). Left plot 
is based on cell type-specific models, and the right plot is based on a single pooled model. C. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454389
http://creativecommons.org/licenses/by-nd/4.0/


Validation on Isiakova et al. Refer to B for details. Off-diagonal plots compare two cell types, 
and the diagonal plots compare one cell type (row) with the other two cell types pooled. D. 
Validation on hematopoietic cell types. Box plot for miRSCAPE prediction values and the 
corresponding ROC curves and the table for auROC values show the extent to which miRSCAPE 
could distinguish the miRNAs having experimentally detectable levels of expression from those 
with no detection in the cell type in 8 major hematopoietic cell types. 
 

miRSCAPE reveals miRNA activities in the tumor 
microenvironment and across normal fetal and adult cells 
Having established the accuracy of miRSCAPE via cross-validation and in multiple independent 
single cell and cell type-specific datasets, we set out to demonstrate miRSCAPE’s utility in 
multiple contexts.  

Pancreatic Ductal Adenocarcinoma (PDAC) 
We applied miRSCAPE, trained on TCGA PDAC cohort, to scRNA-seq data in PDAC22 
comprising 57,730 cells from 35 donors. The cell annotations were obtained from Peng et al.22 
and here, we focused on three cell types - acinar, normal ductal (Ductal type I), and the malignant 
(Ductal type II) cells. We applied miRSCAPE to each cell type separately on 150 pools of 
randomly selected 22,225 cells to obtain the pseudo-bulk transcriptome to predict miRNA 
expression distribution (Methods).  
 
The cell type that gives rise to PDAC is not entirely resolved and both acinar, as well as ductal 
cells, represent likely candidates for the cell of origin for PDAC23. We, therefore, compared the 
differential miRNA expression in the malignant cells relative to acinar and ductal (Type I) cells 
individually as well as relative to pooled acinar and ductal cells. Supplementary Table S2 shows 
the significantly differential miRNAs in the malignant cells in all three comparisons.  
 
Based on bulk transcriptomes, Mazza et al.24 have reported differentially expressed miRNAs in 
PDAC relative to the normal pancreas, of which 39 are included in our study. As shown in Fig 5A 
and Supplementary Fig S5, our findings based on single-cell data are highly consistent with 
Mazza et al. -- overall, 24 of the 39 miRNAs show differential expression in the malignant cells 
relative to either acinar or ductal cells, and the correlation between our predicted and observed 
fold changes from Mazza et al. is 0.58 on average across all pairwise comparisons. As an 
example, miR-221, identified by miRSCAPE, is known to be upregulated in pancreatic cancer cell 
lines25-27 and plays a role in invasion, drug resistance, and apoptosis in PDAC26. Likewise, 
overexpression of miR-29a sensitized chemotherapeutic resistant pancreatic cancer cells to 
gemcitabine, reduced cancer cell viability, and increased cytotoxicity28,29. Interestingly, miR-29a 
has also been shown to have a tumor-suppressive role in PDAC30, and based on miRSCAPE, 
miR-29a is predicted to be downregulated in malignant cells relative to acinar cells but 
surprisingly, is upregulated relative to ductal type I cells. This suggests a pleiotropic and 
potentially context-specific role, and also suggesting acinar as the cell of origin for PDAC31. 
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Lung Cancer  
Next, we applied miRSCAPE to scRNA-seq of lung adenocarcinoma32 consisting of 208,506 cells 
derived from 44 individuals including 11 biopsies from adjacent-normal tissues, 14 primary 
tumors, and 9 metastatic tumors32. Cell cluster annotations were obtained from the original 
publication, and here we focus on three cell types - epithelial, lymphoid, and myeloid cells. For 
each cell type, separately in normal, primary tumor, and metastatic tumor samples, as above, we 
pooled randomly selected cells to predict miRNA expression distributions in each cell type.  
 
