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Abstract 15 

Recombination is one of the essential genetic processes for sexually reproducing organisms, 16 

which can happen more frequently in some regions, called recombination hotspots. 17 

Although several factors, such as PRDM9 binding motifs, are known to be related to the 18 

hotspots, their contributions to the recombination hotspots have not been quantified, and 19 

other determinants are yet to be elucidated. Here, we develop a computational method, 20 

RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot 21 

determinants in a purely data-driven manner, utilizing datasets from various studies, 22 

populations, sexes, and species. In addition to being able to identify hotspot regions and the 23 

well-known determinants accurately, RHSNet is sensitive to the difference between 24 

different PRDM9 alleles and different sexes, and can generalize to PRDM9-lacking species. 25 

The cross-sex, cross-population, and cross-species studies suggest that the proposed method 26 

has the potential to identify and quantify the evolutionary determinant motifs. 27 

Teaser 28 

RHSNet can accurately identify and quantify recombination hotspot determinants across 29 

different studies, sexes, populations, and species. 30 

 31 
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Introduction 33 

The Recombination is an essential and fundamental genetic process in meiosis, which 34 

introduces new combinations of alleles and generates haplotypic diversity in sexually 35 

reproducing organisms, driving evolution and biodiversity(1-3). Although the molecular 36 

mechanism of this process has not been fully uncovered(1), it is believed that in many 37 

species, including humans and mice, the event begins with the binding of DNA by the 38 

histone methyltransferase PRDM9(4). The double-strand break (DSB) machinery, 39 

including the meiotic topoisomerase-like protein SPO11(5), is then recruited by an unknown 40 

mechanism, forming DSBs. Specialized pathways repair these breaks, with the majority 41 

leading to noncrossovers (NCOs) while the minority developing crossovers(6) (COs). 42 

Although PRDM9 binds ubiquitously throughout the genome, the distribution of COs is 43 

nonrandom, clustered in narrow regions, called recombination hotspots(1, 4). Despite the 44 

unclear reason for forming hotspots, the following factors are suggested to be related to the 45 

locations of hotspots(2, 7). The DNA binding domain of PRDM9 influences sequence 46 

specificity and the formation of DSBs(4, 8-10); histone modifications can influence the 47 

chromatinic local structure and thus affect crossover formation(3, 11); recombination occurs 48 

more frequently in GC-rich regions(2, 12). Yet, more factors influencing the recombination 49 

events and hotspot formation, and the molecular mechanism behind it are yet to be 50 

discovered(1, 13). 51 

Several studies(2, 6-8, 13-18) have been conducted to demystify this essential 52 

genetic process, resulting in a large amount of data with different properties. The availability 53 

of such datasets enlightens the possibility of investigating this problem from a different 54 

angle, that is, in a data-driven manner. Despite the extensive biological experiments and the 55 

development of computational tools to construct genetic maps(3, 19) and perform binary 56 

classification(20-22) of hotspot and coldspot sequences, computationally, researchers have 57 

not investigated the determinants of recombination hotspots systematically and 58 

quantitatively. Based on the accumulated datasets from the previous studies, it is very 59 

promising to develop computational methods to perform cross-study, cross-sex, cross-60 

population, and cross-species investigation, potentially providing more insights into this 61 

crucial biological process.  62 

Deep learning has been proven to be a successful approach for performing classifications(23, 63 

24). However, directly applying deep learning models to this problem may cause difficulties 64 

in studying the recombination hotspot determinants quantitatively due to the complexities 65 

and interpretability issue of the model(25). To analyze the accumulated recombination data 66 

and facilitate the study of the yet unclear recombination process, we propose a novel 67 

transparent computational method, RHSNet, which combines the strength of deep 68 

learning(24), activation backpropagation(26), and signal processing(27), to systematically 69 

identify and quantify the recombination hotspot determinants taking advantage of data from 70 

multiple previous studies crossing different populations(2, 3, 11, 13), sexes(17), and 71 

species(6, 11). In addition to predicting hotspot sequences accurately and identifying the 72 

well-known determinants, our method can quantify the relative contribution of each 73 

determinant, showing their differences in different sexes and species, as well as their 74 

evolution across different populations. 75 

Results  76 

Accurate, flexible, and interpretable identification of recombination hotspots 77 
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Our method leverages the strength of deep learning, activation backpropagation, and signal 78 

processing to first predict the recombination hotspot sequences, then quantify the 79 

contribution of the input information, and finally extract determinants, such as the PRDM9 80 

binding motif. As shown in Fig. 1, during the prediction, the input sequences of various 81 

lengths, depending on the data (Materials and Methods), go through a specific deep learning 82 

model, which consists of two 1-D convolutional layers as the sequence feature extractor, a 83 

Gated Recurrent Unit (GRU) for capturing long-range information, and a multi-head 84 

attention layer for detecting interactions within the sequence (Fig. S2), to output useful 85 

information from the raw sequences. Because histone modifications are also shown to be 86 

crucial to recombination(3, 11),  we use another deep learning module to process the 87 

information, including H3K4me3 and H3K36me3 from testis and ovary. Then, all the above 88 

information is combined to predict whether the input sequence is a hotspot sequence. In 89 

addition, we are further interested in identifying and quantifying the recombination hotspot 90 

determinants. One previous study(22) extracts motifs by considering only the activation of 91 

the first layer in the deep learning model. But this method omits the complexity of the 92 

downstream layers and has difficulty in quantifying the motif’s contribution based on the 93 

entire model. To resolve the issue, we utilize an activation backpropagation method(26). 94 

The prediction of a specific sequence is backpropagated through the entire network back to 95 

the original inputs to assign contribution scores to the motifs. Note that we consider the 96 

entire deep learning model and compute the score in a purely data-driven manner. However, 97 

extracting determinant information remains a problem because the computed scores can be 98 

noisy, with peaks having various lengths along the sequence, as shown in Fig. 1. We resolve 99 

this problem using signal processing techniques. We apply a low-pass filter onto the 100 

contribution score array. Then, we extract the significant motifs between two valleys with 101 

a peak. The user has the freedom to choose the low-pass filter, either obtaining long 102 

determinants or short ones with high confidence. Based on the outputs of RHSNet, we 103 

further perform comprehensive quantitative analysis, as shown in Fig. 1, which will be 104 

discussed in detail below.  105 

Although our method is not designed specifically to perform binary recombination 106 

hotspot prediction, it can achieve superior performance on the task, compared with the 107 

previous methods. Here, we report the performance of the classification module in RHSNet 108 

(the Identification module in Fig. 1). We evaluate the proposed deep learning model’s 109 

performance on different datasets (HapMap II(28), Icelandic(2), and Sperm(13)) (Materials 110 

and Methods), different sexes(2), different populations(28), different species(6, 11) and 111 

across different evaluation criteria, whose results are shown in Fig. 2. With the same input 112 

data and evaluation criteria, our deep learning model in RHSNet is constantly better than 113 

the competing models, including convolutional neural network, Equivariant CNN(22) and 114 

PseDNC(20) (Table S5), across different conditions in terms of F1 score (Fig. 2A), except 115 

for the paternal Icelandic dataset. Meanwhile, on the sex-specific dataset, for which we can 116 

extract ChIP-seq information from the corresponding ovary and testis tissues, we utilize six 117 

histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K9me3, H3K36me3, 118 

H3K27me3) from testis and ovary tissues for the paternal and maternal datasets, 119 

respectively. Adding such information into our model (RHSNet-chip) can further boost the 120 

deep learning model’s performance, which is consistent with the previous research(3, 11). 121 

To further test the robustness of our model, we evaluate the model’s performance on hotspot 122 

regions with various lengths (Fig. 2B, on the Icelandic dataset), using a different evaluation 123 

criterion, Matthews Correlation Coefficients (MCC). As illustrated in Fig. 2B, our method 124 

is consistently better and shows more stable and robust performance than the baseline 125 

methods across different resolutions. As the resolution goes down and the prediction 126 

becomes less demanding, all the models’ performance improves, although the training 127 
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dataset size decreases. To further validate our method, we test it against a dataset from a 128 

different species, the Mice dataset(11). Evaluated on the dataset with Area Under the 129 

