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Abstract: Many non-coding genetic variants cause disease by modulating gene 

expression. However, identifying these expression quantitative trait loci (eQTLs) is 

complicated by gene-regulation differences between cell states. T cells, for example, 

have fluid, multifaceted functional states in vivo that cannot be modeled in eQTL studies 

that aggregate cells. Here, we modeled T cell states and eQTLs at single-cell resolution. 

Using >500,000 resting memory T cells from 259 Peruvians, we found over one-third of 

the 6,511 cis-eQTLs had state-dependent effects. By integrating single-cell RNA and 

surface protein measurements, we defined continuous cell states that explained more 

eQTL variation than discrete states like CD4+ or CD8+ T cells and could have opposing 

effects on independent eQTL variants in a locus. Autoimmune variants were enriched in 

cell-state-dependent eQTLs, such as a rheumatoid-arthritis variant near ORMDL3 

strongest in cytotoxic CD8+ T cells. These results argue that fine-grained cell state 

context is crucial to understanding disease-associated eQTLs. 

 
Genome-wide association studies (GWAS) of autoimmune and allergic diseases 

have implicated non-coding variants that may regulate T cell gene expression (1-5). 

However, studies measuring the effect of these variants on bulk gene expression—

expression quantitative trait loci (eQTL)—have incompletely explained their 

pathogenicity (6). Bulk assays obscure heterogeneity that is essential for effective T cell 

function and often require non-physiologic ex vivo stimulation. Single-cell assays, on the 

other hand, capture fine-grained physiologic T cell states defined by discrete surface 

markers (CD4+, CD8+), cytokines (TH1, TH2, TH17), transcription factors (T-bet, RORγt), 

or transcriptomic programs with varying degrees of expression (effector, cytotoxicity, 

activation). These states are neither static nor mutually exclusive: they may coexist in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454316
http://creativecommons.org/licenses/by-nc-nd/4.0/


the same cell (for example, more effector-like CD4+ TH2 cells, seen in asthma) or they 

may transition (for example, TH17 cells gradually become IFNγ- and IL-17-coproducing 

TH17/1 cells seen in tuberculosis antigen-specific cells) (7-10). Certain states are 

effective therapeutic targets, like TH2s in allergy and TH17s in psoriasis (11, 12).  

A T cell’s states may determine the magnitude or presence of eQTLs in that cell. 

For example, ex vivo activation alters variants’ regulatory effects (13, 14). However, 

most recent single-cell eQTL studies are unable to achieve this resolution because they 

identify state-dependent effects by first aggregating cells from each discrete cluster or 

other phenotypic classification to reduce dimensionality and mitigate sparsity and then 

using linear models (15-18). This limits the scope of analysis to coarse states that may 

imperfectly capture T cell biology or arbitrarily partition a continuous transcriptional 

landscape, such as single-cell differentiation trajectories or functional gradients like 

cytotoxicity.  

In order to understand how regulatory genetic variants interact with the dynamic 

range of in vivo T cell states essential for disease pathogenesis, here we instead 

leverage multidimensional cell-state heterogeneity captured in multimodal single-cell 

assays of resting memory T cells. By considering each cell’s position along multiple 

continuous functional axes, we can dissect state-dependent eQTL effects at single-cell 

resolution and better identify disease-relevant regulatory heterogeneity. 

Results 
 
Memory T cell eQTLs in Peruvians include shared and ancestry-specific 
regulatory variation 
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For this study, we used single-cell expression of the transcriptome and 30 

surface proteins from our previous CITE-seq study of memory T cells isolated from 259 

healthy Peruvian individuals with prior resolved Mycobacterium tuberculosis infection 

(10). We chose the surface proteins because of their role in T cell function. After 

applying quality control (QC) as shown previously, 500,089 cells remained for eQTL 

analysis, with an average of 4,927 unique molecular identifiers (UMIs) and 1,475 genes 

per cell (Methods, Fig. S1A-B) (10). We analyzed 5,460,354 genotyped and imputed 

variants passing QC. 

We first defined a core set of eQTLs across all memory T cells, agnostic to state; 

eQTLs demonstrating a robust main effect would be promising candidates to later test 

for state-dependent effects in a single-cell model (Fig. 1A). Since we were not yet 

considering individual cells’ states, pseudobulk analysis was sufficient. We summed the 

expression of each gene across all cells from each donor (mean = 1,851 cells/donor, 

Fig. S1C) and treated this expression profile as a bulk sample for sample-level 

normalization, gene QC, and correction of measured and latent covariates. Next, to 

define cis-eQTL effects, we tested associations between the covariate-corrected 

expression of 15,789 genes expressed in >50% of samples and all variants up to 1 MB 

from each gene’s transcription start site (TSS).  

We found 6,511 eGenes with significant cis-eQTLs (q value < 0.05), consistent 

with previous bulk eQTL studies with similar sample size (19, 20). These genes 

included previously described eGenes such as CTLA4 and ERAP2 (Fig. 1B-C, Table 

S1) (20, 21). We also found 808 eQTLs that were driven by genetic variation common in 

the Peruvian population but rare or absent in Europeans (Table S2). For example, an 
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eQTL for MAF (β = 0.32, p = 3.45x10-7) was driven by rs9927852 

(chr16_78894778_T_C: minor allele frequency=22% in study cohort, 27% in 1000 

Genomes Peruvians in Lima, Peru [PEL], 1% in European [EUR], Fig. 1D-E) (22). 

When we conditioned on the lead eQTL for each eGene (n = 6,511), we observed 

exactly two independent effects at 418 loci, such as MDGA1, and more than two 

independent effects at 18 loci upon repeated conditional analysis (Fig. 1F-G, Table S3). 

To determine if results were consistent with previously published T cell eQTLs, 

we compared the lead variants’ effects to bulk naive CD4+ T cell eQTLs from individuals 

of European ancestry (n = 169) reported by the BLUEPRINT project (19). eQTL 

dynamics described in prior studies suggest that naive and memory T cells share many 

bulk eQTL effects (2, 21). Despite differences in linkage disequilibrium due to ancestry, 

technology, and cell type, we observed that the eQTLs from our analysis were largely 

significant in BLUEPRINT (at q < 0.05, 2,056 significant in both/3,249 significant in 

current study and measured in BLUEPRINT), and of those that were significant in both 

datasets, most had concordant directions of effect (1,917/2,056 = 93% same direction, 

Fig. S2). 

Continuous cell states capture functionally distinct dimensions of T cell 

heterogeneity 

Combined single-cell mRNA and protein measurements from CITE-seq allow us 

to define cell states in conventional ways, such as clustering or gating on protein 

markers as in flow cytometry (e.g. CD4+ T cells). However, to better capture the 

continuous heterogeneity of T cell states, we projected cells into a multimodal low-

dimensional embedding with canonical correlation analysis (CCA), as previously 
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described (Methods) (10). Each cell received a score along 20 dimensions (canonical 

variates, CV) defined by orthogonal variation shared between mRNA and surface 

protein expression, because cross-modality signal is likely to reflect more robust cell 

states (Fig. S3A). This was demonstrated when we clustered on these CVs in the 

original study and identified 31 canonical memory T cell states including regulatory, type 

1/2/17 helper, and gamma delta T cells, many of which could not be precisely defined in 

unimodal analysis of mRNA alone (Fig. S3B) (10).  

Rather than using CVs to partition cells into clusters, as in the original study, we 

now used the top CVs as continuous representations of cell state (Fig. 1A). We 

expected that each CV might represent a distinct, biologically relevant function because 

clusters delineated by the CVs correspond to known T cell states (Fig. S3B). Indeed, 

we observed that individual CVs correlate with genes, proteins, and gene sets relevant 

to well-described T cell functions (Fig. 2A). For example, CV1 correlated with a 

previously defined cytotoxicity (“innateness”) gene set and CV2 correlated with a 

regulatory T cell (Treg) gene set (Fig. 2B-C) (23, 24). We confirmed both correlations 

with gene set enrichment analysis (Table S4). In some instances, published gene sets 

weren’t significantly enriched, but CVs correlated with marker genes of known memory 

T cell states. For example, CV4 correlated with TH2 marker GATA3 (Pearson r = 0.23 in 

non-zero cells, p < 10-1785), and CV8 correlated with gamma delta T cell marker TRDC 

(Pearson r = 0.51 in non-zero cells, p < 10-767; Fig. 2A, Fig. S3C-F) (25). 

Single-cell analyses typically use multiple components of a low-dimensional 

embedding to define higher-resolution cell states—often clusters—carrying out 

combinations of functional programs (26, 27). Accordingly, the average CV scores of T 
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cells in each CCA-defined cluster varied (Fig. 2C, Table S5) and can be used to 

interpret the functional diversity among clusters, e.g., some clusters have more effector 

function (high CV1), others are more TH1-like (high CV6). However, clusters obscure 

heterogeneity that exists between individual cells from the same cluster (Fig. 2C). 