We compared the primary tumors with normal samples and also the metastatic tumors with the 
primary tumors separately in epithelial, lymphoid, and myeloid cells and identified the top 20 
upregulated and downregulated miRNAs among 402 miRNAs (Supplementary Table S3) for each 
cell type in each comparison. The union of the top 20 upregulated and downregulated miRNAs in 
each of the three cell types in Primary tumor~Normal and Metastasis~Primary tumor includes 149 
unique miRNAs, 86 of which are listed in the OncomiR database33. Of these 86 miRNAs, 
miRSCAPE identifies 65 to be consistently differentially active in Lung Adenocarcinoma (LUAD) 
and Lung Squamous Cell Carcinoma (LUSC) cancers, suggesting a high concordance (75.6%) 
between miRSCAPE prediction and OncomiR (Fig 5B). Broadly, miRSCAPE not only 
recapitulates many of the miRNAs associated with lung cancer, it in fact reveals their cell type-
specific roles (e.g., miR-4664 is upregulated specifically in epithelial cells of the tumor), which in 
some cases is even opposing in different cell types (e.g., miR-328 is downregulated in primary 
tumor myeloid cells but upregulated in the brain metastatic lymphoid cells). Many of our detected 
tumor-associated miRNAs in immune cells are known to be associated with leukemias, e.g., miR-
21. We have provided further details of a few interesting cases in Supplementary results 4. 
 
Overall, our results suggest that miRSCAPE not only identifies key miRNAs involved in lung 
cancer it also provides an opportunity to investigate cell type-specific roles of these miRNAs in 
the context of lung cancer. 
 

Global Model 
Finally, we set out to chart a comprehensive global landscape of miRNA expression across all 
human cell types profiled via scRNA-seq in the HCL7. Our goal was to train a single global model 
that captures the co-variation among miRNAs and mRNAs and is uniformly applicable to all cell 
types. Toward this, we collected tumor and normal samples across ten diverse tissues 
(Supplementary Table S1), comprising 13,764 samples. To reduce the sample space without 
compromising the captured variance, for each tissue separately, we clustered the tumor and the 
normal samples using k-means clustering into 100 clusters. We then selected the medoid of each 
cluster as its representative, yielding 100 samples for each tissue, with a total of 1,000 samples 
representing the global variation in the human body. These 1,000 samples were used to build a 
single global miRSCAPE model. 
 
We obtain scRNA-seq data from HCL7, encompassing >700,000 cells across 56 different cell 
types comprising 36 adult, 18 fetal, 1 neonatal, and 1 placental sample. We pooled and the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454389
http://creativecommons.org/licenses/by-nd/4.0/


scRNA-seq profiles for each cluster and applied the global miRSCAPE model to each cell type 
yielding inferred activities of 523 miRNAs across the 56 cell types. Top 20 upregulated and 
downregulated miRNAs in each cell type relative to all other cell types are provided in 
Supplementary Table S4.  
 
We first demonstrated that clustering of cell types based on their global predicted miRNA profiles 
clearly segregates the fetal from the adult tissues (Fig 5C) and is highly concordant with a similar 
clustering based on the global mRNA profiles of the 56 cell types, with an overall Spearman 
correlation of 0.86 across all pairwise cell type distances across the two modalities. 
Supplementary Table S5 lists the top 20 differential miRNAs between the fetal and the adult 
tissues of each type. These results are meant as a public resource for a variety of downstream 
analyses. As such, knowledge of developmentally regulated miRNAs in individual tissues is 
relatively limited for us to corroborate our findings. Nevertheless, in the few tissues where such 
data are available miRSCAPE recapitulates previous findings to a reasonable degree (Fig 5D), 
and is further discussed in the Supplementary results 5. 
 
Overall, in a variety of contexts, miRSCAPE recapitulates the known biology and its application 
to the 56 cell types in the human cell atlas will serve as a valuable resource for the community to 
explore the developmental roles of miRNAs in various tissues. 
 

 
Fig 5: miRSCAPE application to single cell data A. Application to PDAC. Fold change (x-
axis) the predicted miRNAs (y-axis) differentially expressed in malignant ductal type 2 relative to 
normal acinar (left) and ductal (right) cells; miRNAs whose predicted fold-change direction is 
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consistent with Mazza et al. are shown. B. Application to lung adenocarcinoma. Heatmap for 
predicted fold changes of the miRNAs (y-axis) in each of the epithelial (Epi), lymphoid (Lym), and 
myeloid (Mye) cell types in Primary tumor~Normal (T~N) and Metastasis~Primary tumor (M~T) 
(x-axis). C. Application to human cell atlas. tSNE plot for cell types based on their global 
predicted miRNA profiles. D. Fold change distribution (x-axis) of the predicted miRNAs (y-
axis) in fetal~adult heart. miRNAs whose predicted fold-difference is consistent with Thum et al. 
are shown.  