Receiver Operating Characteristic curve (AUROC), RHSNet can significantly improve over 130 

the existing methods (Fig. 2C). More statistical results about the identification performance 131 

can be referred to (Supplementary Materials). 132 

 133 

PRDM9 binding motif, GC content, and histone modification affect recombination 134 

hotspots 135 

The existing research has shown that PRDM9 binding motif(4, 8-10), histone 136 

modification(3, 11), and GC content(2, 12) influence the recombination hotspot. We use 137 

RHSNet to analyze how the above factors are related to the recombination hotspots in 138 

different datasets. As we have discussed, in our method, with different low-pass filter factors, 139 

we can extract motifs with different lengths and different enrichment factors (Fig. 1, Fig. 140 

3A, Materials and Methods). In Fig. 3B, we compare the top-ranked motifs regarding the 141 

enrichment factor from different datasets (HapMap II(28), Icelandic(2), and Sperm(13)) 142 

with different filter factors against the PRDM9 binding motif4: CCNCCNTNNCCNC and 143 

SPO11-oligo(11). Clearly, in the Icelandic dataset, the top-ranked motifs are highly 144 

correlated (top10: 87.5% ± 1.01 ; top100: 64.1% ± 1.54) with the canonical PRDM9 145 

motif regarding the pairwise sequence alignment matching score. Although, compared with 146 

Icelandic, the PRDM9 pattern is less significantly enriched in the top-ranked motifs from 147 

the HapMap II dataset, we still obtain 53.91% GC content in the top 100 motifs (Fig. 3D), 148 

with the PRDM9 binding pattern appearing in these motifs. In contrast, the top-ranked 149 

motifs from the Sperm datasets are different from the ones from the other two datasets, 150 

though the PRDM9 pattern still appears. Unlike the HapMap II(28) and Icelandic(2) 151 

datasets, the Sperm(13) dataset focuses more on comparison across individuals’ cells rather 152 

than aggregating them, and is resolved to much larger regions, with the median resolution 153 

as 240 kilo-base pairs (kbp), among which 9,746 (1.2%) are inferred within 10 kbp. 154 

Consequently, we inevitably involve noisy sequences in the training dataset, which reduces 155 

the sensitivity of our method and also leads to lower prediction confidence compared to the 156 

other datasets when the filter factor is 0.4. 157 

GC content is shown to be positively correlated with the recombination rate(2, 12). 158 

As shown in Fig. 3D and Fig. S6, in all the datasets, the GC content of the hotspots is indeed 159 

higher than that of the entire genome (HapMap II: 44.64% VS 39.26%, Icelandic: 42.81% 160 

VS 39.26%, Sperm: 48.16% VS 39.26%). The comparison of GC content in hotspots across 161 

different resolutions (Fig. 3E) also suggests that the determinants in the central hotspot area 162 

are GC-richer than the marginal. Interestingly, the GC content of the coldspots 163 

(40.72%~41.88%), where the recombination rates are the lowest in the genome, is not lower 164 

than that of the entire genome, although it is lower than that of the hotspots. For some 165 

datasets, such as HapMap II, the result is expected because the coldspot set was constructed 166 

to match the GC content of the hotspot one.  However, for the other datasets, the coldest 167 

coldspots show similar GC content, which suggests that GC content itself may not be the 168 

causation of hotspots. Instead, the higher GC content in hotspots may be the consequence 169 

of the determinant motifs, which are GC-rich, such as the PRDM9 binding motif. In the 170 

HapMap II dataset and the Icelandic dataset, where the resolution is high enough (up to 171 

642bp), the determinant motifs identified by our model have much higher GC content than 172 

that of the overall hotspot regions. Furthermore, as we increase the filter factor, which forces 173 

our method to output shorter motifs with higher enrichment factors, the GC content 174 

increases further in these motifs (up to 65.3%). The separated paternal map and maternal 175 

map show a similar trend as the average map in the Icelandic dataset (Fig. S7), although the 176 
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signal is reduced because fewer people are included in each map. Intuitively, the results are 177 

consistent with the previous discoveries, as the PRDM9 motif, which is GC-rich, is the most 178 

popular motif in the hotspot region.  179 

Histone modifications usually accompany the recombination event, and in the 180 

PRDM9 knockout organism, DSB is directed by histone modifications(29) (Fig. 4A). We 181 

quantify the contribution of different histone modifications to recombination hotspot 182 

formation using activation backpropagation. In Fig. 4B, on the Icelandic dataset, we 183 

compare the distribution of different features from three modifications between hotspots 184 

and coldspots, including H3K4me1, H3K4me3, and H3K36me3. The distribution 185 

differences suggest that the histone modification patterns are different in the two kinds of 186 

regions. We use the Icelandic maternal data and the histone modifications from the ovary 187 

to further investigate such features. In Fig. 4C, we show the feature correlations among six 188 

histone modifications across hotspots. H3K4me1is correlated with H3K36me3, which is 189 

similar to that in the functional elements in the genome(30). To illustrate the contribution 190 

of histone modification features, in Fig. 4D, we visualize the 2D vector embedding of 191 

recombination hotspots and coldspots from the Principal Component Analysis (PCA) 192 

extracted from the last layer of CNN, RHSNet, and RHSNet-chip. As shown in the figure, 193 

the proposed deep learning model in RHSNet can learn different representations for hotspots 194 

and coldspots, and thus identify the hotspot regions. RHSNet-chip, incorporating the histone 195 

modification information, can further enlarge the difference in the learned representation 196 

between hotspots and coldspots. To further quantify the contribution of features from 197 

histone modifications, we use activation backpropagation across the entire network, 198 

visualizing their importance scores in Fig. 4E. The results are consistent with previous 199 

studies(29), with H3K4me3 and H3K36me3 being the two most essential modifications. 200 

Other related modifications, such as H3K4me1(31) and H3K27ac(32), are also captured by 201 

our method, although they are less studied for this problem. 202 

RHSNet reveals the contribution of different PRDM9 alleles in different populations 203 

Not only has PRDM9 been found to be the major determinant of the recombination hotspots 204 

in humans and mice(4), but different PRDM9 alleles are also believed to influence 205 

recombination hotspot activities in humans(3, 18, 33). PRDM9-A is the most abundant 206 

allele in human populations (found in around 86% of European and around 50% of African 207 

populations), and PRDM9-C is the second most common one in African populations 208 

(12.8%)(33). The two alleles have different binding preferences (Materials and Methods). 209 

Despite the imperfect way of identifying the motifs, PRDM9-C binding motifs are found to 210 

potentially elevate the recombination rates in the African populations. On the dataset from 211 

phase 3 of the 1000 Genomes Project(18), in the African population, both detected PRDM9-212 

A/C binding motifs (Materials and Methods) show significantly higher recombination rates 213 

than the other populations (Fig. 5A), which is consistent with the previous study(3). 214 

Furthermore, among the top 100 motifs (low-pass filter: 0.1) for each population detected 215 

by our method, the ratio of PRDM9-A/C binding motifs in the African population (PRDM9-216 

A ratio: 50.4%; PRDM9-C ratio: 33.3%) is much higher than that of the other populations 217 

(Fig. 5B). On the other hand, as we define enrichment factor by considering the 218 

recombination rate of the entire region around the motif, the enrichment factor of PRDM9-219 

C binding motifs in the African population is corrected to be on the same level as the other 220 

populations due to the higher overall recombination rate in the population (Fig. 5C). 221 