Moreover, continuous metrics like CVs don’t just classify cells into states, but instead 

capture the degree of how much each state influences a cell, which is a more faithful 

representation of how activation or helper states manifest in T cells (8, 28). Thus, using 

the CV scores themselves—or similar metrics defined at single-cell-resolution—may be 

more precise. 

Single-cell statistical models define cell-state-dependent eQTLs 

Modeling sparse expression and cell states at single-cell resolution requires 

statistical models that differ from those commonly used for bulk or pseudobulk eQTL 

analysis. Here, we used single-cell Poisson mixed-effects (PME) regression, which can 

model discrete and continuous cell states, Poisson-distributed scRNA-seq UMI counts, 

and the nested structure of cells within donors and batches (29, 30). We model the UMI 

counts of each gene in single cells as a function of genotype, correcting for potentially 

confounding fixed-effect covariates (age, sex, genotype PCs, gene expression PCs) 

and random-effect covariates (donor, batch) (Fig. 3A, Methods).  

     To demonstrate consistency with commonly used linear models, we used the 

PME model to reanalyze our data and successfully recapitulated almost all eQTLs 

detected in pseudobulk analysis with nominal significance (6,291/6,511=97%) and 

concordant direction of effect (6,509/6,511=100%, Fig. S4A, Table S6). We permuted 

genotypes and observed that in this null data, 5.3% (347/6,511) of the eGenes were 
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significant at p<0.05, demonstrating well-calibrated type 1 error. (Fig. S4B). Although 

donors were part of a former TB progression cohort, 6,510/6,511 eQTLs had no 

significant differences (q<0.05) between people with and without a history of disease 

progression (Table S7). 

Then, to identify eQTLs with cell-state-dependent effects, we added an 

interaction term between genotype and cell state (capturing heterogeneity in the eQTL 

effect) to the PME model. We compared this model to a baseline model controlling for 

the genotype (overall eQTL effect) and cell state (differential expression) to assess 

significance (Methods, Fig. 2A). Although this model can accommodate continuous 

states, in order to compare it to conventional pseudobulk models, we first chose a 

simple binary test case: CD4+ vs. CD4-, based on surface protein expression measured 

with CITE-seq (Fig. S5A-D). The total eQTL effect estimated in CD4+ cells (βtotal = βG + 

βGxCD4) with the PME interaction model was consistent with eQTL analysis with a 

pseudobulk linear model or a single-cell PME model of CD4+ T cells gated from the 

CITE-seq dataset (Fig. S5E-F, Table S8-10). Furthermore, using genotype 

permutations, we demonstrated that type I error for the interaction term was well-

controlled at α=0.05 (397/6511 = 0.061, Fig. S5G).  

An alternative is to apply a linear mixed-effects (LME) model to normalized 

single-cell expression data. Without considering cell state, LME performed similarly to 

PME (Fig. S4C-E, Table S11). However, when we added an interaction term, the LME 

model was not robust to differential expression between cell states. Even when the only 

difference between an eQTL’s effect in CD4+ and CD4- cells was due to artificially 

simulated differential expression, the LME model spuriously detected highly significant 
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state-specific eQTLs, while the PME model did not (Methods, Fig. S6). This is 

consistent with previous studies showing that LME models inadequately describe the 

distribution of single-cell expression data (29, 30). 

eQTL effects vary systematically along continuous single-cell states 

With the single-cell resolution of the PME model, we were able to demonstrate 

how eQTLs varied across continuous T cell states. We represented cell states with 

cells’ projections on the individual CVs defined in the original study (Fig. 3A, Fig. S3A) 

(10). We found that a large proportion of eQTLs are modified by these cell states. 

Focusing on CV1, which captured cytotoxic function, we observed that 1,097 of 6,511 

memory T cell eQTLs had a significant interaction (q < 0.05, Table S12), i.e. the 

magnitude of the eQTL effect varies in cells depending on their CV1 score. For 

example, the rs9927852 eQTL for MAF had an interaction effect that amplified the eQTL 

in cells with higher CV1 scores (βG = 0.098, βGxCV1 = 0.13). This means the eQTL has 

almost no effect in cells in the lower third of CV1 scores, but increased to maximum 

effect in the upper third of CV1 scores (Average βtotal in lower third =0.005, average βtotal 

in upper third = 0.24, Fig. 3B). Interaction effects were independent from differential 

expression and main genotype effects, and the type 1 error was well-controlled upon 

permutation of CV1 scores (Fig. S7). 

We observed that continuous cell states captured more state-dependent 

regulatory variation than analogous discrete phenotypes. For example, CD4+ and CD8+ 

are two major discrete lineages of memory T cells, and continuous CV1 scores largely 

discriminate between them (classifying CD4+ based on CV1 < 0: sensitivity = 0.85, 

specificity = 0.93; Fig. S8A). A PME model of eQTL interactions with CV1 recapitulated 
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517/619 (84%) eQTLs identified in a PME model with the CD4+ state, as expected, but 

also identified an additional 580 eQTLs uniquely significant in the continuous analysis 

(Fig. 3C, Fig. S8B). These eQTL interactions’ directions of effect were consistent 

between CV1 and CD4+, but they were non-significant in the discrete CD4+ analysis 

(94% concordant effect direction). Similarly, CV2 correlates with Treg markers, and the 

1,033 eQTLs with CV2 interactions included but exceeded the 289/388 (74%) eQTLs 

with significant Treg cluster interaction effects (Fig. 3C, Fig. S8C, Table S13). These 

correspondences were specific, i.e., the CV1 eQTL interactions were not concordant 

with Treg cluster interactions and CV2 eQTL interactions were not concordant with CD4+ 

gate interactions (Fig. S8D). This shows that the continuous states captured by 

decomposing single-cell data represent biological programs with regulatory significance. 

Continuous cell states may also explain heterogeneous eQTL effects better than 

discrete states do. For example, the MAF eQTL interacts with both CD4+ status (βG = 

0.33, βGxCD4 = -0.25, pGxCD4 = 4.69x10-85) and CV1 (βG = 0.098, βGxCD4 = 0.13, pGxCD4 = 

1.80x10-243) in a biologically concordant manner, i.e., CD4+ cells tend to have lower 

CV1 scores and both are associated with weaker MAF eQTL. However, the interaction 

with CD4+ status was no longer significant when we conditioned on CV1 interactions (p 

= 0.77), but the CV1 interaction maintained significance (p = 1.19 x 10-231). Closer 

inspection of minor subsets of CD4+ T cells with higher CV1 scores (15%) and CD8+ T 

cells with lower CV1 scores (4.7%) confirms this. Both CD4+ and CD8+ memory T cells 

with high CV1 scores have strong eQTL effects (βCD4,high CV1 = 0.22, βCD8,high CV1 = 0.37, 

Fig. 3D), while cells of both lineages with low CV1 score have weaker effects (βCD4,low 

CV1 = 0.03, βCD8,low CV1 = 0.04, Fig. 3D). We observed that the CV1 interaction similarly 
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superseded the discrete CD4+ interaction for 364/517 eQTLs with significant state 

dependence in both the discrete and continuous models, suggesting that the observed 

regulatory variation is more driven by a cell’s degree of cytotoxicity than by its lineage. 

We hypothesized that multivariate modeling of multiple orthogonal CVs in an 

eQTL model could capture more granular, multifaceted states and their effects on gene 

regulation in individual cells. By sequentially adding CVs to a PME model and 

quantifying their cumulative significance, we observed the number of interacting eGenes 

reaches a maximum with 7 CVs in the model (2,237 interacting eGenes out of 6511, at 

LRT q<0.05, Fig. 4A, Table S14); adding more CVs does not substantially change the 

number of state-dependent eGenes (with 15 CVs: 2,221 interacting eGenes at q<0.05). 

CV interaction effects from the multivariate model were generally highly concordant with 

effects from univariate interaction models (r=0.87-0.97, Fig. S9A, Table S15-20), 

consistent with the independence of orthogonal CVs. 

CV1 had the most interacting eGenes in both the univariate and multivariate (7 

CV) models (Fig. 4B, Fig. S9B). Some eGenes significantly interacted with multiple cell 

states (Fig. 4C), and some pairs of states had related directions of effect in the 

multivariate model: for example, CV1 (cytotoxicity) and CV6 (TH1) tended to have the 

same direction of effect, while CV1 and CV3 (central) tended to have opposite 

directions (Fig. 4D-F). By clustering genes based on their interaction z scores (relative 

to the direction of the main effect) for the 7 CVs in the multivariate model, we defined 

eight broad clusters of genes based on distinct patterns of CV interactions that may 

reflect shared cell-state-dependent regulatory mechanisms (Fig. S10, Table S21). 

Individual cells have distinct eQTL effects 
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To estimate the eQTL effect for each gene at single-cell resolution, we can sum 

the products of interaction betas and corresponding CV scores for each individual cell 

(Fig. 5A, Methods). These CV scores capture the partial influence of each state that 

may be modulating regulatory activity. Adding this value to the baseline genotype beta 

estimates the total cell-level eQTL effect. These single-cell eQTL effects vary across 

cells and are independent of eGene expression. 