Discussion 
Single-cell RNA-seq technologies have matured and are routinely used to generate large scRNA-
seq data, effectively capturing protein-coding genes, in a wide variety of contexts. However, 
analogous technology specifically for small non-coding RNA sequencing, specifically miRNAs, is 
significantly lagging and has only been demonstrated in a handful of cell types9,19. This has left a 
substantial gap in our understanding of miRNA transcriptional dynamics at cellular resolution. To 
overcome this limitation, here we report a machine learning tool, miRSCAPE, to predict the 
miRNA expression in single-cell clusters from their genome-wide mRNA profiles. We extensively 
demonstrate miRSCAPE’s accuracy both in a cross-validation fashion in several tumor and 
normal bulk data sets, as well as in multiple independent single cell data sets. Finally, we show 
that miRSCAPE can successfully recapitulate differentially expressed miRNAs in Pancreatic 
Ductal Adenocarcinoma and Lung cancer, as well as in 56 normal cell types in the HCL. Our tool 
and the associated freely available software open up the possibility to leverage a vast 
compendium of scRNA-seq datasets to understand miRNA activities at the cellular resolution. 
 
The mechanistic premise of miRSCAPE is that the miRNA activity is reflected, directly or 
indirectly, in the global transcriptomic profiles. However, the global transcriptomic profile reflects 
not only miRNA activity but several other cellular features, such as protein activities, metabolite 
levels, enhancer activity, DNA methylation, etc. and in principle, machine learning can predict 
these other cellular features from the global transcriptomic profiles. Thus, the miRSCAPE 
framework can be extended to estimate these other features at a cellular resolution, if appropriate 
paired data are available for training the model. One limitation of miRSCAPE is that because it is 
trained on bulk data, it is not expected to perform well if a large fraction of features has missing 
values, as is the case for single cell transcriptomic profiles. Hence, we pool cells within a single 
cell cluster and apply miRSCAPE to the pooled (and therefore not sparse) transcriptomic profile 
to infer miRNA activity at the level of single cell clusters. However, this is not a major limitation 
because miRSCAPE can still identify miRNA activity for distinct cell types or cell states as long 
as those types or states are discernable based on the scRNA-seq profile by the standard tool34. 
To add, the notion of a ‘cluster’ is relative, and in a typical scRNA-seq application, one can either 
define clusters at a very high resolution or even pool nearest neighbors to estimate smoothed 
miRNA expression values. 
 
miRSCAPE is expected to perform the best when it is trained on a large training set that captures 
the transcriptional diversity of the specific context it is applied to. However, when a precise cell or 
tissue type data is not available, one can consider a closely matching context for training. In a 
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situation where multiple cells or tissue types are involved, a global model spanning all such 
contexts can be useful (as in our HCL application), with a small loss in performance compared to 
context-specific models, as demonstrated in our HEK-GBM validation (Fig 4B). When the training 
context is very different from the application context, a more substantive loss in performance is 
expected, as quantified in Fig 1E. However, when using a global model, loss in performance may 
be compensated by the ability to uniformly apply a single model, making the inferences in specific 
sub-contexts directly comparable (Fig 5C, 5D).     
 
Overall, miRSCAPE enables studying the miRNA transcriptional dynamics in a vast variety of 
contexts where scRNA-seq data has been profiled, from development to homeostasis to diseases 
including cancer. We have comprehensively benchmarked miRSCAPE and demonstrated its 
utility in multiple contexts and made the tool freely available. miRSCAPE thus represents an 
impactful advance toward leveraging the scRNA-seq data to expand our understanding of 
transcriptional dynamics at cellular resolution. miRSCAPE is available at 
https://github.com/hannenhalli-lab/miRSCAPE. 

Methods 

Data  
We obtained bulk matched RNA-Seq and miRNA-Seq data for cell lines (Cancer Cell Line 
Encyclopedia, CCLE35), normal tissues (GTEx18), and cancer (TCGA). We selected ten tissues 
having more than a hundred matched mRNA and miRNA samples in TCGA and GTex. 
Experimentally known miRNA target information was gathered from the miRTarBase36. 
  
