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Sensory experiences are accompanied by the perception of the passage of time; a cell phone vibration, for 

instance, is sensed as brief or long. The neuronal mechanisms underlying the perception of elapsed time 

remain unknown1. Recent work agrees on a role for cortical processing networks2,3, however the causal 

function of sensory cortex in time perception has not yet been specified. We hypothesize that the mechanisms 

for time perception are embedded within primary sensory cortex and are thus governed by the basic rules 

of sensory coding. By recording and optogenetically modulating neuronal activity in rat vibrissal 

somatosensory cortex, we find that the percept of stimulus duration is dilated and compressed by 

optogenetic excitation and inhibition, respectively, during stimulus delivery. A second set of rats judged the 

intensity of tactile stimuli; here, optogenetic excitation amplified the intensity percept, demonstrating 

sensory cortex to be the common gateway to both time and stimulus feature processing. The coding 

algorithms for sensory features are well established4–10. Guided by these algorithms, we formulated a 3-

stage model beginning with the membrane currents evoked by vibrissal and optogenetic drive and 

culminating in the representation of perceived time; this model successfully replicated rats’ choices. Our 

finding that stimulus coding is intrinsic to sense of time disagrees with dedicated pacemaker-accumulator 

operation models11–13, where sensory input acts only to trigger the onset and offset of the timekeeping 

process. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense 

of touch itself14,15 and can now be treated through the computational language of sensory coding. The model 

presented here readily generalizes to humans14,16 and opens up new approaches to understanding the time 

misperception at the core of numerous neurological conditions17,18. 
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The subjective experience of an external stimulus has a dual nature – the feeling of the physical features of the 

sensory input and, in parallel, the feeling of the time occupied by that stimulus14. While decades of research have 

built an understanding of the basic neuronal coding algorithms for stimulus features4–10, a mechanistic, causal 

understanding of the sense of time is still lacking. Here, we combine rat psychophysics with optogenetics to 

demonstrate that time perception may be treated with the language of sensory coding.  

 

Duration and intensity percepts interact 

On each trial, rats compared two vibrissal vibrations (stimulus 1, stimulus 2; Fig. 1a). Vibrations were constructed 

by concatenating a sequence of speed values, sampled from a half Gaussian distribution19. A single vibration was 

defined by its intensity (I) in units of mean speed, and its duration (T). We trained two sets of rats. Duration rats 

had to compare the two stimuli according to their relative time spans (T1>T2 or T2>T1). Intensity rats had to 

compare the two stimuli according to the analogous relation (I1>I2 or I2>I1). The two groups received the same 

stimulus set (Extended Data Fig. 1), the only difference being the feature they were trained to extract – for duration 

rats, stimulus intensities were irrelevant to the task, while for intensity rats stimulus durations were irrelevant (Fig. 

1a, gray and red arrows prior to choice).  

 

In the upper plot of Figure 1b, the left bar depicts the performance (78% correct) of duration rats when choices are 

analyzed according to relative stimulus durations. When the same choices are analyzed according to relative 

stimulus intensities (right bar), performance was above chance (54% correct). Intensity rats performed at 85% 

correct according to relative stimulus intensities (lower plot, right bar); when analyzed according to relative 

stimulus durations (left bar), performance was above chance (53% correct). 

 

The psychometric curves of Figure 1c show choices according to graded stimulus differences. In the upper plot, 

choices in duration rats (gray) were governed by ∆T (normalized duration difference, defined as (T2-T1)/(T2+T1)) 

while choices in intensity rats (red) were weakly modulated by ∆T. In the lower plot, choices in intensity rats (red) 

were governed by ∆I (normalized intensity difference, defined as (I2–I1)/(I2+I1)) while choices in duration rats 

(gray) were weakly modulated by ∆I.  
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Figure 1. Interacting perception of duration and intensity. a, Rat enters the nose poke, bringing its right 

whiskers into contact with the plate. Following a pre-stimulus delay (0.5 s), stimulus 1 is delivered through plate 

motion. Stimulus 2 is presented after the inter-stimulus delay (2 s). Acoustic go cue prompts the rat to make a 

choice. b, Upper: performance of duration rats (n=6) based on duration and intensity rules. Lower: performance 

of intensity rats (n=11). Analysis of choices according to duration rule done on trials with largest ∆T; analysis of 

choices according to intensity rule done on trials with largest ∆I. c, Upper: Psychometric curves based on ∆T. 

Lower: Psychometric curves based on ∆I. d, Upper: Intensity-dependent bias in perceived duration. For a given 

∆I, bias is the average of the percent of trials judged T2>T1 across ∆T values. Lower: Duration-dependent bias in 

perceived intensity, computed in the analogous way. Bias measure details in Methods. 
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To quantify the bias caused by the irrelevant feature, intensity, on duration perception, we computed how the 

likelihood of judging T2>T1 was affected by ∆I (Fig. 1d, upper plot; also see Methods). Similarly, we quantified 

the duration-dependent bias in perceived intensity by computing how the likelihood of judging I2>I1 was affected 

by ∆T (Fig. 1d, lower plot). 

 

Optogenetic control of perception 

Motivated by the interaction between perceived duration and perceived intensity (Fig. 1b-d), the remaining 

experiments test the hypothesis that vibrissal somatosensory cortex (vS1) forms the bases for rats’ judgment of 

both features; further analyses seek to specify the underlying neuronal code. ChR2(H134R) or eNpHR3.0 was 

expressed in left vS1 (Fig. 2a, left) and neuronal populations were accessed by movable microdrive arrays coupled 

with optic fibers (Fig. 2a, middle). If vS1 directly participates in the brain’s perceptual clock, optogenetic 

excitation or inhibition of vS1 (Fig. 2a, right) will affect the judgment of time. When blue light was applied in 

EYFP-ChR2(H134R)-expressing duration rats, optogenetic excitation during presentation of stimulus 2 caused a 

leftward shift of the psychometric curve, indicating an overestimation of that vibration’s duration. The opposite 

shift, rightward, was obtained with optogenetic excitation during stimulus 1 (Fig. 2b). When red light was applied 

in eNpHR3.0-expressing duration rats, optogenetic inhibition during the presentation of stimulus 2 or stimulus 1 

caused underestimation of that vibration’s duration (Fig. 2c). In intensity rats expressing EYFP-ChR2(H134R), 

optogenetic excitation during presentation of stimulus 2 or stimulus 1 caused overestimation of that vibration’s 

intensity (Fig. 2d). 

 

Blue light in the apparatus, applied with the same temporal alignment to the vibration, had no effect (Extended 

Data Fig. 2), indicating that behavioral biases were not due to visual cues. While causing a shift in psychometric 

curves, optogenetic stimulation did not alter the overall accuracy (Extended Data Fig. 2). 