Independent variants acting on the same eGene may have different state 

dependencies 

Previous studies suggest that secondary eQTLs identified after conditioning on 

the lead effect are more likely to be cell-state-specific (31). We indeed observed a 

significantly larger fraction of secondary eQTLs with significant cell state interactions 

compared to lead variants (Fig. 5B, Fisher p = 6.98 x 10-52). Of the 436 secondary 

variants, 71% had cell-state specific effects compared to 34% of lead variants. 212 

eGenes had at least two independent state-interacting effects. In some cases, eGenes’ 

lead and secondary variants may have contradictory interactions with the same CV. For 

example, the effect of MDGA1’s lead variant increases with CV1, while its secondary 

effect decreases (Fig. 5C-D). For GNLY, the effect of the lead variant increases with 

CV4, while its secondary effect decreases. Of the 64 eGenes with at least two 

independent effects interacting with CV1 (q < 0.05), 30 eGenes had different directions 

of CV1 interactions for their lead and secondary variants. Across all the CVs, 70 

eGenes displayed this discordance with at least one state, demonstrating that cell 

states may not influence all the eQTLs for a gene in the same way (Fig. S11). 

State-dependent eQTLs colocalize with autoimmune-associated variants 
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Consistent with previous studies, we found that the memory T cell eQTLs that we 

defined with pseudobulk analysis were enriched for variants in LD with genome-wide 

significant loci associated with immune traits compared to genome-wide significant loci 

for all other traits in the GWAS catalog. For example, we observed relative enrichment 

for rheumatoid arthritis (RA; OR = 4.67, Fisher p = 2.25 x 10-7) and inflammatory bowel 

disease (OR = 4.84, Fisher p = 2.16 x 10-11, Fig. S12A, Table S22). We recapitulated 

previously described disease-associated eQTL variants, like rs1893592 

(chr21_42434957_A_C), an eQTL for UBASH3A that is associated with RA (32). 

We then assessed the cell-state dependence of disease-associated variants that 

overlapped eQTLs. Cell-state-interacting memory T cell eQTLs were enriched for 

overlap with GWAS variants compared to non-interacting eQTLs (OR = 1.31, Fisher p = 

2.7 x 10-4), and state-dependent eQTL variants overlapped with at least one GWAS 

variant for 189/195 traits tested from the GWAS Catalog (33). State-interacting eQTLs 

were nominally enriched compared to non-interacting eQTLs for overlap with 14 

individual traits, with associations that exceeded the null expectation (2,237/6,511 = 

34%) for immune traits like RA (17 interacting, 7 non-interacting), type 1 diabetes (13 

interacting, 7 non-interacting), and multiple sclerosis (24 interacting, 19 non-interacting) 

(ORs: 1.58-9.57; Fig. S12B, Table S23). 

For example, the lead eQTL variant for ORMDL3 (rs4065275) was in LD (r2 = 

0.69 in 1KG PEL, r2 = 0.68 in 1KG EUR) with an RA GWAS variant (rs59716545) and 

also had a significant cell state interaction across CVs 1-7, driven by significant 

interactions with CVs 1 and 2 (34). The ORMDL3 eQTL was strongest in the GZMB+ 

cytotoxic CD8+ T cells, intermediate in TH17s and other helper CD4+ states, and 
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weaker in RORC+ Tregs (Fig. 6A). On the other hand, the lead IL18R1 eQTL variant 

(rs11123923, chr2_102351384_C_A)—in LD with inflammatory bowel disease GWAS 

variant rs1420098 (r2 = 1.00 in 1KG PEL and EUR)—was strongest in TH2s and TH17s 

with weaker effects in cytotoxic states (Fig. 6B) (35). 

GWAS variants did not always have stronger eQTL effects in states with higher 

overall expression. For example, the lead eQTL effect for CTLA4 was mediated by 

rs3087243 (chr2_203874196_G_A), which is associated with RA (36). Although CTLA4 

expression is highest in a subset of Tregs, RORC+ Tregs, and activated CD4+ T cells, 

these cells had weaker eQTL effects (Fig. 6C). The eQTL effect was strongest in 

cytotoxic CD4+ T cells, a state with very low CTLA4 expression. Our results suggest 

that disease processes may, in fact, emerge in unlikely states when pathogenic variants 

modulate low-level gene expression. 

State-dependent eQTLs are enriched in T cell regulatory regions 

State-dependent eQTLs may be concentrated in particular regulatory regions, 

including promoters (whose effects are shared across states) or enhancers (which tend 

to have state-specific regulatory functions) (37). To test these regions for enrichment, 

we first defined promoters as the region within 2 kb of the transcription start site. We 

fine-mapped the eQTL effect at each locus with CAusal Variants Identification in 

Associated Regions (CAVIAR) based on summary statistics from the pseudobulk 

analysis (38). For loci where we were able to fine-map the lead effect to a single variant 

(n = 508, posterior inclusion probability [PIP] ≥ 0.5), we calculated a 12.07-fold 

enrichment of eQTL variants weighted by their PIPs in promoters (permutation p < 

0.001, Fig. 6D, Methods). Cell-state-interacting and non-interacting eQTLs were both 
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strongly enriched at 11.38- and 13.43-fold, respectively (p < 0.001, one-sided p for Δint-no 

int = 0.21), reflecting the regulatory importance of promoters regardless of state. 

Next, we hypothesized that enhancers may also be enriched for cell-state 

specific eQTLs. Since there is uncertainty in the specific location of regulatory regions 

outside of the promoters, we defined cell-type-specific regulatory regions with Inference 

and Modeling of Phenotype-related ACtive Transcription (IMPACT), a logistic regression 

model trained on cell-type-specific transcription factor binding and epigenetic features 

(39). The IMPACT model for lineage-determining T-bet in CD4+ TH1 cells estimates the 

probability that the epigenetic landscape at any genomic position is favorable for 

transcription factor binding, where higher scores represent T-cell-specific regulatory 

regions. We only considered regions outside the previously defined promoters (TSS +/- 

2kb) as T-cell-specific regulatory regions. We found that eQTL variants were enriched 

3.12-fold (p < 0.001, Fig. 6D). Cell-state-interacting eQTLs were almost twice as 

enriched (3.71) as non-interacting eQTLs (2.03) in T-cell-specific regions (both p < 

0.001, one-sided permutation p for Δint-no int < 0.001). 

To more precisely identify causal variants based on effects shared across 

ancestries, we combined this dataset with European data from BLUEPRINT and 

conducted multi-ancestry fine-mapping of pseudobulk effects (40). We identified a 

single causal variant (PIP ≥ 0.5) explaining the lead effect for 1,247 eGenes also 

identified in the Peruvian analysis. As in the Peruvian analysis, these variants were 

enriched in promoters (13.94, p < 0.001) and T-cell-specific regulatory regions outside 

the promoter (2.94, p < 0.001), with greater enrichment of state-interacting eQTLs (3.74) 
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in T-cell-specific regions compared to non-interacting eQTLs (2.06) (both p < 0.001, 

one-sided p for Δint-no int < 0.001; Fig. S13).  

Previous studies have found that secondary eQTL variants are more likely to 

affect enhancers than promoters (33). Consistent with this, we found that relative to lead 

variants, secondary eQTL variants were less enriched in promoters (1.87, p = 0.12) and 

comparably enriched in T-cell-specific regulatory regions (3.02, p = 0.054) (Fig. 6E). 

However, only non-interacting secondary variants were enriched in promoters (2.79, p = 

0.034), while cell-state-interacting secondary variants were significantly depleted (0.13, 

p = 0.018). There was no difference in enrichment in T-cell-specific regions between 

interacting (3.92, p = 0.008) and non-interacting variants (2.53, p = 0.056) (one-sided p 

for Δint-no int = 0.16). This suggests that secondary variants generally have more cell-

type-specific regulatory roles, regardless of cell-state-dependence, but those found to 

be state-dependent in the PME model are especially depleted for shared effects. 

 
Discussion 
 

Large single-cell datasets from genotyped cohorts—some with multiple single-

cell data modalities—are becoming more common and make it possible to investigate 

how cell states shape the complex relationship between genetic variation, gene 

expression, and disease. In this study, we underscore the untapped potential of these 

data to reveal state-dependent regulatory heterogeneity when analyzed with traditional 

bulk methods and the urgent need to refocus eQTL analyses at single-cell resolution.  

Recognizing growing evidence that clusters obscure the rich functional diversity 

of T cells and other dynamic cell types such as stem cells, stromal cells, and neurons, 

here we leveraged the granularity of single-cell data to better define state-dependent 
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eQTLs (41-43). A single-cell Poisson model is computationally expensive—as noted by 

the few previous studies that have had mixed success with similar approaches—but its 

advantages over more common alternatives were most clear when we assessed state 

dependence: pseudobulk linear models cannot accommodate cell states defined at 

single-cell resolution, and a single-cell linear model was confounded by differential 

expression between states (18, 44). PME’s flexibility and robustness are important 

assets for effective state-dependent eQTL analysis. 