Although using the absolute value of the recombination rate to show the contribution of 222 

recombination hotspot determinants is straightforward, our framework provides an 223 

alternative quantification method by utilizing the relative criterion, which may be more 224 

robust to the local region noise and population batch effect. The relation between the 225 
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recombination rate and the enrichment factor of a motif is complex, which cannot be 226 

modeled with a linear regression (Fig. 5D-E), with the Pearson correlation coefficient being 227 

-0.034 and the 𝑅2  score being 1.79 ∗ 10−3  on motifs extracted from 5 populations. 228 

However, together with the recombination rate, by quantifying the relative contribution, our 229 

method provides insights into the recombination hotspot determinants. 230 

 231 

Generalization to PRDM9-lacking species and sensitivity to sex differences 232 

The recombination event has been studied in a broad range of species(11, 34-36), including 233 

humans, mice, yeast, birds, and pigs. In addition to the human data, our method can be 234 

further applied to other species, regardless of having the PRDM9 gene. Although PRDM9 235 

is shown to be the major determinant of recombination hotspots in both humans and mice, 236 

the predicted binding motifs are different in the two species(4). We apply our method to the 237 

Mice data(11) and identify the most significant determinant motifs. In addition to the GT-238 

rich motifs, which are enriched in the SPO11-oligo hotspots and the usual mice PRDM9 239 

binding sites(11), surprisingly, we also identify an AC-rich motif (Fig. S9A). Although this 240 

motif has not been studied extensively in the mice-related literature, it is reported as a part 241 

of the binding motif for the PRDM99R zinc finger binding domain(11, 29). Unlike apes and 242 

mice, birds and yeast lack a PRDM9 gene, leading to different recombination hotspot 243 

patterns in these species(34-36). On the Yeast dataset(6), the poly-(A) motif is identified as 244 

the most significant determinant in hotspots (Fig. S9A), which is completely different from 245 

mice and humans. However, the result is consistent with the previous study, which 246 

demonstrates that Poly-(A) motif occurs more frequently in the hotspots(6). Moreover, the 247 

motifs enriched in the yeast promoters(37) are also predicted to be of vital importance to 248 

the recombination event (Fig. S9A), which supports the theory that, in the PRDM9-lacking 249 

species, hotspots are highly conserved due to the natural selection pressure(34).  250 

The recombination differs between males and females of the same species, including 251 

humans and mice(17, 38). The females show a higher overall recombination rate and more 252 

complex crossovers than the males(2, 12, 16), despite the elusive mechanisms behind the 253 

differences(2). Although most of the recombination hotspots (>88%) are shared between 254 

males and females, the strongest hotspots tend to be sex-specific(17). In our study, the most 255 

significant motifs detected from the Icelandic males are conserved PRMD9 binding motifs 256 

(Fig. S9B), which is consistent with the finding that the PRDM9-binding sites are frequently 257 

methylated at male-biased hotspots(17), although the motifs can be different in different 258 

species. On the other hand, the contributing determinant motifs of the Icelandic females are 259 

less conservative (enrichment factor: 8.76 ± 1.31) than the paternal ones (enrichment factor: 260 

15.31 ± 2.01). Also, in the female, the determinant motifs are much more diverse than 261 

those in males, which may result from the distinct methylation mechanism (unlike males, 262 

DNA methylation increases in the region ±75bp adjacent to the PRDM9-binding sites), 263 

more complex crossover, and higher evolution speed(1, 2, 17) (Fig. 3C, female rate: 264 

52.48 ± 67.29 𝑐𝑀/𝑚𝑏; male rate: 39.53 ± 40.63 𝑐𝑀/𝑚𝑏).  Although the data themselves 265 

may not be sufficient to illustrate the mechanism behind the sex biases in recombination, 266 

the identified and quantified determinants suggest that, in females, diverse factors, including 267 

PRDM9 and SPO11 (the rank 2 motifs), control the female-biased hotspots, while, in males, 268 

the hotspots tend to be PRDM9-directed.  269 

Recombination hotspot motif embedding for evolutionary determinants discovery 270 

We extend our method to identify and quantify the recombination hotspot determinants 271 

more intuitively and systematically. Instead of only listing the detected determinants and 272 

their enrichment factors, we learn the representation of the motifs in a 2D space, visualizing 273 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454133
http://creativecommons.org/licenses/by-nc-nd/4.0/


and clustering them in such a space. To avoid black-box modeling, we also visualize the 274 

physical meaning of the motifs with heatmaps (Fig. 6). Within the Icelandic dataset (Fig. 275 

6A), the standard deviation of the determinant motif embeddings in the maternal population 276 

is much larger than that in the paternal population (maternal: 0.0447 ± 1.9 ∗ 10−2, 𝑝 =277 

3.11 ∗ 10−6; paternal: 0.0355 ± 1.6 ∗ 10−2; Materials and Methods), which suggests that, 278 

in females, the recombination hotspot determinants are more diverse and less conservative 279 

than that in the males. This finding further supports our hypothesis that diverse factors 280 

contribute to the female-biased hotspots (Section 5).  281 

For all the visualizations of the motifs across different sexes (Fig. 6A), different 282 

populations (Fig. 6B), and different species (Fig. 6C), the motifs within the central area of 283 

the embedding space tend to have a smaller enrichment factor value, represented by the size 284 

of the point, than the outlier motifs. Because the enrichment factor value shows the 285 

importance of the determinant, investigating the outlier motifs may identify the evolutionary 286 

important motifs of the population and species. In the Icelandic population, within the 287 

central region of the embeddings, the motifs in both the maternal population and the paternal 288 

population are PRDM9-related motifs (Fig. 6E). However, regarding the outliner motifs, 289 

they are very different. For males, the motifs tend to be short and strong, while the motifs 290 

are long and diverse in the females. Similar to the Icelandic data, within the 1000 Genomes 291 

Project dataset, the enrichment factor differences between central motifs and the outliers 292 

across different populations share a similar pattern (Fig. 6B), where enrichment factors 293 

differ significantly between central motifs and outlier motifs across populations, especially 294 

in East Asians (AFR: 𝑝 = 2.85 ∗ 10−4 ; AMR : 𝑝 = 8.51 ∗ 10−2 ; EAS: 𝑝 = 1.12 ∗295 

10−5; 𝐸𝑈𝑅: 𝑝 = 1.16 ∗ 10−2; SAS ∶  𝑝 = 0.23 ). For the convenience of the study, we 296 

randomly select the most distinct outlier motifs in different populations across the 297 

embedding space and visualize them in Fig. 6D. Interestingly, the motifs enriched in the 298 

SPO11-oligo hotspots(11) show up in the East Asian population. Although the molecular 299 

studies are mainly performed on Mice(11), and researchers have not performed such studies 300 

on different human populations systematically, our method provides the first quantitative 301 

depiction of the recombination hotspot determinant motifs across diverse populations. 302 

We further extend our analysis to different species (Fig. 6C). A similar pattern 303 

appears. The central motifs, shared by different species, have smaller enrichment factors 304 

than the outlier motifs, which are likely to be species-specific (Icelandic human: 𝑝 = 1.57 ∗305 

10−25; Mice: 𝑝 = 2.2 ∗ 10−8; Yeast: 𝑝 = 7.4 ∗ 10−5). For example, the poly-(A) motifs 306 

are the most important ones for yeast, which does not have the PRDM9 gene(6). On the 307 

other hand, our method provides a new way to define the evolutionary distance between 308 

different species(39), using the embedding of the recombination hotspot determinants. By 309 

calculating the difference between two embedding distributions, we quantify the difference 310 

between two species via Maximum Mean Discrepancy(40) (MMD) (Materials and 311 

Methods). For example, using our method, the evolutionary distance between Human and 312 

Mice (0.0221, 𝑝 = 0.9774) is much smaller than that between Human and Yeast (0.3729, 313 

𝑝 = 8.5 ∗ 10−3).   314 

 315 

Discussion  316 

Recombination is one of the most important processes in miosis for sexually reproducing 317 

organisms, which can produce genetic diversity for natural selection. Despite its important 318 

role in evolution, people know little about the entire process and its molecular mechanism. 319 