 

The effects of optogenetic stimulation (vS1 excitation, inhibition, and controls) are pooled in Figure 2e. The right 

panel illustrates the bias in perceived duration, measured by the method of Figure 1d. Notwithstanding individual 

differences in the magnitude of effect, rats showed a significant bias towards judging a vibration as having 

extended duration (blue) or compressed duration (red) when accompanied by vS1 excitation and inhibition, 

respectively. 
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Figure 2. Optogenetic manipulation of time and intensity perception. a, Left: EYFP-ChR2(H134R)-injected 

brain with optical fiber surrounded by an array of electrodes. Middle: custom-built multisite drivable optrode array. 

Upper right: coronal section of the EYFP-ChR2(H134R) injection site (green) counterstained with Anti-VGlut2 

primary antibody (red). Lower right: traces of two vS1 single-neurons. In the EYFP-ChR2-injected rat 465 nm 

illumination (blue bar, 500 ms) excites the neuron while in the eNpHR3.0-injected rat 620 nm illumination (red 
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bar, 250 ms) inhibits the neuron. b, Left: optogenetic excitation of left vS1 during vibrissal stimulation (left 

vibrissae not shown). Middle: excitation during stimulus 2 (blue); excitation during stimulus 1 (green). Right: two 

signatures of the curve shift, percent of trials judged as T2>T1 irrespective of stimulus duration (ordinate) and 

PSE, the point of subjective equality (abscissa), were measured with bootstrap resampling methods. A support 

vector machine classifier quantifies data separation by classification error. c, Same as b, but for optogenetic 

inhibition. d, Same as b, but for intensity rats. e, Left and middle: optogenetic excitation (blue) during stimulus 2 

yielded an overestimation of T2, while optogenetic inhibition (red) during stimulus 2 yielded an underestimation 

of T2. Right: Bias in duration perception induced by optogenetic manipulation.   
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Time coding 

Through what physiological mechanisms does the neuronal firing within vS1 give rise to the percept of the passage 

of time? Figure 3a illustrates two example neurons from EYFP-ChR2(H134R)-expressing rats, representative of 

the population’s heterogeneity in responsiveness to vibrissal stimulation and optogenetic excitation20. The neuron 

in the left plots responded weakly to vibrissal stimulation, showing only an onset transient. The same neuron was 

robustly excited by blue light. The neuron in the right plots gave a strong, non-adapting response to vibrissal 

stimulation, but was not excited by blue light. Sensory responses, with and without optogenetic excitation, are 

shown in Figure 3b. Color indicates the deviation of firing rate from the baseline level (z-score). In the upper plot, 

neurons are ordered by response magnitude to stimulus 2, which was accompanied by optogenetic excitation. In 

the lower plot, the neurons are ordered by response magnitude to stimulus 1, which was accompanied by 

optogenetic excitation. The population’s response to vibrissal stimulation alone and vibrissal-plus-optogenetic 

excitation can be seen by comparing the upper and lower plots (quantification in Extended Data Figs. 3, 4). 

 

The temporal profile of vS1 sensory responses was conserved under optogenetic excitation21. Figure 3c, left, shows 

the population peristimulus time histogram (PSTH) in EYFP-ChR2(H134R)-expressing rats in the absence of 

optogenetic excitation. To compare across different durations, the first and final 100ms are shown. After an early 

peak, firing rate remained stable until offset. The right panel shows the PSTHs of the same population under 

optogenetic excitation, revealing an evenly distributed boost in the vibrissae-evoked response.  

 

Two coding regimes fundamental to sensory processing are firing rate (number of spikes per fixed time window) 

and spike count (the summated number of spikes, from stimulus onset to offset)4–7. If firing rate functions as an 

explicit representation of stimulus duration within vS1, it must vary systematically in relation to the passage of 

time. Figure 3d examines the firing rate of the entire recorded vS1 population during the final 100 ms of stimulus 

presentation, with light-off (abscissa) and light-on (ordinate). Points were obtained by bootstrap resampling and 

colors denote stimulus duration. Projection along the diagonal reveals the overall effect of optogenetic excitation 

– a leftward shift towards higher firing rate (depicted only for the 334 ms duration, green). However, when the 

points are projected laterally and vertically, the marginal distributions for each duration are fully overlapping. 

Thus, firing rate at the end of the stimulus, although boosted by the optogenetic intervention, does not robustly 

encode duration. 
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As an alternative, Figure 3e examines the spike count as the possible basis for a duration code. Following the 

format of the preceding panel, counts from vibrissal-stimulus onset to offset, with light-off (abscissa) and light-on 

(ordinate) were computed, and the projection along the diagonal reveals a leftward shift towards greater spike 

count under optogenetic excitation (depicted only for the 334 ms duration). Differently from the rate code, when 

points are projected laterally and vertically, marginal distributions separate according to stimulus duration. Thus, 

summated spike count could provide a downstream integrator with an input that robustly encodes duration, and is 

consistent with the dilation of perceived time generated by optogenetic excitation. 

 

If a downstream integrator were to use a simple spike count code, what would be the magnitude of the optogenetic 

effect? We plotted how much time from stimulus onset must have passed in trials with light-off and light-on to 

reach any selected count of spikes (Fig. 3f). For instance, when 20 spikes (data point in green) have been integrated, 

423 ms would have passed on trials with light-off, but just 382 ms on trials with light-on; optogenetic excitation 

would cause the 382 ms-stimulus to be perceived as 41 ms longer. 
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Figure 3. vS1 coding of duration. a, Example vS1 neurons. Upper: spike waveforms and spike time 

autocorrelogram. Middle: raster plot on randomly selected light-off and light-on trials (334 ms stimulus duration). 

Lower: both neurons’ firing rates in non-overlapping 20 ms bins grouped by light-on (light blue) and light-off 

(black) trials. Stimulus duration was 334 ms. b, Normalized response of all neurons on trials in which stimulus 1 

was 334 ms and stimulus 2 was 694 ms. c, Average response of all neurons during the first and final 100 ms of 

stimulus 2 presentation without (left) and with (right) blue light. Color denotes stimulus duration. Light onset and 

offset (right) matched vibrissal onset and offset. Neuronal responses appear to rise before stimulus onset due to 

temporal “leakage,” as PSTH values are derived by a centered 20 ms-sliding window. d, Each dot shows 

population mean firing rate (bootstrap resampling) colored by stimulus duration. Distributions for each duration 

are shown as marginals. Dashed diagonal denotes equal firing rate for light-on and light-off. For 334 ms duration, 

points are projected parallel to the diagonal to give the green histogram. e, Same as d, but for spike count summated 

across the entire stimulus presentation. f, Points depict the elapsed time required to reach a given spike count (color 

scale) during stimuli with the light off (abscissa) and light on (ordinate). The points’ positions below the solid 

diagonal indicate that a given spike count was reached earlier with optogenetic excitation. Data obtained by 

population response resampling. 
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Model of coding mechanisms 