Modeling continuous cell states in the PME model explained more overlooked 

variation, for example in rarer states like cytotoxic CD4+ T cells, which have been 

traditionally aggregated with other CD4+ T cells despite bearing more regulatory 

similarity to CD8+ T cells. This highlights the limitations of traditional discrete T cell 

states, which ignore the continuous ranges of T cell functions like activation, 

cytotoxicity, or helper lineages. However, continuous cell states can be difficult to 

interpret biologically, especially as more dimensions are considered jointly. We used 

multimodal CCA of gene expression and surface proteins for more robust definition and 

easier interpretation of these states. For other data modalities or cell types, alternative 

integration strategies may be effective (45, 46). Single-cell trajectories may reveal 

eQTLs varying along a unidimensional axis, like a perturbation or differentiation (17). 

With these strategies, we identified state-dependent effects in a substantial 

proportion of eQTLs and reconstructed their joint effects in individual cells. Single-cell-

resolution eQTL betas estimate the effect of a genetic variant on gene expression in any 

cell with a given cell-state profile, revealing that genetic variants can have different 

effects even in pairs of cells that share aspects of their states (for example, in the same 
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cluster). We can not only identify conventional clusters in which disease-associated 

variants have different effects—such as CD8+ GZMB+ T cells for RA-associated 

rs4065275 near ORMDL3—but unbiasedly disentangle specific continuous states 

driving the overall eQTL that may transcend clusters, such as cytotoxicity for rs4065275 

and ORMDL3. 

These T cell states may be driven by distinct regulatory architectures, including 

transcription factors, epigenetic profiles, or chromatin accessibility patterns. State-

dependent eQTLs may be in genomic positions that are only involved in regulatory 

activity in certain states—and the loci with independent eQTLs that have opposing 

state-dependent effects suggest that the exact position or nature of a variant determines 

these regulatory interactions. This study offers a starting point to design studies that 

further probe single-cell regulatory heterogeneity. For example, integrating single-cell 

ATAC-seq with RNA-seq in eQTL studies may offer insight into the overlap between 

these variants and state-specific accessible chromatin, or incorporating interactions 

between states or with abundance of a cell state to understand how the immune milieu 

shapes eQTL effects. Single-cell-resolution eQTLs can introduce new paradigms of how 

genes are regulated across diverse cell states. 
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Fig. 1. Modeling memory T cell eQTLs. (A) Schematic of single-cell eQTL modeling 
strategy. Using single-cell CITE-seq profiles, we conduct pseudobulk eQTL analysis to 
define memory T cell eQTLs and single-cell states. Specifically, continuous canonical 
variates can be used to dissect state-dependence of the memory T cell eQTLs in a 
single-cell model (shown here binned into low/medium/high for ease of visualization). 
(B) (left) Box plot and (right) locus plot of rs3087243 eQTL for CTLA4. Except where 
indicated, each point in a box plot represents the average log2(UMI counts + 1) across 
all cells in a donor (n = 259), grouped by genotype. Box plots show median (horizontal 
bar), 25th and 75th percentiles (lower and upper bounds of the box, respectively) and 
1.5 times the IQR (or minimum/maximum values if they fall within that range; end of 
whiskers). Each locus plot shows the variants in a +/250kb window around the TSS 
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plotted based on their nominal pseudobulk eQTL p value and genomic coordinate. The 
purple diamond is the lead variant and other variants are colored based on their r2 with 
the lead variant. (C) Box plot and locus plot of rs716848 eQTL for ERAP2. (D) Pie 
charts of the allele frequencies at rs99278652 in 1KG EUR (European) and PEL 
(Peruvian in Lima) populations. (E) Box plot and locus plot of rs9927852 eQTL for MAF. 
(F) Number of eGenes with 1, 2, or 3+ independent eQTLs. (G) Box plots for lead 
(rs9349050, left) secondary (rs6901281, middle), and secondary conditioned on lead 
(right) eQTL variants for MDGA1. In the box plot for rs6901281 conditioned on 
rs9349050, each point represents the average residual of log2(UMI counts + 1) after 
regressing out genotype at rs9349050 across all cells in a donor (n = 259). In the locus 
plot, the pink diamond is the secondary variant. 
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Fig. 2. Canonical variates (CVs) reflect biological functions. (A) Heatmap colored 
by scaled Pearson correlations between CVs and select marker genes, surface 
proteins, and gene set scores. Correlations were computed with log2(counts per 
10,000)-normalized expression for genes, centered-log-ratio normalized expression for 
proteins, and summed normalized expression of genes in the gene set (weighted where 
available). (B) UMAPs of memory T cells colored by CV1 score (left), top 20% of cells 
based on summed weighted expression of innateness gene set (in red), and normalized 
expression of GNLY. (C) UMAPs of memory T cells colored by CV2 score (left), top 
20% of cells based on summed expression of Treg gene set (in red), and normalized 
expression of FOXP3. Colors for CV scores range from low (green) to high (purple) for 
each CV. Colors for gene expression range from minimum (blue) to maximum (yellow) 
for each gene. (D) Heatmap colored by average score for each CV (1-8) among cells in 
each cluster. Separate columns on the right show CV scores for two cells each from two 
clusters. Colors range from low (green) to high (purple). 
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Fig. 3. Modeling eQTL interactions with continuous cell states across single cells. 
(A) Schematic of Poisson mixed effects model for cell-state-dependent single-cell eQTL 
analysis. After adjusting for covariates and modeling random effects, we can measure 
the interaction between a continuous cell state (shown here binned into 
low/medium/high for ease of visualization) and genotype. (B) Interaction of rs9927852 
eQTL for MAF with CV1. UMAP of total effect size (βtotal = βG + βCV1*CV1 score) per cell. 
Box plots show eQTL effect for cells in the bottom (left), middle (center), and top (right) 
thirds of CV1 scores. (C) Venn diagrams of the number of eGenes with significant CV 
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interactions (red) and discrete state/cluster interactions (blue) for CV1 compared to 
CD4+ (top) and CV2 compared to Treg (bottom). eGenes interacting with both the CV 
and the discrete state are indicated in the overlap. Interactions are deemed significant 
at q < 0.05. (D) rs9927852 eQTL for MAF in subsets of cells. The box plot on the left 
shows the eQTL in CD4+ (orange) and CD8+ (beige) cells. The box plots on the right 
show the eQTL in CD4+ cells (top) and CD8+ cells (bottom) divided by low (green) or 
high (purple) CV1 score. CD4+ or CD8+ classification is based on CITE-seq surface-
protein-based gating of TCRab+CD4+CD8- and TCRab+CD4-CD8+ cells. CV1 high or 
low is based on threshold = 0. For (B) and (D), each point in a box plot represents the 
average log2(UMI counts + 1) across all cells in the indicated subset of cells in a donor 
(n = 259), grouped by genotype. Box plots show median (horizontal bar), 25th and 75th 
percentiles (lower and upper bounds of the box, respectively) and 1.5 times the IQR (or 
minimum/maximum values if they fall within that range; end of whiskers). 
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Fig. 4. Cell-state-dependent eQTL interactions with continuous CVs. (A) Number of 
significant eGenes (LRT q < 0.05) detected by PME interaction models with increasing 
numbers of CVs. (B) Number of eGenes with significant interaction with each CV in a 
multivariate PME model with 7 CVs. (C) Heatmap of the number of eGenes with 
significant interactions with pairs of CVs in the multivariate model. Boxes along the 
diagonal reflect the total number of eGenes interacting with the corresponding CV. (D) 
Proportion of eGenes in (C) with the same direction of effect. (E) eGenes with 
significant interactions with either CV1 or CV2 plotted based on z scores with CV2 and 
CV1. (F) eGenes with significant interactions with either CV1 or CV3 plotted based on z 
scores with CV3 and CV1. 
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Fig. 5. Single-cell dissection of eQTLs. (A) Schematic of calculating cell-level eQTL 
betas from main effect and CV interactions for the example of MAF and rs9927852. 
UMAP on the right shows total eQTL effect size at single-cell resolution, computed by 
summing main genotype effect (box plot) and individual CV effects (UMAPs). CV 
UMAPs depict each CV’s interaction beta multiplied cell-level CV scores scaled 
independently from lowest (purple) to highest (yellow). (B) Number of lead eQTL 
variants and independent secondary variants with significant cell-state interactions 
(red). (C) Lead (top) and secondary (bottom) eQTLs for MDGA1 in cells with the lower 
third (left) and upper third of CV1 scores (right). Each point represents the average 
log2(UMI counts + 1) across all cells in the indicated CV1 score bin in a donor (n = 259), 
grouped by genotype. Box plots show median (horizontal bar), 25th and 75th 
percentiles (lower and upper bounds of the box, respectively) and 1.5 times the IQR (or 
minimum/maximum values if they fall within that range; end of whiskers). Beta values 
are the average βtotal for all cells in the bin. (D) UMAP of total eQTL effect of lead (top) 
and secondary (bottom) variants for MDGA1. Each cell is colored by its βtotal, scaled to 
be centered on βG with max (red) and min (blue) determined by the most extreme 
absolute βtotal for that eQTL in any cell.  
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Fig. 6. Cell-state dependent disease and regulatory impact of eQTLs (A) UMAP of 
total effect size of RA-associated eQTL at rs4065275 for ORMDL3 and (B), IBD-
associated eQTL at rs11123923 for IL18R1 at single-cell resolution. (C) (top) UMAP of 
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total effect size of RA-associated eQTL at rs3087243 for CTLA4 at single-cell 
resolution. (bottom) Single-cell normalized expression of CTLA4 gene scaled from 
lowest (dark blue) to highest (yellow). For all single-cell eQTL effect UMAPs, each cell is 
colored by its βtotal, scaled to be centered on βG with max (red) and min (blue) 
determined by the most extreme absolute βtotal for that eQTL in any cell. For all box 
plots, each point represents the average log2(UMI counts + 1) across all cells in the 
indicated cluster in a donor (n = 259), grouped by genotype. Box plots show median 
(horizontal bar), 25th and 75th percentiles (lower and upper bounds of the box, 
respectively) and 1.5 times the IQR (or minimum/maximum values if they fall within that 
range; end of whiskers). Beta values are the average βtotal for all cells in the cluster. (D), 
Enrichment of eQTL lead effects or (E), independent secondary (conditional) effects in 
promoter or T-cell-specific regulatory regions. Analysis was limited to loci where at at 
least one variant had PIP >= 0.5. The height of the gray bar corresponds to the average 
enrichment calculated across all loci containing a variant with PIP < 0.05, red bar 
corresponds to the subset with significant cell-state interaction (LRT q < 0.05 in model 
with 7 CVs), and the blue bar corresponds to the subset without significant cell-state 
interaction. Bars marked with an asterisk are have a one-sided permutation p value < 
0.001. Each pair of interacting/non-interacting bars is labeled with a one-sided 
permutation p value for the difference (interacting minus non-interacting). The gray 
dotted line indicates enrichment statistic = 1. 
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Materials and Methods 
Single-cell RNA-seq and genotype data and quality control (QC) 
 