Although a large amount of data have been accumulated from various giant projects, such 320 

as HapMap(28) (3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 321 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454133
http://creativecommons.org/licenses/by-nc-nd/4.0/


270 individuals), Sperm(13) (31,228 human gametes from 20 sperm donors), and 1000 322 

Genomes Project(18) (84.7 million SNPs of 2,504 individuals), seldom have researchers 323 

developed methods to analyze data from different studies and even different species.  324 

Here, we propose a new computational method, RHSNet, which enjoys the strength 325 

of deep learning(24), activation backpropagation(26), and signal processing(27), to identify 326 

and quantify the recombination hotspot determinants. Although our method is not designed 327 

specifically for recombination hotspot region prediction, it can outperform almost all the 328 

previous methods in this task across different studies, different populations, different sexes, 329 

and different species. More importantly, RHSNet can identify and quantify the determinants 330 

that contribute significantly to the recombination hotspot formation. In addition to 331 

quantifying the relation between PRDM9 binding motif(4, 8-10), histone modification(3, 332 

11), GC content(2, 12) and recombination hotspots, it reveals the contribution of different 333 

PRDM9 alleles in different populations. Further studies on different species, including 334 

PRDM9-lacking species, and different sexes suggest the generalization power and 335 

sensitivity of the proposed method. The cross-sex, cross-population, and cross-species 336 

studies show the potential of our method to identify the evolutionary determinants. 337 

Although RHSNet is purely data-driven and more work can be done to further improve it, 338 

including using the gene annotation related to the location information(41), chromatin 339 

accessibility information(42) as well as the conditional analysis(43), it is potentially helpful 340 

to assist researchers in illuminating the mechanisms underlying recombination and 341 

evolution.  342 

 343 

Materials and Methods 344 

Dataset construction 345 

In our study, we use datasets from a number of projects, including the Icelandic(2) dataset, 346 

the HapMap II(28) dataset, the Sperm(13) dataset, the 1000 Genomes Project(18) dataset, 347 

the Mice(11) dataset, and the Yeast(6) dataset.  348 

The Icelandic(2) dataset, provided by 1,476,140 crossovers from 56,321 paternal 349 

meiosis and 3,055,395 crossovers from 70,086 maternal meiosis, has a 642 bp resolution 350 

(655 bp for the paternal part) generated from Icelandic pedigrees on the GRCh38 human 351 

reference genome(44), from which we select 20,000 hotspots with an average 352 

recombination rate of 51.07 cM/Mb and 20,000 coldspots with an average recombination 353 

rate of 1.78 ∗ 𝑒−10 cM/Mb (resolution from 500 bp to 1000 bp) for cross-validation. Based 354 

on the fact that, in the sex-average map, the average length of those hotspots is relatively 355 

shorter (averaging 526 bps) than that of coldspots (averaging 3,071 bps), we sort the 356 

recombination rates of all the possible sequences and select the lowest 20,000 coldspots 357 

with a proper resolution to construct the negative samples.    358 

The HapMap II(28) dataset is segmented into hotspots (average rate 10.5 cM/Mb) 359 

and coldspots (average rate below 0.5 cM/Mb) regions based on a hidden Markov model 360 

with emission probabilities defined as 𝑝(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑟𝑎𝑡𝑒|ℎ𝑜𝑡)  and 361 

𝑝(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑟𝑎𝑡𝑒|𝑛𝑜𝑛ℎ𝑜𝑡) . Hotspots longer than 4kb are discarded for localized 362 

recombination events, and the matched set of coldspots are defined through a greedy 363 

searching method for a 300kb region with sequence having GC content matching. 364 

The Sperm(13) dataset is built with 31,228 sperm cells from 20 sperm donors, 365 

among which 813,122 crossovers from 787 aneuploid chromosomes are identified. The 366 

recombination rates vary in 20 sperm donors ranging from 22.2 to 28.1 crossovers per cell. 367 

A fine-scale genetic map is generated by us from those 813,122 crossovers events (Data 368 

and materials availability) by stepping along the genome at 500kb intervals, dividing the 369 
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number of crossovers that occurs up to each point and by the total number of cells. We 370 

further select 5,000 hotspots with an average recombination rate of 19.96 cM/Mb and 5,000 371 

coldspots with an average recombination rate of 1 ∗ 𝑒−20 cM/Mb for cross-validation. 372 

The Mice dataset(11) is constructed according to the SPO11-oligo maps from 373 

C57BL/6J. Soluble protein is subjected to two successive rounds of affinity purification 374 

with a monoclonal anti-mSPO11 antibody and protein A-agarose beads. Sampled hotspots 375 

are identified with 0.000377 RPM/bp, which is 50 times of the average reads per million 376 

(RPM) within the mappable GRCm38/mm10 genome. The selected hotspots are further 377 

cropped into 1000bp for deep learning purposes, resulting in 9,620 hotspot sequences. 378 

Similarly, the coldspot region is equally selected with 1 ∗ 10−7 times of the average reads 379 

per million (RPM) within the mappable GRCm38/mm10 genome region and cropped with 380 

the same length. 381 

In order to verify our method’s generalization ability on species lacking the PRDM9 382 

gene, we further construct Yeast(6)  (Saccharomyces cerevisiae) hotspots from 383 

nearly 52,000 markers in all the four viable spores derived from 51 meioses of an 384 

S288c/YJM789 hybrid strain. Pairs of genotype changes isolated from all other changes 385 

are called NCOs if they appear on the same spore, or COs if they appear on two spores. In 386 

total, 468 meiotic hotspots (averaging 842bp in length) that contain 92 COs and 74 NCO 387 

are cropped from the S288C Yeast reference genome. As S288C Yeast reference genome 388 

is much shorter than that of humans and mice, we define the corresponding recombination 389 

coldspots as the gap sequences between two recombination hotspots with at least 1000bp 390 

away from hotspots. 391 

We utilize the population-wise recombination maps generated from the 1000 392 

Genomes Dataset(18) to conduct the direct meiotic recombination hotspot prediction as 393 

well as downstream analysis. Fine-scale maps having an average resolution of 711 bp based 394 

on 26 diverse human populations are further merged into five super-populations: African 395 

(AFR), admixed American (AMR), East Asian (EAS), European (EUR), and South Asian 396 

(SAS). The merged five super-populations share a high Spearman correlation ranging from 397 

𝜌 =  0.986  to 𝜌 =  0.998  within each category. Therefore, we further map the 398 

recombination hotspot regions within each super-population category to the GRCh38 399 

reference genome, and generate corresponding hotspots for each population (AFR 50,049 400 

hotspots avg 27.46cM/ Mb; AMR 18,160 hotspots avg 27.32cM/Mb; EAS 27,030 hotspots 401 

avg 38.44cM/ Mb; EUR 31,283 hotspots avg 35.05cM/ Mb; SAS 32,593 hotspots avg 402 

33.92cM/ Mb). Similar to the Icelandic(2) dataset, we select the coldspot sequences from 403 

the lowest recombination rate regions of the recombination map (AFR 50,049 coldspots 404 

avg 0.0378cM/Mb; AMR 18,152 coldspots avg 0.039cM/Mb; EAS 27,020 coldspots avg 405 