Figure 3e-f posits the perceptual effects of linear summation of vS1 spikes, but the dynamics of downstream 

integration are likely to be non-linear5,14. Therefore, we grounded the search for the mechanisms of time perception 

in a 3-stage model encompassing non-linear integration. In stage 1, vibrissal drive and optogenetic drive evoke 

currents in vS1 neurons, leading to spiking through a linear-nonlinear Poisson (LNP) process (Fig. 4a, left). After 

finding the parameters that produce simulated spike trains mimicking the original spike trains (stimulus-

dependence, variability and diversity), we recombine these currents in a Gaussian Mixture Model22 to create a 

large pool of simulated vS1 neurons (Extended Data Fig. 5). In stage 2, the accumulated quantity (ϒ) in a leaky 

integrator (LI) downstream to vS1 is taken as the duration percept. As the integrator summates incoming spikes, 

input continuously leaks out by some proportion (ϒ/τ) (Fig. 4a, upper right). In stage 3, the values of ϒ at the 

conclusion of stimuli 1 and 2 are taken as the explicit readouts of duration and their comparison predicts the rat’s 

actual choice (Fig. 4a, lower right). 

 

This model yields the neurometric curves (solid lines) of Figure 4b, which overlie the observed psychometric data 

(points), indicating that the model offers a physiologically plausible framework for how vibrissal drive and 

optogenetic excitation of sensory cortex generate perceived duration. The scatter plots of Figure 4b (inset) show 

the optogenetic excitation-induced bias in perception, in behavioral data and modelled neurometric output. 

 

The distance between the blue and green curves (Fig. 4b) allows estimation of the direct perceptual effect of vS1 

intervention (Fig. 4c). A vibrissal stimulus of actual duration 334 ms, absent any direct intervention in sensory 

cortex, will be perceived as having a veridical duration of 334 ms (black bar). That same stimulus, when 

accompanied by vS1 excitation (blue light) will be perceived (on average) as having a duration of 372 ms, an 

optogenetic-derived perceptual dilation of 39 ms. When accompanied by vS1 inhibition (red light), that stimulus 

will be perceived (on average) as having a duration of 316 ms, an optogenetic-derived perceptual compression of 

18 ms. The empirical observations, coupled with the physiological model for vS1 and downstream integration, 

offer a detailed picture for how the perceptual clock embodies sensory coding in the cortex. 
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Figure 4. Model of non-linear integration to generate time percept. a, Left box: stimulus-dependent input 

currents that follow characteristic dynamics for vibrissal and optogenetic drive, converge on vS1 neurons, giving 

rise to spike trains with Poisson statistics. Example vS1 PSTH is shown on the lower right corner; binned neuronal 

activity (solid line) in response to a vibrissal stimulus (black), as well as with optogenetic excitation (light blue), 

are simulated (dashed line with confidence intervals) by fitting the respective input currents and feeding them to 

an I/F. Current and I/F parameters in Methods. We simulated a 5000-neuron population based on the distribution 

of fitting parameters of the entire population of recorded neurons. Right box: the LI receives input spike trains 

from the simulated vS1 population under conditions including vibrissal (black spike train) and vibrissal plus 

optogenetic input (blue spike train). The integrator’s accumulated quantity is governed by the differential equation. 

Reading out the generated vS1 neuronal population activity with this LI, we predict the perceptual shift created by 

optogenetically increasing firing rate in vS1. b, Psychometric curves of the neurometric model (points). Inset: 

comparison of the perceptual shifts between behavioral data and generated neurometric curves for resampled 

(100x) neuronal and behavioral data. Bias is quantified by the measure introduced in Figure 1d. c, vS1 role in 

compressing or dilating perceived time by its sensory drive; optogenetic manipulation slows or speeds the 

perceptual “stopwatch.” Changes in perceived time derived from the shift in the point of subjective equality (PSE) 

in the averaged behavioral data. 
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Discussion 

Applying targeted and controlled optogenetic manipulation of vS1 in one set of rats performing tactile duration 

discrimination and in another set of rats performing tactile intensity discrimination, this study reveals parallel 

generation of two percepts, with primary sensory cortex common to both networks. While different mechanisms 

may be at work in processing the “empty” interval between two discrete events23–25, time perception accompanying 

an ongoing stimulus stream arises within the sensory representation of touch. The contribution of the coding of 

stimulus features to sense of time distances our findings from dedicated pacemaker-accumulator operation 

models11–13, where the accumulator receives onset/offset triggers but is insensitive to the neuronal coding of the 

stimulus. In existing models where the time percept is constructed from sensory drive14,15, no causal link between 

sensory cortex and the final percept has yet been established.  

 

Embodied within a network extending to the sensory cortex, time perception now becomes amenable to the tools 

previously restricted to quantifying the representation of stimulus features – tools such as spike counts, firing rates 

and temporal patterns4–10. In short, time perception can be treated through the computational language 

of sensory coding. One immediate insight from this treatment is that processing likely involves integration of 

sensory cortical input with long integration time constants, as are found in frontal cortical regions5. 

 

A crucial component of the present model, the accumulation of sensory drive by a downstream integrator, appears 

to apply to humans14,16. The generality of the model raises the prospect that anomalous sensory coding mechanisms 

may be one contributing factor in the time misperception at the core of multiple psychiatric disorders17,18. 
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Methods 
 
Rat subjects 

All protocols conformed to international norms and were approved by the Ethics Committee of SISSA and by the 

Italian Health Ministry (license numbers 569/2015-PR and 570/2015-PR). 20 male Wistar rats (Harlan 

Laboratories, San Pietro Al Natisone) were caged in pairs and maintained on a 14/10-hour light/dark cycle. They 

were trained and handled on a daily basis and provided with daily environmental and social enrichment. To 

promote motivation in the behavioral task, rats were water-restricted for approximately 20 hours prior to training 

or testing sessions; access to food in the cage was continuous. They were tested each weekday in sessions of about 

1 hour. 

 

Behavioral task 

To initiate a trial, the rat entered the nose poke, placing its whiskers in contact with a plate connected to a shaker 

motor (type 4808; Brüel & Kjær see19). It then received two vibrissal stimuli separated by a delay. Stimuli were 

noisy vibrations, constructed by stringing together over time a sequence of plate velocity values (motion along the 

axis of the rod connecting the plate to the motor). Velocities were sampled from a Gaussian distribution with 0 

mean and standard deviation ranging from 25 to 148 mm/s. The speed distribution (absolute values of velocity) 

was a half-normal (folded) distribution whose mean was equivalent to the standard deviation of the underlying 

Gaussian multiplied by �(2/𝜋𝜋). We refer to mean speed as intensity (I). Vibration duration was denoted T. 