We previously published a dataset of memory T cells from a 259-donor subset of a Peruvian 

tuberculosis disease progression cohort (128 former cases, 131 former latently infected controls; GEO: 

GSE158769) along with detailed sample processing methods (6, 42). Briefly, we negatively isolated 

memory T cells with a modified Pan T cell magnetic-activated cell sorting (MACSR) kit with anti-CD45RA 

biotin and followed an optimized version of the CITE-seq protocol with TotalSeqTM-A (BioLegend) 

oligonucleotide-labeled antibodies for a panel of 31 surface proteins (43). We pooled cells into batches of 

six donors for 10x Genomics library preparation and sequenced on an Illumina HiSeq X. Reads were 

aligned to GRCh38 with Cell Ranger. After demultiplexing donors with Demuxlet, we removed cells 

labeled as doublets, with < 500 genes expressed or > 20% of unique molecular identifiers (UMIs) from 

mitochondrial genes, from samples whose genotypes did not match genotypes called from single-cell 

data, or lacking surface markers of memory T cells (CD3 and CD45RO) (44). 

A superset of 4,002 donors was genotyped in a separate genetic study on a custom Affymetrix 

array (LIMAArray) based on whole exome sequencing from 116 individuals with active TB from the same 

Peruvian cohort (dbGaP: phs002025). The design of this array has been described previously (45). We 

removed variants that were significantly associated with batch (p < 1 x 10-5), duplicated, or had low call 

rate, significant differences in the missingness rate between cases and controls (> 10-5), or Hardy-

Weinberg p value < 10-5 in controls. 

We mapped variants to GRCh37/b37 and used SHAPEIT2 to pre-phase genotypes and 

IMPUTE2 to impute genotypes with 1000 Genomes Project Phase 3 as the reference panel (46, 47). After 

removing SNPs with an INFO score < .9, minor allele frequency < 0.05, or deletions, the remaining 

variants were converted to GRCh38 with liftOver.  

After single-cell and genotype QC, we used 500,089 cells from 259 donors and 5,460,354 

variants for eQTL analysis. 

 
Single-cell data processing 
 

mRNA and protein data were processed separately, as described (6). Briefly, we normalized the 

UMIs for each gene in each cell to log(counts per 10,000) and used centered-log-ratio normalization for 
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each protein within each cell. Normalized mRNA and protein expression were scaled so that each feature 

had mean = 0, variance = 1 across all cells. After selecting the top 1,000 variable genes per donor and 

removing the mouse immunoglobulin G protein (control), we conducted principal component analysis of 

each modality with the irlba R package and corrected the top 20 PCs of each modality for donor and 

library preparation batch effects with Harmony (48). 

 
Pseudobulk eQTL analysis 
 

To make pseudobulk expression profiles for 259 donors, we removed cells from 12 technical 

replicate samples and summed the UMI counts for each gene across all cells from each donor, producing 

one aggregated expression value for each gene in each donor. For CD4+ and CD8+ pseudobulk 

analysis, we constructed pseudobulk expression profiles for each donor in each compartment by in-silico 

gating cells that were CD4+CD8- or CD8+CD4-, respectively, based on their normalized surface protein 

expression measured in CITE-seq. Gates were defined through visual inspection. For Treg pseudobulk 

analysis, we used previously defined cluster annotations to construct a pseudobulk expression profile for 

the cells in clusters C-5 (RORC+ Treg) and C-9 (Treg) (6).  

Genes were removed if expressed in fewer than half the donors (pseudobulk counts > 0 in ≤ 129 

donors). For the remaining 15,789 genes, we normalized the pseudobulk profiles to log2(counts per 

million + 1) and applied inverse normal transformation. Then, we used probabilistic estimation of 

expression residuals (PEER) implemented in R to regress out age, sex, five genotype PCs, and 45 PEER 

factors (49). 

We then conducted a whole-genome eQTL analysis for all 22 autosomal chromosomes. For each 

gene, we associated its residual expression after PEER normalization with the dosage at each SNP 

within 1 MB of the transcription start site. These models were implemented in FastQTL (default settings) 

(50). To ensure robustness, we used FastQTL’s beta approximation to compute a permutation p value 

from 1,000 permutations. To correct for multiple hypothesis testing, we calculated q values for the lead 

SNP for each gene, and identified eGenes with significant eQTL variants with q < 0.05 (51). 

For conditional pseudobulk analysis, we iteratively regressed each eGene’s PEER-normalized 

residuals on the dosage of its lead SNP and used the subsequent values for FastQTL analysis. We 

repeated this twice. 
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Comparison to the BLUEPRINT project 

To validate this model’s ability to detect previously characterized eQTLs, we used the naive 

CD4+ T cell eQTLs reported by the BLUEPRINT project (15). We selected eGenes that were significant in 

our dataset (n = 6,511) and identified the subset of eGene/lead variant pairs also measured by 

BLUEPRINT (n = 3,249) and significant in both datasets at q < 0.05 (n = 2,056). We compared the 

direction of effect for these variants between the two datasets. 

 

Continuous cell state definition and annotation 

For multimodal dimensionality reduction, we used canonical correlation analysis, as implemented 

in the cc function from the CCA R package (52). We ran CCA on scaled mRNA expression for the most 

variable genes (excluding T cell receptor genes) and scaled protein expression for all 30 memory T cell 

proteins, and computed cells’ scores on each canonical variate (CV) based on the weight of each gene 

on each CV. We then corrected scores on the top 20 CVs for donor and batch effects. For visualization, 

we projected this embedding into a two-dimensional Uniform Manifold Approximation Projection (UMAP) 

with the umap function from the uwot R package (53). 

To annotate each CV based on its biological correlates, we first measured the Pearson 

correlation coefficient between cells’ CV scores and the normalized expression of each surface protein 

marker we measured. We measured correlations between CV scores and the normalized expression of 

genes encoding lineage-defining genes.  

We also conducted gene set enrichment analysis. First, we measured the correlation of each CV 

prior to batch correction with the expression of each gene used as input for CCA. These correlations 

defined the ranked gene list for each CV. Then, we measured the enrichment of each immunologic gene 

set (C7, only those annotated as “UP”) in MSigDB and a published “innateness” gene list in each CV’s 

ranked gene list with the fgsea function in the fgsea R package (54, 55). We corrected for multiple 

hypothesis testing with a Bonferroni p value threshold adjusted for 2,360 gene sets tested (0.5/2,360 = 

2.12 x 10-5). 
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To compare CV scores between and within clusters, we used the cluster annotations defined in 

the previous study and computed the average score on each CV for cells from each cluster. We also 

randomly selected two cells each from clusters C-3 and C-15 to compare to each other and the cluster.  

 
 Single-cell eQTL modeling 
 

We modeled single-cell eQTLs with a Poisson model of each gene’s UMI counts as a function of 

genotype at the eQTL variant and other donor- and cell-level covariates, for each gene: 

 

log(𝐸&) = 	𝜃 +	𝛽-𝑋/,1234 +	𝛽512𝑋/,512 +	𝛽627𝑋/,627 +	𝛽389:𝑋&,389: +	𝛽9;𝑋&,9; 	+	<𝛽1=>?𝑋/,1=>?