0.094cM/Mb; EUR 31,273 coldspots avg 0.038cM/Mb; SAS 32,583 coldspots avg 406 

0.033cM/Mb). Statistical comparison between the generated hotspots and coldspots data 407 

can be found in Table S3. 408 

When targeting sex-specific recombination prediction, we use the ChIP-seq 409 

features as extra information for the proposed RHSNet. Following the previous research(2), 410 

we use histone modifications from ovary for the maternal map and testis for the paternal 411 

map. On the Icelandic(2) dataset, we define the hotspot ChIP-seq feature as the closest 412 

narrow peak next to the hotspot sequence found in six different kinds of histone 413 

modifications(45) (H3K4me1(31), H3K4me3, H3K27ac(32), H3K9me3, H3K36me3, 414 

H3K27me3). Similarly, we define the coldspot feature as the closest narrow peak next to 415 

the coldspot sequence. Specifically, the feature vector is set to zero when the actual distance 416 

exceeds 10kbp. The ovary histone modifications are downloaded from the ENCODE 417 

portal(46) with the following identifiers: ENCSR139TLA, ENCSR268JQE, 418 
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ENCSR113AFY, ENCSR659MYS, ENCSR956UFV, ENCSR037SNV. The testis 419 

histone modifications could be found by following identifiers: ENCSR611DJQ, 420 

ENCSR136ZQZ, ENCSR956VQB, ENCSR561MYM, ENCSR376JOC, 421 

ENCSR503QSX. 422 

 423 

Deep learning network architecture 424 

The deep learning network architecture consists of two independent feature extractors. The 425 

sequence feature extractor first encodes DNA sequences into one-hot matrices. To 426 

represent each nucleotide, we define the encoding as a vector of size 4, A as (1 0 0 0), T as 427 

(0 0 0 1), G as (0 0 1 0), and C as (0 1 0 0). Next, two convolution layers are introduced as 428 

a feature extractor to encode the one-hot matrix into a relatively shorter feature vector. 429 

Utilizing sequential neural networks known as Gated Recurrent Units (GRU) and multi-430 

head Attention mechanism, we take advantage of the combination of sequential model and 431 

attention model to capture the deep contextual information of the input sequence. 432 

The ChIP-seq feature extractor takes the sequence's nearest corresponding ChIP-433 

seq(47) information (including the peak value, score, and signal value from 6 different 434 

histone modifications: H3K4me1, H3K4me3, H3K27ac, H3K9me3, H3K36me3, and 435 

H3K27me3) as input. The ChIP-seq information is encoded as high-dimensional feature 436 

vectors and fed into the network. We apply fully connected layers with dropout at this part 437 

of the network to prevent over-fitting during training. Finally, high-dimensional features 438 

containing both sequences and their surrounding histone H3 protein information are passed 439 

to the final SoftMax layer, producing the final prediction. Detailed illustration of our 440 

prediction model can be referred to Fig. S2.  441 

 442 

Parameter settings and implementation details 443 

The baseline CNN has two plain convolution layers connected with the final SoftMax layer. 444 

The first 1D convolution layer is designed with a filter of length16 and a kernel size of 30 445 

with ReLU activation. The proposed RHSNet connects a Gated Recurrent Units (GRU) and 446 

a Multi-head attention layer after the 2-layer feature extractor. The number of neurons 447 

assigned in GRU is designed as 16. We use four multi-heads with the head size as 4 in the 448 

multi-head Attention mechanism. 449 

Stochastic gradient descent with the momentum parameter as 0.9 and dynamically 450 

updated weight decay is used to optimize the learning process. The batch size is selected to 451 

be 64. The initial learning rate is set to be 1 ∗ 𝑒−3. The dropout ratio is set to be 0.1 after 452 

the first and the second convolution layer to prevent over-fitting. 453 

 454 

Low-pass filter-based signal extraction from guided backpropagation 455 

The previous method, known as DeepLIFT26 (Deep Learning Important Features), 456 

successfully assigns contribution scores of input DNA sequences. By calculating the 457 

gradient of each activated neuron through guided backpropagation, contribution scores can 458 

be computed efficiently in a single backward pass based on the reference sequence with (A, 459 

T, C, G) distributed with probabilities as 0.3, 0.2, 0.2, and 0.3, respectively. With the 460 

reference sequence 𝑟1
0, 𝑟2

0, 𝑟2
0 … as input, the reference activation 𝑦0 could be computed as: 461 

𝑦0 = 𝑓(𝑟1
0, 𝑟2

0, 𝑟2
0 … ). (1)  462 
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The key idea of important score extraction is through guided backpropagation.  For each 463 

neuron 𝑦,  ∆𝑦+ and  ∆𝑦− are defined as having positive and negative component of ∆𝑦: 464 

∆𝑦 =  ∆𝑦+ + ∆𝑦−. (2) 465 

Now, given an input neuron 𝑥  and the target neuron 𝑡, there is a difference of ∆𝑡 from the 466 

reference neuron 𝑟. The multiplier 𝑚∆𝑥∆𝑡 could be defined as the contribution of ∆𝑥 to ∆𝑡 467 

divided by ∆𝑥: 468 

𝑚∆𝑥∆𝑡 =  
𝐶∆𝑥∆𝑡

∆𝑥
. (3) 469 

Also, given 𝐶∆𝑥𝑖∆𝑦𝑖
 along with 𝐶∆𝑦𝑖∆𝑡, we can show that the definition of 𝑚∆𝑥∆𝑡 according 470 

to the chain rule would satisfy summation-to-delta: 471 

∆𝑡 =  ∑ 𝐶∆𝑥∆𝑡
𝑖

. (4) 472 

Notably, using the chain rule in which the input layers have one-hot encoded sequence 473 

𝑠1, 𝑠2, … 𝑠𝑛 , hidden layers  𝑦1, 𝑦2, … 𝑦𝑛, and the target output 𝑡, based on equation (4), we 474 

can have: 475 

𝑚∆𝑠𝑖∆𝑡 = ∑ 𝑚∆𝑠𝑖∆𝑦𝑖

𝑗

𝑚∆𝑦𝑖∆𝑡 . (5) 476 

We can compute the multipliers for each input sequence 𝑠𝑖  efficiently via 477 

backpropagation. 478 

 479 

Inspired by DeepLIFT, a more advanced TF-MoDISco(48) introduced for 480 

transcription factor prediction was proposed. However, DeepLIFT and TF-MoDISco share 481 

a common disadvantage of having a strong assumption on the discovered motif length based 482 

on previously known probabilistic motif models.  Such a strong assumption is further 483 

enhanced when adjusting the sliding window size similar to the expected length of the core 484 

motif and its flanks, which can be unknown for innovative motif discovery. Finding longer 485 

motifs is crucial in the recombination hotspot prediction task because each PRDM9 zinc 486 

finger is 28 amino acids long and is usually decoded within an 84 bp repeating tandem(4). 487 

Also, the PRDM9c (ZF8–13) motifs are usually 21bp long, because they are accompanied 488 

by 5' (five prime) and 3' (three prime), making the traditional sliding-window-based method 489 

less efficient. 490 

Instead of simply providing a sliding window with a certain kind of size, which gives a 491 

strong assumption on the discovered motif length, RHSNet offers a general solution as a 492 

localization method for innovative motif discovery with variant lengths. In our motif 493 

extraction algorithm, we utilize low-pass filters with different kinds of factors and a peak 494 

detection algorithm, from which we could easily control the length range of the detected 495 

motifs by controlling the low-pass factor. 496 

The contribution scores generated from backpropagation are firstly transformed into one-497 

dimensional signals and fed into the low-pass filter. Opposite from high-pass filters, the 498 

low-pass filter allows low-frequency signals to pass: 499 

𝐻(𝑠) =  
1

𝑠
𝑊𝑛

+ 1
, 𝑊𝑛 = 2 ∗ 𝑓𝑠 . (6) 500 
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The order of the proposed low-pass filter is fixed as 8, and the frequency scalar is 501 

flexibly chosen from [0.1,0.2,0.4]. Therefore, when selecting frequency scalar as 0.4,  𝑊𝑛 =502 