Durations varied from 112 to 1000 ms (see Extended Data Fig. 1). The differences between the two stimuli making 

up one trial are expressed by two indices, normalized intensity difference (ΔI) and normalized time difference 

(ΔT): 

 

     Δ𝐼𝐼 = 𝐼𝐼2−I1
𝐼𝐼2+𝐼𝐼1

      (1) 

 

     Δ𝑇𝑇 = 𝑇𝑇2−𝑇𝑇1
𝑇𝑇2+𝑇𝑇1

      (2) 

 

where I1 and I2 are the intensities, and T1 and T2 are the durations, of stimuli 1 and 2, respectively. 
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Duration rats were trained and tested using a rule where reward location was determined by the sign of ΔT, with 

ΔI irrelevant. Intensity rats were trained and tested using a rule where reward location was determined by the sign 

of ΔI, with ΔT irrelevant. 

 

In test sessions, each stimulus combination assumed duration and intensity values from the stimulus generalization 

matrix (see Extended Data Fig. 1). Thus, rats received a random combination of 10 intensity pairs (I1, I2) x 10 

duration pairs (T1, T2) during each training session. Moreover, in each trial, the relevant and irrelevant features 

could be congruent (I2>I1, T2>T1 or I1>I2, T1>T2) or incongruent (I2<I1, T2>T1 or I1<I2, T1>T2). This 

randomness in congruence required the rat to act upon only the relevant feature in order to perform above chance. 

To obtain psychometric curves for duration, T1 took a fixed value of 334 ms while T2 spanned seven possible 

durations, giving a range of ΔT from -0.35 to 0.35. The same design was used to obtain psychometric curves for 

intensity, with I1 fixed at a 65 mm/s, while I2 spanned seven possible values; ΔI ranged from -0.3 to 0.3. 

 

Targeted virus injections in vS1 

After rats reached stable behavioral performance, they were anesthetized with 2-2.5% Isoflurane in 100% oxygen 

delivered through a customized plastic snout mask. Target regions were accessed by craniotomy, using standard 

stereotaxic technique. The vasculature visible on the brain surface was used as a reference for cortical maps26. 

Photos of the brain surface of vS1 were made with a 5x Zeiss microscope connected to a webcam and further used 

to document electrode insertion and injection sites. Single tungsten electrodes (100-500 kΩ impedance; FHC) were 

inserted to a depth of ~750 µm and the whisker constituting the neuronal population’s strongest input was assessed 

by stimulation with a hand-held probe. Neuronal populations with receptive fields on whisker rows C-D and 

columns 4-6 were targeted. AAV5-CaMKIIa-hChR2(H134R)-EYFP or AAV5-CaMKIIa-eNpHR3.0-EYFP (UNC 

vector core) was prepared by standard procedures27. A 10 µl Hamilton syringe was filled with 4-6 µl of virus 

solution (stained with Fast Green FCF). Injections of 0.5 µl of virus solution were made at depths of 800 and 1600 

µm in 3-4 barrel-columns with identified receptive fields. The skull opening was conserved with custom-made 

cylindrical implanted cranial windows. Four to six screws were fixed in the skull as support for dental cement. 

Two screws served as reference and ground and were connected via a silver wire to a 2-pin connector that was 

embedded in dental cement. At the conclusion of the operation, rats were treated with antibiotic (Baytril; 5 mg/kg; 

i.p.), analgesic (Rimadyl; 2.5 mg/kg, i.m.), atropine (ATI; 2 mg/kg, s.c.) and with sterile saline to rehydrate (5 ml, 

s.c.). A local antibiotic ointment was applied around the cutaneous wound to improve the healing. Tissue was 
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washed regularly and treated with antibiotics in the weeks after surgery through the cylindrical implanted cranial 

windows. During the recovery period, rats had unlimited access to water and food. 

 

Implantation of opto-electric microdrive 

In a second operation 3-4 weeks after virus injection, the opto-electric microdrive was implanted through the 

cranial window. Injection sites were identified by vasculature landmarks and mapping from the previous surgery. 

For chronic electrophysiological recording concomitant with optogenetic stimulation, we collaborated with 

CyNexo to design an opto-electric microdrive (aoDrive, https://www.cynexo.com/portfolio/neural-drives/, see 

also Fig. 2a, middle). Each drive incorporates up to 15 single FHC tungsten electrodes and an optic fiber (Ø: 230 

µm, NA: 0.67, Plexon). Electrodes and fiber can be independently moved in depth with a total range of 4.5 mm. 

Electrodes were lowered until neuronal responses to light delivery (PlexBright LED, Blue: 465 nm, or Orange: 

620 nm for inhibition, Plexon) were observed. Subsequently, microdrives and TDT connectors were embedded in 

dental cement. The opto-electric microdrive provided signals for 3-6 months after the surgery. 

Electrophysiological recording and optogenetic stimulation in the behaving animal began 7-10 days following the 

second implantation surgery. 

 

vS1 recordings and optogenetic behavioral experiments 

Extracellular activity was pre-amplified, filtered and digitized using the digital TDT recording system (Tucker 

David Technologies) along with task-relevant data, such as position sensors and light/motor stimulation signals to 

synchronize external events with physiological recordings. Signals were sorted into single and multi-unit neuronal 

clusters, as verified through standard indices using UltraMegaSort200028. The headstage and optic fiber patch 

cables (custom made, Ø: 230 µm, NA: 0.67) were connected to the implant and the cables were held by a rubber 

band to limit weight on the implant. Light output intensity (>=10 mW) from the tip of the patch cable was measured 

(Thorlabs) weekly to ensure stable optogenetic excitation/inhibition effect. Light delivery (465 nm) for the 

optogenetic excitation and external light experiment was 60 ms delayed to the onset of vibrissal stimulation to 

ensure that the light evoked responses did not prolong the elapsed time of vS1 excitation. Offset time of light 

delivery and vibrissal stimulation was identical. Light delivery (620 nm) for the optogenetic inhibition experiment 

was slightly adapted in order to account for the biophysical mechanisms of eNpHR3.0 (see29): (1) light was 

initiated 50 ms preceding onset of vibrissal stimulation to reach an effective hyperpolarization, accounting for the 

slower time constants of eNpHR3.0 as compared to Chr2(H1340). (2) Light was dimmed with an offset ramp, 
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starting 200 ms before and ending at 0 ms with respect to termination of vibrissal stimulation; this protocol 

minimized rebound activation. 

 

Histological examination 

At the conclusion of the study, electrolytic lesions were made around the tips of the electrodes to mark the 

recording sites. To identify Opsin-expressing neurons, we counterstained with blue-fluorescent Nissl stain 

(NeuroTrace 435/455, ThermoFisher) to visualize cortical layers, and performed antibody staining (AntiVGLUT2, 

Synaptic Systems) to discern the barrels in layer IV. Whole coronal slice (50 µm thickness) images were taken 

with confocal microscope (4x, Nikon). 