We make use of various single cell mRNASeq and miRNAseq expression profiles. Small seq 
single cell miRNA expressions are obtained from Faridani et al. (GSE81287) and Isakova et al. 
(GSE151334) studies. Mouse hematopoietic single cell mRNA data and bulk-purified miRNA are 
collected from Zilionis et al. study (GSE127465) and Petriv et al.21 study, respectively. Single cell 
mRNA PDAC data was obtained from Peng et al.22 and lung data is obtained from Kim et 
al.32(GSE131907). mRNASeq Human Cell Landscape7 (HCL) is utilized for the miRSCAPE 
validation and the application of the global analysis. 

Model Construction and Performance Evaluation 
Fig. 1A illustrates the overall miRSCAPE pipeline. We used the Extreme Gradient Boosting 
(xgboost) library in R language37 to predict the miRNA expressions using all genes’ expression 
values as features. We applied Grid Search for hyperparameter optimization to find the optimal 
parameters in the range of parameters listed in Supplementary Table S6. Given a large cohort of 
paired bulk mRNA and miRNA RNAseq data, we evaluated the model performance based on 5-
fold cross-validation. Model accuracy was evaluated in two ways: (i) within each test sample, we 
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quantified the Spearman correlation between the predicted and observed expression across all 
miRNAs. (ii) for each individual miRNA, we quantified the Spearman correlation between the 
observed and the predicted expression values across the test samples. For validation on single-
cell data, we relied on cases where both sc-mRNA and sc-miRNA profiles are available for the 
same cell types. We then predicted cell type-specific miRNA profiles (using the given scRNA 
profiles) and then estimated the fold-difference in expression values for each miRNA across pairs 
of cell types; we did this using both the predicted and the observed miRNA expression values; 
fold-differences are estimated using the limma package in R38. Finally, we quantified the model 
accuracy as the cross-miRNA Spearman correlation between the observed and predicted fold-
differences, or as Spearman correlation across miRNAs between the predicted and the observed 
expression within a cell type.  

Application of the model to scRNA-seq data  
To apply a bulk-trained model to scRNA-seq data, we first applied the standard Seurat34 global-
scaling normalization method. Within a single cell type, or cluster, we generated 50 bootstrapped 
‘pseudo-bulk’ data by sampling without replacement 80% of the cells and pooling their expression 
values. This is done in order to deal with dropout noise prevalent in scRNA-seq data. To be able 
to apply the model trained on bulk data to the pseudo-bulk data, we ensured that the feature 
values are (0-1)-normalized in each sample both when training and when applying the model to 
pooled scRNA-seq data. 
 
When comparing the predicted miRNAs (which have the same sample-wise expression 
distribution as bulk miRNA) with observed cell type miRNA, we ensured that the observed cell 
type data follows the same sample-wise distribution, by doing a Gaussian transformation to match 
the bulk miRNA distribution.  

Functional enrichment analysis  
All biological functional analyses are performed with clusterProfiler39 package in R. Figures are 
generated using the ggpubr package in the R.  
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Supplementary Material 

Supplementary Results  

1. Comparison of performances using only the known Targets vs 
all genes 

 
A primary mechanism by which a miRNA affects its target mRNA is via mRNA degradation, which 
would imply a negative correlation between miRNA and the mRNA. However, this expected 
relation may not hold given that miRNAs can also stabilize their target as well as may inhibit 
translation without any effect on the mRNA. Therefore, we assessed the extent to which a 
miRNA’s activity is informed by the expression of its known target genes relative to other genes. 
To this end, we first compared the fraction of all genes and the fraction of known targets that are 
highly correlated with a given miRNA. In three sample cohorts (CCLE, Colon cancer, Breast 
cancer), we observe that the miRNA exhibits a significantly higher fraction of correlation with all 
genes compared with the known targets suggesting that non-target genes may contribute 
significantly to predicting a miRNA’s activity (Supplementary Fig S1).  
 
Next, we directly compared the cross-validation predictability of each miRNA using either only the 
experimentally known targets or using all genes. Again, as expected from the above, in all three 
cases, broadly for all miRNAs, the prediction accuracy using all genes is substantially greater 
than that achieved based on known targets alone (Supplementary Fig S1). We therefore decided 
to use all genes to predict miRNAs.  