@

ABC

+	<𝛽2=>?𝑋&,2=>?

@

ABC

+	(𝜙/	|	𝑑) + (𝜅H	|	𝑏) 

 
where E is the expression of the gene in cell i, 𝜃 is an intercept, and all other 𝛽s represent fixed effects as 

indicated (nUMI = number of UMI, MT = proportion of mitochondrial UMIs, gPC= genotype PC, 

ePC=single-cell mRNA expression PC) for covariates in cell i, donor d, or batch b. Donor and batch are 

modeled as random effect intercepts. 

To test interactions with cell state, we added a fixed effect for cell state and a cell state x 

genotype interaction term: 

log(𝐸&) = 	𝜃 +	𝛽-𝑋/,1234 +	𝛽512𝑋/,512 +	𝛽627𝑋/,627 +	𝛽389:𝑋&,389: +	𝛽9;𝑋&,9; 	+	<𝛽1=>?𝑋/,1=>?

@

ABC

+	<𝛽2=>?𝑋&,2=>?

@

ABC

+	𝛽J2KK	6L5L2𝑋&,J2KK	6L5L2 +	𝛽-7J2KK	6L5L2𝑋/,1234𝑋&,J2KK	6L5L2 +	(𝜙/	|	𝑑)

+ (𝜅H	|	𝑏) 
 
When testing whether the discrete state (CD4+) or the continuous state (CV1) captured more variance, 

we included cell state and cell state interaction terms for both and removed each interaction term to 

create the corresponding null model for the likelihood ratio test (described below). 

To test interactions with former TB progression status, we used the same model but with a fixed 

effect and genotype-interaction term for TB status.  

To test interactions with multiple state-defining covariates (e.g., multiple CVs), we included 

additive fixed effect and interaction terms for each CV: 
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log(𝐸&) = 	𝜃 +	𝛽-𝑋/,1234 +	𝛽512𝑋/,512 +	𝛽627𝑋/,627 +	𝛽389:𝑋&,389: +	𝛽9;𝑋&,9; 	+	<𝛽1=>?𝑋/,1=>?

@

ABC

+	<𝛽2=>?𝑋&,2=>?

@

ABC

+	<𝛽>M?𝑋&,>M?

3

ABC

+	<𝛽-7>M?𝑋/,1234𝑋&,>M?

3

ABC

+	(𝜙/	|	𝑑) + (𝜅H	|	𝑏) 

 
To test eQTLs within discrete cell states (e.g., CD4+), we subsetted the full dataset to cells in the state of 

interest (using gates or clusters). Then, we ran the Poisson single-cell model without any cell state terms. 

We fit all single-cell Poisson mixed models with the glmer function in the lme4 R package, with 

family=“poisson”, nAGQ=1, and control=glmerControl(optimizer = "nloptwrap") (56). To determine the 

significance of this model, we used a likelihood ratio test comparing the models with and without the 

genotype term (for the memory T cell analysis) or the cell state interaction term(s) (for the cell-state-

specific analyses) and calculated a p value for the test statistic against the Chi-squared distribution with 

one degree of freedom. We corrected for multiple hypothesis testing by calculating q values across all 

tested eQTLs. 

For comparison, we also used a single-cell linear mixed effects (LME) model to test eQTLs 

across all memory T cells and for state dependence with CD4+ state or continuous CV1. The model 

included the same covariates as the Poisson models. For example, across all memory T cells: 

𝐺& = 	𝜃 +	𝛽-𝑋/,1234 +	𝛽512𝑋/,512 +	𝛽627𝑋/,627 +	𝛽389:𝑋&,389: +	𝛽9;𝑋&,9; 	+	<𝛽1=>?𝑋/,1=>?

@

ABC

+	<𝛽2=>?𝑋&,2=>?

@

ABC

+	(𝜙/	|	𝑑) + (𝜅H	|	𝑏) 

 
where G is the log2(counts per 10K) normalized expression of the gene in cell i. We fit all single-

cell linear mixed models with the lmer function in the lme4 R package, with REML = F (56) and 

determined the significance of the model as described for Poisson models. 

 
Type 1 error estimation 
 

To estimate the false positive rate for the single-cell PME model of memory T cell eQTLs, we 

permuted genotype across donors and ran the PME model for each gene (n = 6,511). Then, we used a 

likelihood ratio test to compute a p value for each gene under the permutation and measured the 

proportion of genes with a p value < alpha = 0.05. To estimate the false positive rate for the single-cell 
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PME model of cell state-dependent eQTLs, we used the same permutation approach but permuted cell 

state across cells to preserve the main genotype effect. 

 
Simulating differential expression 
 

We selected genes with non-significant cell state and cell-state interaction terms in the PME 

model with CD4+ as the cell state of interest. To test robustness of the single-cell models to differential 

expression, we uniformly reduced the expression level of each gene in each cell to 50%, 20%, and 10% 

of baseline expression. For PME, we did this in log2-space, converted back to counts, and rounded to the 

nearest whole number. For LME, we reduced expression in log2(counts per 10,000) space. Then, we ran 

the single-cell Poisson model with cell-state interaction (cell state = CD4+ cells). 

 
Clustering eQTLs and cells  
 
 We stringently selected cell-state-dependent eGenes (LRT p value from modeling CVs1-7 < 

0.05/6511 = 7.7 x 10-6. For each eGene, we extracted the z score for each cell state interaction term from 

the Poisson model and multiplied them by the sign of the main genotype beta to standardize directions of 

effect, i.e., positive value means interaction amplifies baseline genotype effect, negative value means 

interaction dampens effect. Using Seurat, we built a shared nearest neighbor graph and used Louvain 

clustering with n.start = 20, n.iter = 20, and resolution = 1.5 to define eight clusters of eGenes (57). 

 We explored the potential biological significance of the clusters by measuring the enrichment of 

MSigDB Hallmark and Gene Ontology gene sets. For each gene set, we used a Fisher’s exact test to 

compare the proportion of eGenes in the cluster that overlapped with the gene set versus the proportion 

in other clusters that overlapped with the gene set. We assessed significance with a Bonferroni threshold 

of 0.05/14,765 gene sets tested = 3.4x10-6. 

 
Cumulative eQTL interaction effect 
 

The effect of each eQTL in each cell is the cumulation of the main genotype effect and all of the 

genotype x CV interactions. We calculated the overall effect for each eQTL in each cell by summing the 

genotype beta and the products of each CV score and the corresponding beta: 

𝛽L4L5K = 	𝛽- +<𝛽-7>M?𝑋&,>M?

O

ABC
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For interpretation in some analyses, we defined cluster-level betas by averaging cell-level betas for all 

cells assigned to that cluster in the previous study. 

 
GWAS variant enrichment: 
 
 We downloaded the GWAS Catalog as of July 30, 2020, restricted to GWAS in European 

populations, and identified variants associated with each of 194 traits at p < 5x10-8 and pruned with plink 

to remove variants with LD r2 > 0.2 (29, 58). We also constructed a set of background variants by pooling 

variants associated with any trait at p < 5x10-8 and pruning with plink to remove variants with LD r2 > 0.2. 

For each memory-T cell eQTL, we identified all other variants with LD r2 ≥ 0.5 in both the 1000 

Genomes Peruvians in Lima, Peru (PEL) and European (EUR) populations. We then matched these 

variants with variants from the GWAS Catalog for 194 traits and the background variant set. We 

calculated all enrichments with a two-sided Fisher test. To calculate memory-T-cell eQTL enrichments for 

specific traits, we compared the proportion of eQTL-colocalizing GWAS variants for each trait with the 

proportion of eQTL-colocalizing background variants. To calculate the enrichment of GWAS variants 

colocalizing with state-dependent eQTLs, we compared the proportion of eQTLs with significant cell-state 

interaction (LRT q < 0.05 from the model with 7 CVs) that colocalize with the background variant set 

compared to the proportion of eQTLs without significant cell-state interaction that colocalize. 

 
Fine-mapping memory-T cell eQTLs 
 

For each locus (eGene), we used CAusal Variants Identification in Associated Regions (CAVIAR) 

software allowing only a single causal variant in each locus (-c 1) to estimate the probability that each 

variant in a +/- 250kb window around the transcription start site (TSS) is causal (34). We ran CAVIAR on 

pseudobulk eQTL z scores for these variants and pairwise Pearson correlation coefficients between the 

variants (calculated with plink version v1.9b) (58). 

For joint multi-ancestry analysis, we first lifted the BLUEPRINT dataset to GRCh38 with liftOver 

and filtered at a minor allele frequency threshold of 0.05. We then merged the TBRU and BLUEPRINT 

datasets matching on chromosome, position, reference, and alternate alleles and performed eQTL 

analysis on the joint datasets as described above. We fine-mapped each locus with CAVIAR using z 

scores from the joint analysis, as described in the Peruvian dataset. 
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Enrichment of eQTLs in regulatory regions 
 

We defined promoters as the region +/- 2kb from the transcription start site of each of the 6,511 

significant eGenes based on the Cell Ranger 3.1.0 GTF. This annotation was binary.  