0.4 = 2 ∗ 200/1000 , we have the Nyquist frequency as 𝑓𝑠 = 200Hz . Similarly, when 503 

selecting frequency scalar as 0.1,  𝑊𝑛 = 0.1 = 2 ∗ 50/1000 , we have the Nyquist 504 

frequency as 𝑓𝑠 = 50Hz. 505 

The low-pass filter provides a smooth form of signals by eliminating short-term 506 

fluctuations and retaining long-term development trends, in which longer motifs enriched 507 

by a relatively high-frequency signal are reserved.   By detecting each peak with its nearby 508 

valley, we could easily extract the motif in the middle. We choose 0.06 as the prominence 509 

parameter for the peaks. Also, the valleys are defined as the peaks of the reversed signal 510 

where the interval of each valley width is set to 1. 511 

 512 

Enrichment factor definition. 513 

The motif enrichment factor is defined by the ratio of the selected motif’s contribution score 514 

over the average contribution score of the entire input sequence through backpropagation. 515 

Different from the recombination rate, which is an absolute value, the enrichment factor is 516 

more of a relative index which indicates how strong the enriched motif signal is among the 517 

entire input sequence. That is, the larger the enrichment factor, the higher chance that such 518 

a cropped motif plays a more important role in the recombination events. 519 

 520 

ChIP-seq feature extraction and importance score board 521 

We quantify the distribution of three Chromatin Immunoprecipitation Sequencing (ChIP-522 

seq) features (Score, Signal Value, Peak Value) extracted from the peaks of signal 523 

enrichment based on six different kinds of histone modifications(45) (H3K4me1(31), 524 

H3K4me3, H3K27ac(32), H3K9me3, H3K36me3, H3K27me3), on different cell lines. 525 

Specifically, for maternal recombination map, we select the histone modifications from 526 

homo sapiens ovary tissue (female adults). For maternal recombination map, we select the 527 

histone modifications from homo sapiens testis tissue (male adults).  Score is an integer 528 

value ranging from 0 to 1000, representing the significant score of each peak. Signal Value 529 

measures the average enrichment for the related peak region. Peak Value is the point-source 530 

called for this peak. It is the 0-based offset from the chromosome starting point and is set to 531 

-1 if no point-source is called. We take the log mean feature values of each histone 532 

modification and choose the nearest conservative peaks of each hotspot/coldspot clip. 533 

Within each type of histone modification, p-values are obtained using the two-tailed 534 

Student’s t-test. The calculated t-statistics of H3K4m3-signalValue ( 8.03 ∗ 10−7  ), 535 

H3K4m3-peakValue (1.16 ∗ 10−9), and H3K36me3-peakValue (3.91 ∗ 10−2) show the 536 

significant statistical difference between hotspots and coldspots within 18 features. 537 

To further quantitively perceive the difference between the above 18 features and 538 

provide a more intuitive impression of their significance, we define the importance 539 

scorecard (Fig. 4E) not only as an index for measuring the usefulness of each feature, but 540 

also as an important index for measuring the quality and statistical significance of the 541 

feature’s contribution to the improvement of the final prediction. The score is calculated by 542 

backpropagating the activation through the entire network to the ChIP-seq feature extraction 543 

branch of the RHSNet deep learning model. The greater the contribution score, the higher 544 

likelihood that this feature, along with its histone modification, plays a critical role in the 545 

prediction process. 546 
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 547 

PRDM9-A/C allele identification 548 

All the PRDM9-A/C alleles are identified through rigorous multiple sequence alignment 549 

from both ground-truth hotspots and detected binding motifs. The major PRDM9-A allele: 550 

CCNCCNTNNCCNC and its reverse: GGNGGNANNGGNG, as well as PRDM9-C allele: 551 

CCGCNGTNNNCGT and its reverse: GGCGNCANNNGCA, are selected as the reference 552 

sequences. Each discovered motif would be conducted a pairwise sequence alignment with 553 

each allele using a dynamic programming algorithm. The selected motif would only be 554 

considered containing the major allele A when having the minimum alignment score of 8, 555 

which is chosen as the certainty of the 8 certain bases:  CC-CC-T--CC-C and GG-GG-A--556 

GG-G. The identification rule is also applied for the identification of the rare allele C. 557 

 558 

Motif embedding and outlier detection  559 

To intuitively visualize the discovered motif, we utilize DNABERT(49), which extracts the 560 

short- to long-term patterns of each enriched motif into a fixed-size embedding vector. The 561 

embedded vector is further fitted into t-distributed Stochastic Neighbor Embedding(50) (t-562 

SNE) to visualize the 2-dimensional embedding vector and investigate their divergence 563 

across different sexes, populations, and species. Each heatmap under Fig. 6A.B.C illustrates 564 

the physical meaning of each motif embedding cluster. Practically, we calculate the 565 

frequency of the 16 possible 2-mers within the [A, T, C, G] alphabets that appear in each 566 

population, sex and species, and visualize them with the saliency heatmap. 567 

The outliers within each cluster are defined by the Local Outlier Factor (LOF)(51). 568 

This algorithm is an unsupervised anomaly detection method that computes the local density 569 

deviation of a given data point with respect to its neighbors. It considers as outliers the 570 

samples that have a substantially lower density than their neighbors. During the outlier 571 

detection, we compute the locality based on the given k-nearest neighbors, whose distance 572 

is used to estimate the local density. By comparing the local density of a sample to the local 573 

densities of its 50 neighbors, we can identify samples that have a substantially lower density 574 

than their neighbors. These motifs are considered outlier motifs. 575 

Regarding calculating the divergence of the embedded vectors distributing within 2-576 

D space, we calculate the average distance of each embedded vector of selected 577 

species/sex/population to the central point of each embedding space. The maternal 578 

population has an average distance of 0.0447 (±1.9 ∗ 10−2), which is much larger and has 579 

grater dispersion than that of paternal crossovers: 0.0355 ± 1.6 ∗ 10−2. 580 

 581 

Maximum Mean Discrepancy (MMD) calculation 582 

As a kernel-based distance calculation metric, Maximum Mean Discrepancy (MMD) can 583 

accurately quantify the similarity and the distance between two vector distributions. When 584 

measuring the difference between two embedding distributions, because we need to measure 585 

the non-parametric distribution distance between the source and target data, namely, P and 586 

Q, we use MMD. The calculation is done by the following equation: 587 

𝑀𝑀𝐷(𝑃, 𝑄) =  ‖
1

𝑛
 ∑ ∅(𝑥𝑖) −

1

𝑚
∑ ∅(𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

‖

𝐻

2

. (7) 588 
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 589 

For example, when comparing the embedding distance between paternal motif 590 

vectors (P) and maternal motif vectors (Q), we map P and Q (Original 𝑋 space) from the 591 

original embedding space to another space H (Hilbert space) through the function ∅: 𝑋 →592 

𝐻. Then, we can calculate the mean difference between P and Q in the H space feature 593 

dimension. When utilizing MMD as the evaluation metric for calculating the distance 594 

between two distributions within the embedding space, we can determine whether the two 595 

distributions are similar. Quantitatively, the 𝑀𝑀𝐷(𝐻𝑢𝑚𝑎𝑛, 𝑀𝑜𝑢𝑠𝑒)  is 0.0221 ( 𝑝 =596 

0.9774), which is much smaller than 𝑀𝑀𝐷(𝐻𝑢𝑚𝑎𝑛, 𝑌𝑒𝑎𝑠𝑡)=0.3729 (𝑝 = 8.5 ∗ 10−3). 597 

 598 
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 878 

Figures and Tables 879 

 880 

 881 

Fig. 1. Overview of the proposed framework, RHSNet, along with the proposed filter-based 882 

motif extraction approach. (A): The deep learning algorithm of RHSNet accurately 883 

identifies recombination hotspots from different studies/species/populations/sexes, 884 

considering the ChIP-seq information. The model consists of two 1-D convolutional layers 885 

as the sequence feature extractor, a Gated Recurrent Unit (GRU) for capturing long-range 886 

information, and a multi-head attention layer for detecting interactions within the sequence. 887 

(B): RHSNet has a low-pass filter-based motif extractor that can quantify the contribution 888 

of hotspot-determinant motifs with flexible lengths (4bp-30bp). We propose such a method 889 

based on gradient back-propagation and signal processing.  (C): Comprehensive analysis 890 

across different studies/species/populations/sexes, based on RHSNet, provides more 891 

insights into the biological process and suggests the effectiveness of the proposed method. 892 
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 894 