 
Fig S1: A. Expression correlation between a miRNA and its known targets versus all genes. 
The fraction of experimentally validated known targets (x-axis) and all genes (y-axis) that are 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454389
http://creativecommons.org/licenses/by-nd/4.0/


correlated with a given miRNA with abs (Spearman rho) > 0.2. CCLE, TCGA colon, and TCGA 
breast. The top left box plot shows the distribution of the fraction of the highly correlated target 
genes whereas the box plot on the bottom right shows the distribution of the fraction of the highly 
correlated all genes. The top left box plot shows the difference between two analyses. B. 
miRSCAPE performance when all genes or only experimentally known target genes are 
used. Cross-validation prediction accuracy (correlation between observed and predicted 
expression values in test samples) for each miRNA using either all genes or only experimentally 
determined targets. The top left box plot shows the distribution of miRSCAPE accuracy when only 
experimentally known target genes are used whereas the box plot on the bottom right shows the 
distribution of miRSCAPE accuracy when all genes are used. The top left box plot shows the 
difference between two analyses. In all cases, prediction accuracy is substantially higher when 
using all genes as features. 
 

2. Analysis of tissue-specific gene features 
Here we compared the tissue-specific models for a given miRNA that is highly predictable among 
10 different tissues. For a given miRNA µ, and a pair of tissues T1 and T2 where µ is highly 
predictable (rho > 0.8), we identified the important features for µ, as reported by XGBoost, unique 
to each tissue. We then checked whether the tissue-specific important features for µ had a higher 
expression in the tissue where they were deemed important relative to the other tissue where they 
were not. Across 1,968,990 (µ,T1,T2) triplets we tested, we found that on average tissue-specific 
important features had 1.6-fold greater expression in the tissue where they were deemed 
important relative to the other tissue. 

3. Substantiation of miRSCAPE model using knock-out data 
Loeb et al. 40 have reported genes that are differentially expressed (DEG) upon miR-155 knockout 
in CD4 T cells41 (GSE41241). We expect that the important features underlying the miRSCAPE 
model of miR-155 in hematopoietic system should either be differentially expressed upon miR-
155 knockout or be correlated with the DEGs (because any machine learning model cannot 
distinguish between correlation and causation). We checked whether features deemed important 
(IFG) in the miRSCAPE model of miR-155 are correlated with the DEGs. Toward this, we tested 
whether IFGs exhibit a greater correlation (across our bulk training samples) with DEGs than do 
non-IFGs. This was indeed the case (Wilcoxon p-value < 0.05), validating the IFGs detected by 
miRSCAPE. 
 

4. Application of miRSCAPE to lung cancer 
Focusing on the lung epithelial cells, miRSCAPE recapitulates the results of Yamada et al.42, 
showing upregulation of miR-21 in lung tumor epithelial cells. Furthermore, miR-200 family is 
known to inhibit tumor growth43 and is downregulated in the lungs of human patients and mouse 
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model of pulmonary fibrosis linked with lung adenocarcinoma44. Consistently, miRSCAPE 
identifies miR-200 among the most down-regulated miRNAs in primary lung tumors relative to the 
normal samples.  
 
Comparing metastatic and non-metastatic lung adenocarcinomas, Sun et al.45 found five miRNAs 
to be upregulated in the metastatic tumors, among which miR-210 was included in our dataset. 
miRSCAPE successfully identifies miR-210 among the top 20 upregulated miRNAs in the brain 
metastasis compared to the primary tumor in epithelial cells. Additionally, miR-145 is known to be 
downregulated in LUAD patients with brain metastasis46. Consistently, miRSCAPE identifies miR-
145 to be downregulated in LUAD patients with brain metastasis, specifically in the epithelial cells.     
 
Similar to epithelial cells, miR-210 is also upregulated in the myeloid and the lymphoid cells of the 
primary tumor relative to normal lung samples. However, in contrast to the epithelial cells, 
miRSCAPE predicts miR-21 as down-regulated in the myeloid cells of the tumor. This may 
represent a normal immune response consistent with a previous finding that miR-21 inhibition 
reduces the proportion of myeloid-derived suppressor cells in lung cancer47. Interestingly, miR-21 
is also known to promote proliferation in AML48. Furthermore, miRSCAPE identified miRNA-100 
among the top upregulated miRNAs in tumor myeloid cells, and like miR-21, miR-100 is a known 
oncomir for AML49, suggesting a link between miRNA functions in the lymphoid cells across 
contexts. 
 