 

Analysis of behavioral data 

To generate duration psychometric curves, we used trials in which T1 was 334 ms while T2 ranged from 161 ms 

to 694 ms. For intensity psychometric curves, we used trials in which I1 was 64 mm/s while I2 ranged from 34 

mm/s to 119 mm/s (Extended Data Fig. 1). The rat’s choice (proportion of trials in which the stimulus 2 was judged 

as more intense or longer in duration than stimulus 1) for each stimulus pair was then plotted. A four-parameter 

logistic function was fit to the psychometric data using the nonlinear least-squares fit in MATLAB (MathWorks, 

Natick, MA), as follows. The psychometric curve for duration was given by 

 

   𝑃𝑃(𝑇𝑇2 > 𝑇𝑇1) = 𝛾𝛾 + (1 −  𝜆𝜆 − 𝛾𝛾) 1
1+exp(−(Δ𝑇𝑇−𝑢𝑢𝑇𝑇))/𝑣𝑣)

    (3) 

 

and for intensity the curve was given by 

 

   P(𝐼𝐼2 >  𝐼𝐼1) = 𝛾𝛾 + (1 −  𝜆𝜆 − 𝛾𝛾) 1
1+exp(−(Δ𝐼𝐼−𝑢𝑢𝐼𝐼))/𝑣𝑣)

    (4) 

 

where Δ𝑇𝑇 and Δ𝐼𝐼 are the normalized stimulus differences, γ is the lower asymptote, λ is the upper 

asymptote, 1/ ν is the maximum slope of the curve and uT and uI are Δ𝑇𝑇 and Δ𝐼𝐼 at the curve’s inflection point, for 

the duration and intensity curves, respectively. Since observed experimental data are expressed as choice (%), the 

proportion of trials in Eqs (3)-(4) was multiplied by 100 for purposes of illustration.  
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The raw data (choices for each value of Δ𝑇𝑇 and Δ𝐼𝐼) as well as the fit parameters were then used as measures of 

acuity and bias. Bias in perceived duration was measured by sorting the trials according to ∆I and then, with the 

∆T values pooled, averaging the percent judged T2>T1 for each value of ∆I. This isolates the effect of ∆I on 

perceived duration. For illustration (Fig. 1d), the above bias measure was normalized by subtracting the choice 

data for ∆I = 0 (where I does not exert a bias). Easy trials (e.g., ∆T = + / -0.35) were excluded from this analysis 

as the irrelevant feature (∆I) no longer exerts an effect. 

 

Resampling and bias statistics 

To quantify the effect of optogenetic manipulation of vS1 on duration and intensity perception, we resampled the 

original data set to create 1000 sets of statistically comparable data. Each set of resampled responses was 

parametrized by fitting the logistic function of Equation (3). A support vector machine (SVM) classifier 

(MATLAB, fitcsvm function) was used to quantify the linear separation between data points with and without 

optogenetic intervention, making use of 10-fold cross validation to measure the classification error. Specifically, 

the data were partitioned into 10 random sets. Then, 9 of these were used to train an SVM classifier and the 

remaining set served as a test. This procedure was repeated 10 times and the statistics for each repetition were 

combined, giving the rightmost plots of Figure 1b-d. 

 

Neuronal data 

Spike trains were aligned to the stimulus onset or else offset, depending on the aim of the analysis. In Figure 3b, 

individual neurons’ response was generated by plotting the average firing rate over trials, shifting in 1 ms steps. 

To reduce the effect of noisy fluctuations, a centered 40 ms sliding window was used. Firing rate was then z score–

transformed by subtracting each neuron’s spontaneous activity rate (measured from 800 ms before stimulus onset 

up to the stimulus onset) from response rate per time bin during stimulus presentation. The outcome was divided 

by spontaneous activity variance.  

 

Population PSTHs (Fig. 3c) were generated by plotting the average population response shifting in 1 ms steps for 

each stimulus duration. To reduce the effect of noisy fluctuations, a centered 20 ms sliding window was used. This 

led to the appearance of a rise in firing rate just before stimulus onset and a decrease in firing rate just prior to 

stimulus offset.  
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Model for vS1 activity 

The analysis was built on the spiking activity of 240 vS1 units recorded in 5 rats over the full range of vibrissal 

stimulation and optogenetic excitation conditions. To permit more robust neurometric measures, we modeled a 

larger data set replicating the properties of actual recordings by means of a Gaussian Mixture Model (GMM)22. 

The key observations justifying this form of model are that functional properties are diverse across neurons and 

the responses of single neurons are variable across trials. The methodology is presented in two steps: (1) 

constructing a parametric model for single neuron variability and fitting it to each recorded unit, and (2) Gaussian 

mixture model to reproduce vS1 population diversity. 

 

(1) The parametric model for neuron variability is based on the following observations: (i) the response of a neuron 

varied across trials notwithstanding constant stimulus conditions, (ii) in the absence of stimulation, vS1 neurons 

showed ongoing activity, (iii) when the vibrissal stimulus was presented, many vS1 neurons rapidly increased their 

firing rate and then adapted to steady state, (iv) simultaneous optogenetic and vibrissal stimulation commonly led 

to a higher firing rate but did not alter the temporal profile of response. However, firing rate sometimes dropped 

after the light was turned off (a phenomenon sometimes referred to as post-stimulation suppression30.  

 

Given the recorded units’ observed spike variability, we assume that the activity of the ith unit, k(i), in time bin t, 

follows a Poisson distribution. 

 

     𝑃𝑃�𝑘𝑘(𝑖𝑖)�𝑡𝑡� = 𝑓𝑓𝑟𝑟
(𝑖𝑖)(𝑡𝑡)𝑘𝑘𝑖𝑖    𝑒𝑒−𝑓𝑓𝑟𝑟

(𝑖𝑖)(𝑡𝑡)

𝑘𝑘!
    (5) 

 

where fr
(i) (t) is the unit's firing rate. We write a parametric model for the underlying rate of the Poisson distribution 

and infer its parameter values based on the measured PSTH of each recorded unit. This spike generation model 

assumes that the ith unit receives a constant background current I0
(i). We assume that when the vibrissal stimulus 

is turned on, it elicits a mechanoreceptor-derived current of the following form 

 

    𝐼𝐼𝑀𝑀
(𝑖𝑖)(𝑡𝑡) = �𝐼𝐼1

(𝑖𝑖) + �𝐼𝐼1𝑝𝑝
(𝑖𝑖) − 𝐼𝐼1

(𝑖𝑖)�𝑒𝑒
−
𝑡𝑡−𝑡𝑡0𝑀𝑀

(𝑖𝑖)

𝜏𝜏𝑀𝑀
(𝑖𝑖)

�𝑊𝑊�𝑡𝑡,𝑇𝑇, 𝑡𝑡0𝑀𝑀
(𝑖𝑖) �   (6) 
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where I1p
(i) is the peak input current that follows immediately after stimulus onset, I1

(i) is the steady state current, 

t0M
(i) is the onset of the mechanoreceptor-elicited current, and τM 

(i) is the decay time constant from I1p
(i) to I1

(i). W(t, 

T, t0M
(i)) is a window function that determines when the stimulus evokes a current that is non-zero: 

 

    𝑊𝑊�𝑡𝑡,𝑇𝑇, 𝑡𝑡0𝑀𝑀
(𝑖𝑖) � = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡 − 𝑡𝑡0𝑀𝑀

(𝑖𝑖) )𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 �−�𝑡𝑡 − 𝑇𝑇 − 𝑡𝑡0𝑀𝑀
(𝑖𝑖) ��  (7) 

 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡(𝑒𝑒) = 1 �1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒)�⁄ . 