We defined cell-state-specific regulatory regions with a probabilistic annotation of the genome by 

Inference and Modeling of Phenotype-related ACtive Transcription (IMPACT) (35). First, we collected 

public T-bet (TBX21) ChIP-seq data for in CD4+ TH1 cells from NCBI as a gold standard for CD4+ TH1 

regulatory elements (59). We also previously aggregated 5,345 public epigenetic features from NCBI, 

ENCODE, and Roadmap spanning all possible cell types (60). Then, we used IMPACT’s logistic 

regression model to distinguish 1,000 T-bet bound sequence motifs from 10,000 unbound T-bet 

sequence motifs genome-wide based on epigenetic feature characterization. We used HOMER [v.4.8.3] 

to identify T-bet sequence motif matches as previously done (35, 61). We then characterized every 

nucleotide genome-wide using the same set of epigenetic features and estimated the probability 

(between 0 and 1) of a regulatory element important to the cell type. 

For the multi-ancestry analyses, we restricted loci to those that were also significant eQTLs in the 

Peruvian-only eQTL analysis. We computed enrichments in each locus containing a variant with posterior 

inclusion probability ≥ 0.5 and averaged across loci. To compute enrichments for the binary promoter 

annotation, we determined whether each variant in the locus overlapped with a promoter region (X = 0 if 

no overlap, X = 1 if overlap). Then, we calculated the enrichment across n variants in the locus as: 

<
𝐸(𝑃𝐼𝑃 ∗ 𝑋)

𝐸(𝑃𝐼𝑃) ∗ 𝐸(𝑋)

3

&BC

 

 

To compute enrichments for the probabilistic IMPACT T cell regulatory region 

annotations, we used the same strategy but X = the IMPACT score between 0 and 1 for 

each variant. We determined the significance of each enrichment by comparing the true 

enrichment score to a null distribution constructed by permuting the PIPs across 

variants in each locus 1,000 times and calculating an enrichment score. We determined 

the significance of the difference between the enrichments in interacting vs. non-
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interacting eGenes by comparing the true difference to a null distribution constructed by 

permuting interacting vs. non-interacting labels across eGenes and calculating an 

enrichment score. Both p values were computed with a one-sided comparison. 
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Fig. S1. Single-cell quality control. (A) Histogram of 500,089 cells by number of UMIs 
and (B) number of genes. (C) Histogram of 259 samples by number of cells.  
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Fig. S2. Concordance of BLUEPRINT and Peruvian (pseudo)bulk eQTLs. Each 
point represents an eGene/Peruvian lead variant pair significant in both data sets (q < 
0.05), plotted based on the z score of the beta in BLUEPRINT vs. Peruvian data set. 
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Fig. S3. Continuous canonical variates (CVs) capture single-cell heterogeneity. 
(A) UMAP of memory T cells (n = 500,089) colored by score along each of the top 15 
CVs from CCA-based integration of mRNA and protein expression in Nathan, et al. (B) 
UMAP of 31 memory T cell clusters defined with Louvain clustering in Nathan, et al. (C) 
and (E) UMAP of memory T cells colored by normalized expression (log2(UMI counts 
per 10,000)) for GATA3 and TRDC. (D) and (F) Cells plotted based on normalized 
expression of GATA3 and CV4 score or TRDC and CV8 score. For cells with non-zero 
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expression, blue line represents linear best-fit line, contours represent density of cells, 
and r is the Pearson correlation coefficient. 
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Fig. S4. Comparing PME and LME models for single-cell eQTL analysis. (A) and 
(C) Pseudobulk-significant eGenes (n = 6,511) plotted based on z score from (A) PME 
or (C) LME single-cell model and pseudobulk model. Dashed line represents the identity 
line. (B) and (D) Quantile-quantile plot of pseudobulk-significant eGenes plotted based 
on -log10 p value of genotype beta from (B) PME or (D) LME model with permuted 
genotypes and uniformly distributed quantiles. Type 1 error is calculated as the 
proportion of eGenes with p < 0.05 with permuted genotypes. (E) Pseudobulk-significant 
eGenes plotted based on z score from PME and LME single-cell model 
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Fig. S5. Modeling eQTL interactions with discrete CD4+ and CD8+ cell states. (A) 
Cells plotted by CLR-normalized CD8 and CD4 protein expression. Orange cells are 
CD4+CD8- and beige cells are CD4-CD8+ and in (B) cells are colored by density. (C) 
UMAP of 500,089 memory T cells colored by CD4+CD8- (orange) and CD4-CD8+ 
(beige). (D) Bar graph of number of CD4+CD8- cells (top) and CD4-CD8+ cells (bottom) 
per sample (n = 259). (E) and (F) Dot plot of each memory-T-cell eGene based on z 
score for total beta (βG+βGxCD4) in PME interaction model of all cells and z score for βG 
from (E) pseudobulk model or (F) PME model of only CD4+ cells. (G) Proportion of 
eGenes with significant βGxCD4 under genotype permutation. Each dot represents the 
proportion significant at the given alpha threshold. 
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Fig. S6. Assessing robustness of single-cell models to differential expression. (A) 
rs2214911 eQTL for THAP5 and (B) rs4135092 eQTL for TDG in CD4+ (orange) and 
CD8+ (beige) cells. Box plots show the eQTL effects as per-cell gene expression 
decreased from 100% to 50, 20, and 10 percent in CD4+ cells (left to right). Each point 
represents the average log2(UMI counts + 1) across all cells in the indicated subset of 
cells in a donor (n = 259), grouped by genotype. Box plots show median (horizontal 
bar), 25th and 75th percentiles (lower and upper bounds of the box, respectively) and 
1.5 times the IQR (or minimum/maximum values if they fall within that range; end of 
whiskers). (C) and (D) Dot plot of memory-T-cell eGenes (n = 6,511) based on z score 
for cell state beta (βCD4 or βCD8) and z score for cell state interaction beta (βGxCD4 or 
βGxCD8) in (C) LME and (D) PME models. 
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Fig. S7. Calibration of the PME interaction model. Dot plot of memory-T-cell eGenes 
(n = 6,511) based on z score for (A) cell state beta (βCV1) or (B) genotype (βG) and z 
score for cell state interaction beta (βGxCV1) in PME model. (C) Proportion of eGenes 
with significant βGxCV1 under genotype permutation. Each dot represents the proportion 
significant at the given alpha threshold. 
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Fig. S8. Concordance between eQTL interactions with continuous and discrete 
states. (A) Distribution of CV1 scores for cells in CD4+ and CD8+ gates. Dashed line 
represents CV1 = 0. (B)-(E), Dot plots of eGenes’ z scores of genotype interactions with 
(B) CV1 and CD4+, (C) CV2 and Treg, (D) CV1 and Treg, or CV2 and CD4+. Dashed 
line represents the identity line. Only eGenes with significant interaction (LRT q < 0.05) 
are plotted in (B) and (C). Black dots represent eGenes significantly interacting with 
both continuous and discrete states, red dots are only significantly interacting with 
continuous state, and blue dots are only significantly interacting with discrete state. r is 
calculated as the Pearson correlation coefficient. 
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Fig. S9. Concordance of cell-state-dependent eQTL interactions from multivariate 
and univariate models. (A) Dot plots of interaction z scores for each CV from 
multivariate model with 7 CVs and univariate model with one CV. Dashed line 
represents the identity line. r is calculated as the Pearson correlation coefficient. (B) 
Number of eGenes with significant interaction with each CV in a corresponding 
univariate PME model. 
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Fig. S10. Clustering eGenes based on CV interactions. (A) Heatmap colored by 
interaction z score for each CV in the multivariate PME model, averaged acrosss 
eGenes in each cluster. Clusters were defined through Louvain clustering on seven 
interaction z scores calculated for 822 eGenes (model LRT p  < .05/6511). Interaction z 
scores were normalized to the main genotype effect, so colors are scaled from 
dampening the effect (blue) to amplifying the main effect (red). (B) Violin plots of CV 
interaction z scores for eGenes in each cluster.  
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Fig. S11. Opposite interaction directions for independent variants in a locus. (A) 
Bar plot of the number of eGenes for which the lead and secondary variants have 
opposite directions of interaction effect for each of the seven CVs. (B) Comparison of 
interaction effect direction for lead and secondary variants for each of 436 eGenes with 
2+ independent eQTLs. Each plot corresponds to one CV, from CV1 to CV7. Each point 
represents an eGene. For eGenes in gray, neither lead nor secondary variant was 
significantly dependent on the given CV state. For eGenes in black, either only one of 
the two eQTLs was significantly dependent on the CV, or both were significantly state-
dependent with the same direction of effect. For eGenes in red, both lead and 
secondary variatnts were significantly state-dependent but with different directions of 
interaction with the given CV. 
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Fig. S12. Enrichment of eQTLs in disease-associated variants. (A) Dot plot of traits 
from the GWAS catalog plotted based on the -log(Fisher p value) and odds ratio of the 
enrichment test comparing the proportion of GWAS variants colocalizing with memory-T 
cell eQTLs for one trait compared to all other traits. Labeled traits have p < 10-5. (B) Dot 
plot of traits from the GWAS catalog plotted based on the number of GWAS variants 
colocalizing with state-dependent eQTLs compared to the total number of GWAS 
variants colocalizing with eQTLs. The dashed line represents the overall proportion of 
state-dependent eQTLs (2,237/6,511 = 0.34) and labeled traits have Fisher p < 0.01. 
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Fig. S13. Regulatory region enrichment of eQTL effects from multi-ancestry 
analysis of European (BLUEPRINT) and Peruvian data. We calculated the 
enrichment of lead effects or independent secondary (conditional) effects in promoter or 
T-cell-specific regulatory regions. Analysis was limited to loci that were also significant 
eGenes in Peruvian analysis and where at least one variant had PIP >= 0.5. The height 
of the gray bar corresponds to the average enrichment calculated across all loci 
containing a variant with PIP < 0.05, red bar corresponds to the subset with significant 
cell-state interaction (LRT q < 0.05 in model with 7 CVs), and the blue bar corresponds 
to the subset without significant cell-state interaction. Bars marked with an asterisk are 
significant based on a one-sided permutation p value. Each pair of interacting/non-
interacting bars is labeled with a one-sided permutation p value for the difference 
(interacting minus non-interacting). The gray dotted line indicates enrichment statistic = 
1. 
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Captions for Tables S1-23 