Fig. 2.  Performance of RHSNet across different studies/sexes/species. Notice that, here, 895 

RHSNet refers to the Identification module of RHSNet in Fig. 1. (A) The performance 896 

of RHSNet on datasets from different studies and different populations. We used 5-fold 897 

cross-validation to evaluate the performance of different methods. The box plots show the 898 

F1-Score distributions from four trials of the 5-fold cross-validation. P-values calculated 899 

from the two-tailed Student’s t-test indicate the significance of the improvement. RHSNet-900 

chip refers to RHSNet accompanied with ChIP-seq information. We used several histone 901 

modifications from testis for the male dataset and ovary for the female dataset. (B) 902 

Robustness testing with Matthews correlation coefficients (MCC) on the Human Icelandic 903 

dataset of RHSNet over different input lengths ranging from 500bp to 1000bp. The number 904 

of hotspot and coldspot sequences within each interval of 25bp is showed as a histogram at 905 

the bottom. RHSNet's performance is robust across different resolutions. (C) On the Mice 906 

dataset, RHSNet also shows significant performance improvement on predicting the hotspot 907 

sequences in terms of the AUROC score. This result suggests the generalization ability of 908 

our method on different datasets, even across different species. 909 
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 911 

Fig. 3.  RHSNet quantifies the contribution of PRDM9 binding motifs in variant lengths 912 

across different studies/populations/sexes. (A) RHSNet can extract motifs of variant 913 

lengths with different low-pass filter factors. (B) Assembled motif detection results are 914 

shown using different low-pass filters ranging from 0.1 to 0.4. PRDM9 binding motifs and 915 

12-bp motif enriched in SPO11-oligo hotspots show high enrichment factors. (C) The 916 

logged recombination rates and the enrichment factor distribution across sexes within the 917 

detected motifs. The recombination rates are higher in the females, while the enrichment 918 

factors are higher in the males. The lower erosion rate of the hotspot motifs in males may 919 

make the event determinants more conservative. (D) GC content compared across different 920 

studies. We show the GC content among the entire genome, total hotspots, total cold spots, 921 

and RHSNet’s detected motifs. (E) GC content of recombination hotspots cropped in 922 

different resolutions (1kbp, 5kbp, 1000kbp) across different species. The GC content is 923 

usually higher in the hotspots and the determinant motifs compared to the nearby regions. 924 

925 
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 926 

Fig. 4. Histone modification affects recombination hotspots formulation. (A) The DSB 927 

formation machinery (scissors) is directed to PRDM9 binding sites with functional PRDM9 928 

protein. However, in the absence of PRDM9, DSB is directed to PRDM9-independent 929 

H3K4me3 marks. (B) On the maternal and paternal maps from the Icelandic dataset, we 930 

show the feature distribution comparison from recombination hotspots and coldspots over 931 

three histone modifications: H3K4me1, H3K4me3, and H3K36me3. (C) Heatmap of the 932 

eighteen feature correlations within six histone modifications across hotspots. (D) For the 933 

ChIP-seq feature of female adult’s ovary tissue, we show the 2D vector embedding of 934 

recombination hotspots and coldspots from the Principal Component Analysis (PCA) 935 

extracted from the last layer of CNN, RHSNet, and RHSNet-chip. The difference between 936 

hotspot features and coldspot features is more significant in the RHSNet-chip framework, 937 

demonstrating the importance of the ChIP-seq feature, although RHSNet alone is significant 938 
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enough. (E) The importance score calculated from the contribution back-propagation in the 939 

ChIP-seq feature extraction branch quantifies the contribution of each histone feature to 940 

hotspot formulation. The activation of the H3K4me3 features and the H3K36me3 features 941 

suggests a higher contribution to the recombination event.  942 
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 943 

Fig. 5.  Recombination rates and enrichment factors of PRDM9 alleles within different 944 

populations. (A) Recombination rates of ground truth hotspots at different PRDM9 binding 945 

motifs in five populations, normalized by log average recombination rate. The African 946 

population has significantly higher recombination rates in both alleles compared to the other 947 

populations. (B) Recombination rates of the RHSNet-identified PRDM9-A and PRDM9-C 948 

binding motifs. The recombination rate of PRDM9-A/C alleles in the African population is 949 

significantly higher than that in other populations. (C) Enrichment factors of the RHSNet-950 

identified PRDM9-A and PRDM9-C binding motifs. The enrichment factor of PRDM9-C 951 

binding motifs in the African population is corrected to be on the same level as the other 952 

populations due to the higher overall recombination rate in the population. (D) Paired 953 

relation between enrichment factors and recombination rates among all the detected 954 

PRDM9-A/C alleles across different populations. We show the recombination rate 955 

distribution of all the PRDM9-A/C alleles together and within each population in the upper 956 

row. As shown in the middle row, the relation between enrichment factors and 957 

recombination rates is more complex than linear correlation. In the bottom row, we illustrate 958 

the enrichment factor distribution of all the PRDM9-A/C alleles together and within each 959 

population.  960 
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 962 

Fig. 6. Motif embedding and outlier detection for recombination hotspot determinants 963 

discovery. (A) Visualization of the motif embeddings over different sexes in the Icelandic 964 

dataset. The size of the scatter reflects the enrichment factor of that motif. Each heatmap 965 

below the cluster suggests the 2-mer appearance frequency in the detected motifs. The 966 

representative central and outlier motifs are shown in (D) and (E).  (B) Visualization of the 967 

motif embeddings across different populations. The enrichment factors differ significantly 968 

between central motifs and outlier motifs across populations.  (C) Visualization of the motif 969 

embeddings across different species. Poly-(A) motifs are the most enriched outlier motifs 970 

in Yeast hotspots. Also, the Human/Mice outlier shows evolutionary discovery in motifs 971 

correlated with SPO11 oligos. 972 
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Evaluation Criteria 1018 

We use multiple evaluation methods to quantify the prediction results generated by different 1019 

prediction methods according to the number of TP (True Positives), FP (False Positives), FN (False 1020 

Negatives), and TN (True Negatives) samples.  1021 

 1022 

Accuracy (ACC) can judge the performance of our model, but there is a serious flaw: in the 1023 

case of imbalanced positive and negative samples, the category with a large proportion will often 1024 

become the most important factor affecting accuracy. Therefore, sometimes, it might not reflect the 1025 

overall prediction performance of the model. Accuracy is defined as follows: 1026 

 1027 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 . 1028 

 1029 

F1 score (F1-Score) is a weighted average of recall and precision, and is defined as follows: 1030 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 1031 

 1032 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 1033 

 1034 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 . 1035 

 1036 

Matthews correlation coefficient (MCC) is an index used in machine learning to measure the 1037 

binary classification performance of the predictor. It is generally considered to be a relatively 1038 

balanced evaluation metric, and it can be applied even when the number of positive and negative 1039 

classes is extremely imbalanced. MCC is essentially a coefficient describing the correlation 1040 

between the actual classification and the predicted classification. Its value range is [-1,1]. A value 1041 

of 1 indicates a perfect prediction of the subject, and a value of 0 indicates that the predicted result 1042 

is not as good as the random predicted result. -1 means that the predicted classification is exactly 1043 

the opposite of the actual classification. MCC is defined as: 1044 

 1045 

𝑀𝐶𝐶 =  
𝑇𝑃∗𝑇𝑁−𝑇𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
 . 1046 

ROC curve and the corresponding AUROC score are other evaluation indexes. The larger the 1047 

area under the curve (AUC), or the curve closer to the upper left corner (true positive rate=1, false-1048 

positive rate=0), the better the model’s prediction in the task. 1049 
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Imbalanced Testing 1051 

The recombination hotspots prediction is a problem that the number of positive samples 1052 