 

When the optogenetic excitation is turned on, it elicits a current of the following form: 

 

  𝐼𝐼𝑂𝑂
(𝑖𝑖)(𝑡𝑡) = �𝐼𝐼2

(𝑖𝑖) + �𝐼𝐼2𝑝𝑝
(𝑖𝑖) − 𝐼𝐼2

(𝑖𝑖)�𝑒𝑒
−
𝑡𝑡−𝑡𝑡0𝑜𝑜

(𝑖𝑖)

𝜏𝜏𝑂𝑂
(𝑖𝑖)
�𝑊𝑊�𝑡𝑡,𝑇𝑇, 𝑡𝑡0𝑜𝑜

(𝑖𝑖)� + 𝐼𝐼3𝑝𝑝
(𝑖𝑖)𝑒𝑒

−
𝑡𝑡−𝑇𝑇−𝑡𝑡0𝑜𝑜

(𝑖𝑖)

𝜏𝜏𝐼𝐼
(𝑖𝑖)

expit�𝑡𝑡 − 𝑇𝑇 − 𝑡𝑡0𝑜𝑜
(𝑖𝑖)� (8) 

 

where 𝐼𝐼2𝑝𝑝
(𝑖𝑖) is the peak input current that follows immediately after light onset, 𝐼𝐼2

(𝑖𝑖) is the steady state current, 𝑡𝑡0𝑜𝑜
(𝑖𝑖) is 

the time of onset of the current, 𝜏𝜏𝐼𝐼
(𝑖𝑖) is the decay time constant from 𝐼𝐼2𝑝𝑝

(𝑖𝑖) to 𝐼𝐼2
(𝑖𝑖), and 𝐼𝐼3𝑝𝑝

(𝑖𝑖) is the activation current 

that follows light offset. 𝑊𝑊�𝑡𝑡,𝑇𝑇, 𝑡𝑡0𝑜𝑜
(𝑖𝑖)� is the same windowing function as in the mechanically elicited current.  

 

The total input current received by the ith unit is 

 

     𝐼𝐼(𝑖𝑖)(𝑡𝑡) = 𝐼𝐼0
(𝑖𝑖) + 𝐼𝐼𝑀𝑀

(𝑖𝑖)(𝑡𝑡) + 𝐼𝐼𝑂𝑂
(𝑖𝑖)(𝑡𝑡)    (9) 

 

Input current to output firing rate curve (I/F curve) is modeled as a generalized sigmoid31:  

 

    𝑓𝑓𝑟𝑟
(𝑖𝑖)(𝑡𝑡) = 𝜆𝜆(𝑖𝑖) �1 − � 1

1+𝑒𝑒𝑒𝑒𝑝𝑝�10𝐼𝐼(𝑖𝑖)(𝑡𝑡)�
�

1
𝜐𝜐(𝑖𝑖)

� + 10−4   (10) 

 

where 𝜆𝜆(𝑖𝑖) denotes the maximum firing rate and 𝜐𝜐(𝑖𝑖) represents the non-linear scale of the generalized sigmoid 

curve. The current 𝐼𝐼(𝑖𝑖)(𝑡𝑡) is multiplied by a constant scaling factor 10, to improve the fit stability due to the 
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different scales of the many parameters involved. The added 10-4 constant helps to stabilize the fit in very low-

firing neurons. 

 

We used the pymc3 package32,33 to infer the 12 parameters given the observed PSTH of the neurons in 10 ms wide 

time bins. The model output accurately fitted the mean firing rate and the variability in the spike trains for the 240 

recorded units (see S4). 

 

(2) The Gaussian mixture model exploits the diverse properties of individual vS1 neurons to make estimates of 

large populations on the basis of limited quantities of recordings. The reasoning is that a recorded neuron, unit i, 

is a randomly sampled member of a broader group of vS1 neurons with similar properties (i.e., similar parameters 

according to the single neuron variability model described above). We label this group gi. Unit i emits spikes with 

a Poisson probability distribution (Equation (10)). 

 

In detail, we first assume that vS1 is made up by a mixture of G qualitatively different classes of neurons, where 

classes are defined by the parameter values of the single neuron model. Each class can be represented as a 

Multivariate Gaussian in a subspace A of the model's parameter space, where 𝛢𝛢 is determined by I0, I1, I1p, I2, I2p, 

I3p, λ and ν. The parameters, τM, τO and τI showed only minimal variations among neurons, making it likely that 

they are population-specific and not neuron-specific; thus we chose to fix their values to the median of the fit for 

all neurons: τM = 48 ms, τO = 49 ms and τI = 28 ms. The parameters t0M and 𝑡𝑡0𝑜𝑜 are defined by the experimenter 

and therefore kept constant. 

 

Class membership is derived from a Dirichlet process34. The full generative process underlying real neuronal data 

can be written as 

 

     𝑁𝑁�𝜇𝜇𝑔𝑔𝑖𝑖→ , Σ𝑔𝑔𝑖𝑖� ~ 𝐷𝐷𝑃𝑃(𝑁𝑁,𝛼𝛼) 

     𝑎𝑎𝑖𝑖→ ~ 𝑁𝑁�𝜇𝜇𝑔𝑔𝑖𝑖→ , Σ𝑔𝑔𝑖𝑖� 

      𝑃𝑃(𝑘𝑘𝑖𝑖|𝑎𝑎𝑖𝑖→, 𝑡𝑡) ~ 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑓𝑓𝑟𝑟(𝑎𝑎𝑖𝑖→, 𝑡𝑡)�    (11) 
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where the i subindex corresponds to the recorded unit, the gi subindex represents the group to which the ith unit 

belongs to, 𝑎𝑎𝑖𝑖→  ∈  𝛢𝛢 is the vector of parameters 𝐼𝐼0
(𝑖𝑖), 𝐼𝐼1

(𝑖𝑖), 𝐼𝐼1𝑝𝑝
(𝑖𝑖), 𝐼𝐼2

(𝑖𝑖), 𝐼𝐼2𝑝𝑝
(𝑖𝑖), 𝐼𝐼3𝑝𝑝

(𝑖𝑖), 𝜆𝜆(𝑖𝑖) and 𝜐𝜐(𝑖𝑖), 𝐷𝐷𝑃𝑃 is a Dirichlet process, 

𝛼𝛼 is the concentration parameter, and 𝜇𝜇𝑔𝑔𝑖𝑖→  and Σ𝑔𝑔𝑖𝑖  are, respectively the gi
th class mean and covariance. 