Table S1. Pseudobulk memory T cell eQTLs in a Peruvian cohort. (See 
Nathan_etal_SuppTables.xlsx, tab 1) 
Lead eQTL variant for each eGene tested in a linear model of pseudobulk gene 
expression assayed in memory T cells from a Peruvian cohort. All SNP coordinates are 
from GRCh38. The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 
PEER factors. P values are from FastQTL beta approximation-based permutation. 
 

Table S2. Ancestry-specific eQTL variants. (See Nathan_etal_SuppTables.xlsx, tab 
2) 
eQTL variants in the Peruvian dataset driven by variants that are rare (MAF < 0.05) in 
1KG EUR population. 
 

Table S3. Conditional pseudobulk memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 3) 
Secondary eQTL variant for each eGene tested in a linear model of pseudobulk gene 
expression assayed in memory T cells from a Peruvian cohort, after regressing out the 
lead effect. The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 PEER 
factors. P values are from FastQTL beta approximation-based permutation. 
 

Table S4. Gene set enrichment for loadings on CVs 1-3 (See 
Nathan_etal_SuppTables.xlsx, tab 4) 
Top 10 gene sets enriched for CVs1-3 based on genes’ loadings on each CV. P values 
and enrichment statistics are from the fgsea R package. 
 

Table S5. Average CV scores by memory T cell cluster (See 
Nathan_etal_SuppTables.xlsx, tab 5) 
Average score along each CV for cells in each cluster. Clusters were defined in Nathan, 
et al. by projecting cells into a low-dimensional embedding based on CCA of paired 
mRNA and surface protein, constructing a shared nearest neighbor graph, and 
conducting Louvain clustering at resolution = 2. Clusters were annotated based on 
differentially expressed genes and proteins. 
 

Table S6. Single-cell Poisson model of memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 6) 
eQTL effects calculated with the PME model (without cell state interactions) for 
significant eGenes and lead variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
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preparation pool. P values are from an LRT comparing the model with and without the 
genotype term. 
 

Table S7. Single-cell Poisson model of memory T cell eQTLs’ interaction with 
prior TB status. (See Nathan_etal_SuppTables.xlsx, tab 7) 
eQTL interactions with donors’ prior TB progression status calculated with the PME 
model for significant eGenes and lead variants identified in the pseudobulk analysis. 
The model adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per 
cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. P values are from an LRT comparing the model with and without the 
TB status term. 
 

Table S8. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CD4+ state. (See Nathan_etal_SuppTables.xlsx, tab 8) 
eQTL interactions with cells’ CD4+ state calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. CD4+ cells were 
defined based on normalized surface protein expression measured in CITE-seq 
(CD4+CD8-). The model adjusts for donor’s age and sex, percent MT UMIs and number 
of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor 
and library preparation pool. P values are from an LRT comparing the model with and 
without the CD4+ state interaction term. 
 

Table S9. Pseudobulk memory T cell eQTLs in CD4+ cells only. (See 
Nathan_etal_SuppTables.xlsx, tab 9) 
eQTLs in CD4+ memory T cells calculated with a pseudobulk linear model in FastQTL 
for significant eGenes and lead variants identified in the pseudobulk analysis. CD4+ 
cells were defined based on normalized surface protein expression measured in CITE-
seq (CD4+CD8-). The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 
PEER factors and we calculated a nominal P value for the genotype effect. 
 

Table S10. Single-cell Poisson model of memory T cell eQTLs in CD4+ cells only. 
(See Nathan_etal_SuppTables.xlsx, tab 10) 
eQTL in CD4+ memory T cells calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. CD4+ cells were defined based 
on normalized surface protein expression measured in CITE-seq (CD4+CD8-). The 
model adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 
5 genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. P values are from an LRT comparing the model with and without 
genotype term. 
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Table S11. Single-cell linear model of memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 11) 
eQTL effects calculated with the LME model (without cell state interactions) for 
significant eGenes and lead variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. P values are from an LRT comparing the model with and without the 
genotype term. 
 

Table S12. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV1. (See Nathan_etal_SuppTables.xlsx, tab 12) 
eQTL interactions with cells’ CV1 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV1 interaction term. 
 

Table S13. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
Treg state. (See Nathan_etal_SuppTables.xlsx, tab 13) 
eQTL interactions with Tregs calculated with the PME model for significant eGenes and 
lead variants identified in the pseudobulk analysis. The Tregs were identified through 
clustering in Nathan, et al. The model adjusts for donor’s age and sex, percent MT UMIs 
and number of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random 
effects for donor and library preparation pool. P values are from an LRT comparing the 
model with and without the Treg interaction term. 
 

Table S14. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CVs 1-7. (See Nathan_etal_SuppTables.xlsx, tab 14) 
eQTL interactions with CVs1-7 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV1-7 interaction 
terms. 
 

Table S15. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV2. (See Nathan_etal_SuppTables.xlsx, tab 15) 
eQTL interactions with cells’ CV2 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV2 interaction term. 
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Table S16. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV3. (See Nathan_etal_SuppTables.xlsx, tab 16) 
eQTL interactions with cells’ CV3 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV3 interaction term. 
 

Table S17. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV4. (See Nathan_etal_SuppTables.xlsx, tab 17) 
eQTL interactions with cells’ CV4 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV4 interaction term. 
 

Table S18. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV5. (See Nathan_etal_SuppTables.xlsx, tab 18) 
eQTL interactions with cells’ CV5 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV5 interaction term. 
 
Table S19. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV6. (See Nathan_etal_SuppTables.xlsx, tab 19) 
eQTL interactions with cells’ CV6 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV6 interaction term. 
 

Table S20. Single-cell Poisson model of memory T cell eQTLs’ dependence on 
CV7. (See Nathan_etal_SuppTables.xlsx, tab 20) 
eQTL interactions with cells’ CV7 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV7 interaction term. 
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Table S21. GO Term enrichment in eGene clusters. (See 
Nathan_etal_SuppTables.xlsx, tab 21) 
Top 5 Gene Ontology term gene sets enriched for overlap with eGenes in each of the 
eight eGene clusters. These clusters were defined through Louvain clustering on the z 
scores for each eGene’s interactions with each of the 7 CVs, with signs corrected to be 
relative to the main genotype effect for that eGene. P values are from a one-sided 
Fisher test. 
 

Table S22. eQTL enrichment among GWAS variants by trait. (See 
Nathan_etal_SuppTables.xlsx, tab 22) 
Enrichments of memory T cell eQTLs in variants associated with traits in the GWAS 
Catalog. Variants were considered to be overlapping if they had r2 > .5 in both 1KG 
EUR and PEL populations. P values are from a Fisher test comparing the proportion of 
eQTLs in a trait’s GWAS variants to the proportion of eQTLs in GWAS variants for all 
other GWAS Catalog traits.  
 

Table S23. State-dependent eQTL enrichment among GWAS variants by trait. (See 
Nathan_etal_SuppTables.xlsx, tab 23) 
Enrichments of state-dependent memory T cell eQTLs in variants associated with traits 
in the GWAS Catalog. Variants were considered to be overlapping if they had r2 > .5 in 
both 1KG EUR and PEL populations. P values are from a Fisher test comparing the 
proportion of state-dependent eQTLs in a trait’s GWAS variants to the proportion of 
non-state-dependent eQTLs in GWAS variants for that trait.  
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