MicroRNA miR-328 represents another interesting case. It promotes myeloid differentiation50. 
Eiring et al.51 have shown loss of miR-328 in CML. We observed the downregulation of miR-328 
in the lung tumor myeloid cells. However, in contrast, miR-328 is upregulated in the lymphoid cells 
of the brain metastatic tumors, consistent with Arora et al.52 again, suggesting a complex, context-
specific role of miRNAs revealed by miRSCAPE. 
 
Analyzing the peripheral blood lymphocytes of pulmonary sarcoidosis (linked with lung cancer), 
Kiszałkiewicz et al.53 found significant upregulation of miR-222 and significant downregulation of 
let-7f in patients compared to controls. miRSCAPE recapitulates these findings in lung cancer 
lymphoid cells vs normal lung lymphoid cells.  
 

5. Application of miRSCAPE to Human Cell Atlas 
Thum et al. list 52 upregulated and 40 downregulated miRNAs between human fetal and adult 
heart tissue. Among those 46 overlapped genes, miRSCAPE recapitulates 26 upregulated and 
10 downregulated miRNAs corresponding to a concordance rate of 78.26%. (Fig 5D). Tang et 
al.54 investigate miRNAs in matched human fetal and adult organs (heart, kidney, liver, lung). 
They report that miR-21 is overexpressed in the fetal lung. Consistently, miRSCAPE predicts an 
increase for miR-21 in the lung. MiRSCAPE estimates the expression for miR-26a is upregulated 
in fetal lung and kidney compared to adult. Tang et al. also observe an overexpression for miR-
26a in the fetal lung and kidney. Additionally, they suggested that miR-125b is functional both at 
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the fetal and the adult stages of kidneys. Consistently, we also observe a high level in miR-125b 
in both fetal and adult stages of kidney with no difference in expression.  
 
Comparing cardiac remodeling in fetal and adult rats, Yan et al.55 detected miR-199a and miR-21 
to be upregulated in adults. This is consistent with our findings. Moreover, Zhang et al.56 identified 
18 and 7 miRNAs that respectively increase and decrease with age in mice. Of these miRSCAPE 
consistently identified 14 and 4 miRNAs that respectively increase or decrease in adult cardiac 
cells relative to fetal cardiac cells.  

Supplementary Figures 

 
 
Fig S2: Effect of the sample sizes on the miRSCAPE prediction. Performance of the 
miRSCAPE is provided for all (n = 507), 75% (n = 380), 50% (n = 253), 25% (n = 126) of the brain 
samples and all colon (n = 443) samples are used. miRSCAPE performance is slightly affected 
by the sample size since a mild accuracy decrease when part of the samples is utilized in brain 
cohorts. However, the sample size is not the only performance factor as the lowest accuracy is 
obtained on the colon (n = 443) samples. 
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Fig 3:  Principal component analysis (PCA) plot for the mRNA expression profiles of 5 cancer 
types.  
 

 
Fig S4: Cross-tissue similarity (Jaccard index) in important features - those deemed important for 
at least 50% (left) and 80% (right) of the miRNAs in each tissue.  
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Fig S5: Fold change (x-axis) distribution of the predicted miRNAs (y-axis) differentially expressed 
in PDAC malignant cells versus pooled acinar and ductal type 1 cells. miRNAs whose fold change 
is consistent with Mazza et al. are shown. 
 

Supplementary Tables 
 
Table S1: Number of samples and number of miRNAs covered in this analysis for the cancer 
and normal data  
 
Table S2: Top 20 upregulated and downregulated miRNAs' logFC and p-values in the malignant 
cells relative to acinar and ductal Type I cells individually as well as relative to pooled acinar and 
ductal cells in PDAC. 
 
Table S3: The top 20 upregulated and downregulated miRNAs' logFC and p-values relative to 
primary tumors versus normal samples and also the metastatic tumors versus the primary tumors 
separately in epithelial, lymphoid, and myeloid cells. T: Primary Tumor; N: Normal; M: Metastatic 
tumor. 
 
Table S4: The top 20 upregulated and downregulated miRNAs' logFC and p-values for each of 
the 56 different cell types relative to all other cell types. 
 
Table S5: The top 20 upregulated and downregulated miRNAs' logFC for the matching tissues 
between the fetal and the adult tissues. 
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Table S6: The utilized list of parameters and their ranges in this analysis. 
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