 

We infer the mixture weights, 𝜇𝜇𝑔𝑔→ and Σ𝑔𝑔 by using the expected values of the independently inferred parameters 

from the single neuron variability model as the observed 𝑎𝑎𝑖𝑖→ vectors for each unit. We then used scikit-learn’s35 

built-in BayesianMixtureModel class to infer the suitable class proportions, and each class’s 𝜇𝜇𝑔𝑔→ and Σ𝑔𝑔. We 

set the α concentration hyperprior to 10-6 to favor assigning significant weight to a larger number of classes, but 

also set G = 5 to prevent excessive granularity. 

 

This generative process and the Bayesian Mixture Model allow us to model a 5,000-unit vS1 population. The 

resulting spike trains are statistically consistent with observed single neuron variability and diversity in vibrissal 

stimulation and optogenetic excitation response. We take the full set of modeled neurons to be the drive fvS1 (t) for 

any given stimulation condition, as 

 

     𝑓𝑓𝑣𝑣𝑣𝑣1(𝑡𝑡) =  ∑ 𝑘𝑘(𝑗𝑗)|𝑡𝑡𝑗𝑗      (12) 

 

Model for perceived stimulus duration 

The perceived stimulus duration, ϒ, is modeled by the leaky integrator differential equation 

 

     𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑑𝑑
𝜏𝜏

+ 𝑓𝑓(𝑡𝑡)      (13) 

 

where τ is the leaky integrator time constant and f(t) is the external drive. The drive is written as 

 

     𝑓𝑓(𝑡𝑡) = 𝑓𝑓𝑣𝑣𝑣𝑣1(𝑡𝑡) + 𝜉𝜉(𝑡𝑡)     (14) 

 

where fvS1(t) is neuronal activity in vS1, including vibrissal- or optogenetic -stimulation evoked responses and ξ(t) 

is ongoing firing unrelated to vibrissal or optogenetic stimulation. We approximate ξ as a Gaussian stochastic 

variable with mean µb and variance σ2
b. 
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Leaky integration is not specified as a unique physiological process; rather, it represents the dynamics governing 

the percept (ϒ) in a manner that quantitatively accounts for the rat’s judgments as a function of combined vibrissal 

stimulation and optogenetic excitation evoked responses. 

 

Model for choice 

Given the leaky integrator dynamics of 𝛶𝛶(𝑡𝑡), the model for 𝑓𝑓(𝑡𝑡), and the approximation of the Poisson variability 

in 𝑓𝑓𝑣𝑣𝑣𝑣1(𝑡𝑡), we can solve the stochastic differential equation (13) as shown previously14,36,37). 𝛶𝛶(𝑡𝑡) follows a 

Gaussian distribution and its expected value and variance are equal to 

 

                                         𝐸𝐸[𝛶𝛶(𝑡𝑡)] =  𝐸𝐸[𝛶𝛶(0)]𝑒𝑒−
𝑡𝑡
𝜏𝜏 + 𝜇𝜇𝑏𝑏 �1 − 𝑒𝑒−

𝑡𝑡
𝜏𝜏� + ∫ 𝑒𝑒−

𝑡𝑡−𝑡𝑡′
𝜏𝜏

𝑡𝑡
0 𝑓𝑓𝑣𝑣𝑣𝑣1(𝑡𝑡)𝑑𝑑𝑡𝑡′    (15) 

 

                                     𝑉𝑉𝑎𝑎𝑟𝑟[𝛶𝛶(𝑡𝑡)] =  𝑉𝑉𝑎𝑎𝑟𝑟[𝛶𝛶(0)]𝑒𝑒−
2𝑡𝑡
𝜏𝜏 + 𝜎𝜎𝑏𝑏2 �1 − 𝑒𝑒−

2𝑡𝑡
𝜏𝜏 � + ∫ 𝑒𝑒−

2�𝑡𝑡−𝑡𝑡′�
𝜏𝜏

𝑡𝑡
0 𝑓𝑓𝑣𝑣𝑣𝑣1(𝑡𝑡)𝑑𝑑𝑡𝑡′   (16) 

 

During stimulus delivery, the rat’s percept of elapsed time evolves through equation (13). The percept of total 

stimulus duration is given by 𝛶𝛶 at the time of stimulus offset (𝛶𝛶(𝑇𝑇)). We then compute the probability distribution 

for each stimulus duration, 𝛶𝛶(𝑇𝑇1) and 𝛶𝛶(𝑇𝑇2), in the delayed comparison task. This gives the probability that 

𝛶𝛶(𝑇𝑇2) is greater than 𝛶𝛶(𝑇𝑇1) as 

 

𝑃𝑃�𝛶𝛶(𝑇𝑇2) > 𝛶𝛶(𝑇𝑇1)� =
1
2

+
1
2
𝑒𝑒𝑟𝑟𝑓𝑓(𝑑𝑑′) 

     (17) 

where 

𝑑𝑑′ =  
𝐸𝐸[𝛶𝛶(𝑇𝑇2)] − 𝐸𝐸[𝛶𝛶(𝑇𝑇1)]

�2(𝑉𝑉𝑎𝑎𝑟𝑟[𝛶𝛶(𝑇𝑇2)] + 𝑉𝑉𝑎𝑎𝑟𝑟[𝛶𝛶(𝑇𝑇1)])
 

     (18) 

 

We can assume two types of trials38 – those in which the rat encoded 𝛶𝛶(𝑇𝑇2) > 𝛶𝛶(𝑇𝑇1) and used the two 

representations to make a choice (“attended” trials) and those in which choice was unrelated to the evoked sensory 

representations (“lapse” trials). We assume that in attended trials the rat judged T2>T1 whenever Υ(𝑇𝑇2) > Υ(𝑇𝑇1); 

in lapse trials, the rat chose at random according to some choice bias probability bL. The probability that the rat 

judged T2 > T1 is then 
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𝑃𝑃(𝑇𝑇2 > 𝑇𝑇1) =  𝑒𝑒𝐿𝐿𝑏𝑏𝐿𝐿 + (1 − 𝑒𝑒𝐿𝐿) �
1
2

+
1
2
𝑒𝑒𝑟𝑟𝑓𝑓(𝑑𝑑′)� 

     (19) 

where pL is the probability of a lapse trial. 

 

Fit of the behavioral psychometric data 

We constructed 100 independent population proxies for vS1 firing, each made up of 5,000 neurons using the model 

described in (10). We then fit a common τ, µb, 𝜎𝜎𝑏𝑏2, pL and bL across all 100 populations using a maximum likelihood 

estimate based on equation (19) with L2 parameter regularization for τ. The weight of the regularization was set 

to 0.01 and its center was placed at 600 ms. The resulting parameter values are listed in table (Extended Data, Tab. 

1). 

 

Using the resulting parameters for the neuronal population proxies, we computed the model’s predicted 

psychometric curves (Fig 4B), and the behavioral bias (overall predicted probability of choosing T2 > T1, Fig 4B 

inset). 
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Extended Data Figure 1: Stimulus generalization matrix. a, The entire stimulus set was used for both duration 

and intensity rats. T1 and T2 duration combinations are represented by blank squares (left panel). The diagonal 

gray dashed line indicates the category boundary (T2>T1 vs T2<T1). The right panel accordingly displays possible 

I1 and I2 values that are relevant to the intensity task. For both, duration and intensity rats, all possible 

combinations of [T1, T2] and [I2, I1] were presented randomly across trials. The [T1, T2] and [I2, I1] combinations 

inside the gray and red rectangle are trials that were used to generate psychometric curves. b, Stimulus 

combinations that were used to generate psychometric curves in order to assess bias and acuity. Left panel: trials 

in which T2 and I2 (empty squares) varied in small steps, while T1 and I1 (central filled square) were fixed (334 

ms, 64 mm/s). Right panel illustrates the normalized duration and intensity differences, corresponding to the 

stimulus pairs in the left panel. Duration rats must base their choice on ΔT values (above and below the gray dotted 

line), while intensity rats must choose based on ΔI values (left and right side of the red dotted line). Gray filled 

squares represent stimulus pairs illustrated in Figure 1A example stimulus traces.  
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Extended Data Figure 2: Control experiments. These combine vibrissal stimulation with external light 

presentation and report statistical tests to probe for a possible effect of optogenetic excitation and inhibition 

on duration discrimination acuity. a, Left: control condition in which an external LED (465 nm) was illuminated 

above the rat, in correspondence to optogenetic light delivery during vibrissal stimulation (left vibrissae not 

shown). Middle: light-on during stimulus 2, compared to light-on during stimulus 1 (green) revealed that perceived 

duration is not biased by visual cues. Right: two signatures of a possible curve shift, percent of trials judged as 

T2>T1 irrespective of stimulus duration (ordinate) and PSE, the point of subjective equality (abscissa), were 

measured with bootstrap resampling methods. A support vector machine classifier quantifies data separation by 

classification error. b, Effect of excitation of vS1 neuronal population on sensory acuity. Two signatures of the 

acuity, percent correct (ordinate), and the psychometric curve's slope inverse values (abscissa) were measured with 

bootstrap resampling method. A support vector machine classifier quantifies the separation in the data. Light-on 

during the second (blue) did not significantly alter acuity as compared to light-on during stimulus 1 (green). c, 

And d, same as b, but for optogenetic inhibition and control sessions, respectively. 
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Extended Data Figure 3: Neuronal responses in vS1 to vibrissal stimulation and optogenetic excitation. a, 

Average firing rate of individual vS1 units before stimulus onset (200 ms time window) versus the first 200 ms 

during vibrissal stimulation. Blue dots are neurons with significantly (p-value < 0.01, resampling method: 

permutation test) altered responses by vibrissal stimulation compared to background activity. b, The responses of 

all vS1 units are represented for the first 200 ms of vibrissal stimulation (abscissa), compared to the first 200 ms 

of vibrissal stimulation accompanied by optogenetic excitation (ordinate). Red dots show neurons with 

significantly (p-value < 0.01) increased firing rate during optogenetic + vibrissal stimulation as compared to 

vibrissal stimulation alone. c, Area under the ROC curve (AUC) was measured by comparing the response of 

neurons during the background activity versus vibrissal stimulation (ordinate). Additionally, the response during 

the vibrissal stimulation is compared to optogenetic + vibrissal stimulation (abscissa). Blue and red dots are 

neurons with significant response AUC for vibrissal stimulation only versus background activity and vibrissal 

stimulation versus optogenetic + vibrissal stimulation, respectively. Purple dots represent neurons with significant 

AUC for both comparisons. Significance was tested by the resampling method (500x, permutation test).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454157


 
 

Extended Data Figure 4: Single vS1 neuron and population responses can be simulated by fitting input 

current parameters; classification of vS1 neurons. Left: PSTHs of four example neurons, responding to a 334 

ms vibrissal stimulation (black, solid lines) and vibrissal stimulation + optogenetic excitation (light blue, solid 

lines). Neuron-specific response characteristics, based on vibrissal and optogenetic drive, was simulated (dashed 

lines) by fitting a parameter set (see Eqs. 6-8) that determines the input currents for generating Poisson spike trains. 

Confidence intervals (shaded area) of the simulated PSTHs covered the variability of the data. Assessing the fitted 

parameters for significant (p-value < 0.005) deviation from zero for vibrissal and optogenetic driven currents, 

allowed a neuron classification based on response properties (pie chart). 
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Extended Data Figure 5: Gaussian mixture model (GMM) of vS1 neuronal activity. Single vS1 spike trains 

in response to vibrissal stimulation and optogenetic excitation (see leftmost boxes) could be simulated by applying 

dynamic input currents to a Poisson process through a sigmoidal IF-curve (Eq. 10). The parameter set (see Eqs. 6-

8) that determines the input currents and its dynamics, depending on vibrissal and optogenetic drive, was fitted to 

each recorded neuron individually. The distributions of this parameter set across all fitted neurons did not reveal 

distinct response-specific clusters and served as representative vS1 population characteristics. The GMM 

estimated a Gaussian distribution for each of the given parameters from the parameter values, given by fitting each 

individual neuron. Applying the GMM, representative vS1 model neurons could be resampled (see e.g., Neuron 1 

box), by retrieving a given input current parameter set from the parameters Gaussian distributions. Each model 

neuron consisted of a distinctive parameter set, representative to the recorded vS1 population that determined the 

input current, depending on vibrissal and optogenetic drive. Poisson spike trains of resampled model neurons were 

generated to simulate a vS1 population response (gray box) to a given external input. 
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Extended Data Table 1: Model fitted parameters 

τ Leaky integration time constant 990 ms 

µb Mean drive excluding vS1 1.95 

σ𝑏𝑏2  Variance of drive excluding vS1 208 

pL Probability of lapse trial 0.17 

bL Probability of choosing T2 > T1 in lapse trial 0.514 
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