(hotspots) is much less than that of negative samples (coldspots), which makes it difficult for the 1053 

predictor to achieve high sensitivity. In average maps of the Icelandic2019(53) dataset, we found 1054 

130,172 hot spots and 755,041 cold spots with extreme diverse recombination rate 1055 

from1.7e10−17cm/Mb to 56,242.73cm/Mb. Those sequences with lengths longer than 1kb were 1056 

discarded during training, and the remaining hotspot samples are 17 times less than the cold spots 1057 

samples (see Table S1). 1058 

 1059 

As shown in Fig. S4, after the balanced training, we test our model throughout all the sequence 1060 

samples across the entire genome from the paternal and maternal maps at the Icelandic 2019(53) 1061 

dataset. The area under the receiver operating characteristic (AUROC) was calculated to evaluate 1062 

the algorithm’s performance under an imbalanced prediction task. The RHSNet approach achieves 1063 

the best AUCROC score of 0.689. 1064 

 1065 

 1066 

Recombination Rate Comparison 1067 

The illustration of the recombination rate distribution over the detected paternal and maternal 1068 

motifs (Fig. S14) shows that the maternal recombination rates are relatively higher than that in 1069 

paternal crossovers within each rate interval.  1070 

 1071 

Hit@20,50,100 Evaluation 1072 

Similar to the Recommendation System (RS) ranking evaluation index, the motif detection 1073 

method proposed in RHSNet that recommends prediction motifs could be evaluated similarly.  1074 

First, we calculate the enrichment factor for each detected motif through the contribution score 1075 

of that slot over the entire input sequence. In this way, each detected motif will get an enrichment 1076 

factor score. Furthermore, we sort these scores in descending order so that the motifs with the 1077 

highest enrichment factor would be ranked in the front. 1078 

 1079 

According to the above ranking function, we can count whether the PRDM9-A/C allele exists 1080 

for each detected motif is in the top 20 of the sequence, and if so, we add one count to Hit@20. In 1081 

the end, the top 20 number/total is Hit@20. Similarly, Hit@50 and Hit@100 are the top 50/100 1082 

detected PRDM9-A/C alleles over the total number of motifs. Furthermore, the value of Hit@20 1083 

may exceed 20 because the detected motif is usually 21bp long, and it might contain more than one 1084 

12-bp motifs in one sequence. 1085 

 1086 

Intuitively speaking, the key factor of predicting an input sequence as the recombination 1087 

hotspot will give much credit to the PRDM9-A/C allele. As showed in Table S6, the PRDM9-A 1088 

allele is ranked pretty high in Hit@10/20/100 evaluation, demonstrating that RHSNet could 1089 

precisely identify the key factor of the recombination hotspot determinant. Also, the number of the 1090 

RHSNet-detected PRDM9-A allele is approximately nine times larger than that of the PRDM9-C 1091 

allele. Such a result is consistent with previous studies that the PRDM9-A motif plays a role in 1092 

approximately 40% of hotspots and is proposed to be involved in initiation specification or other 1093 

aspects of recombination activity. 1094 
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 1096 

 1097 

  1098 
Fig. S1. Recombination rate distribution over chromosome 13. 1099 

The recombination rate distribution over chromosome 13 from the Icelandic dataset. The resolution 1100 

is set as 100kbp. 1101 

 1102 
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 1104 
Fig. S2. Deep Learning network architecture of RHSNet-chip. 1105 

The detailed identification model of our proposed RHSNet-chip framework. The input sequence 1106 

would first go through two 1-D convolutional layers as the sequence feature extractor. Then it will 1107 

go through a Gated Recurrent Unit (GRU) for capturing long-range information, and a multi-head 1108 

attention layer for detecting interactions within the sequence. In parallel, the ChIP-seq information 1109 

would go through a fully connected network. Finally, the sequence feature and the ChIP-seq feature 1110 

would be merged and give out the final prediction via the SoftMax activation. 1111 

 1112 
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 1114 

 1115 
Fig. S3. Detailed data statistical performance of RHSNet across different studies and sexes. 1116 

(A) Boxplot of accuracy (Acc) distribution that distinguishes RHSNet from Baseline CNN and 1117 

Equivariant CNN(52) in multiple trials of 5-fold cross-validation experiments. (B) Boxplot of 1118 

Matthews correlation coefficient (MCC) distribution that distinguishes RHSNet from Baseline 1119 

CNN and Equivariant CNN in multiple trials of 5-fold cross-validation experiments. 1120 

 1121 
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 1123 

 1124 
Fig. S4. Imbalanced test result on Icelandic dataset. 1125 

In the Icelandic 2019 dataset, we show the ROC curve and the AUROC score of 4 prediction 1126 

methods during imbalanced testing. RHSNet achieves the best prediction performance with an 1127 

AUROC score of 0.688. 1128 

 1129 
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 1132 
Fig. S5. Head-to-head comparison against Equivariant CNN(52) on the Yeast dataset. 1133 

In the Icelandic 2019 dataset, we show the ROC curve and the AUROC score of 4 prediction 1134 

methods during imbalanced testing. RHSNet achieves the best prediction performance with an 1135 

AUROC score of 0.688. 1136 
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 1139 
 1140 

Fig. S6. Supplementary GC content results across different species and sexes. 1141 

(A) Statistical comparison of GC content across different species. (B) Statistical comparison of GC content across 1142 

different sexes. The result is calculated from Icelandic(53) Human genetic maps. 1143 
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 1146 
 1147 

Fig. S7. Histone modification feature distribution comparison on ovary tissue between 1148 

hotspots and coldspots on maternal recombination map. 1149 

The normalized log mean value comparing the different distributions between hotspots and 1150 

coldspots from the ChIP-seq features (signal Value, peak Value, Score) extracted from the ovary 1151 

and testis tissues of Homo sapiens female and male adults. Here, we show the comparison over 1152 

three different histone modifications: H3K27ac, H3K27me3, and H3K9me3. 1153 

 1154 
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1158 

1159 

1160 

1161 

 1162 
 1163 

Fig. S8. Recombination rate distribution over 22 regular chromosomes across populations. 1164 

Across five different populations from the 1000 Genome Project(18), we draw the recombination 1165 

rate distribution of PRDM9-A/C alleles over 22 regular chromosomes on the ground truth genetic 1166 

maps. 1167 
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 1170 
Fig. S9. The most important motifs detected in different species and sexes. 1171 

(A)The top 3 detected motifs from the Mouse(11) and Yeast(6) datasets. (B)The top 3 detected 1172 

motifs from the paternal and maternal genetic maps, respectively. 1173 
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 1176 
Fig. S10. Recombination rate comparison between paternal and maternal motifs. 1177 

Statistical comparison of the recombination rate between the detected paternal and maternal motifs. 1178 
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 1182 

Fig. S11. Detailed motif embedding results across species. 1183 

Embedding vectors in 2D space across different species. The central region is bounded by a red 1184 

bounding box, and the outliers are defined by comparing the local density of a sample to the local 1185 

densities of its 50 neighbors. The top 5 ranked motifs are visualized for both central and outlier 1186 

motifs. 1187 
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 1191 

Fig. S12. Detailed motif embedding results across sexes. 1192 

Embedding vectors in 2D space across different sexes. The central region is bounded by a red 1193 

bounding box, and the outliers are defined by comparing the local density of a sample to the local 1194 

densities of its 50 neighbors. The top 5 ranked motifs are also visualized for both central and outlier 1195 

motifs. 1196 
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 1198 
Fig. S13. 2-mer heatmap visualization of the entire genome. 1199 

Heatmaps of 2-mer distributions over the entire genome. Each grid represents the 2-mer appearance 1200 

frequency (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT) across 1201 

GRCh38 human reference genome, GRCm38/mm10 reference genome, and S288C Yeast reference 1202 

genome. 1203 
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 1207 

Fig. S14. Linearly regressed embedding results across populations. 1208 

The embedding results with regression models for five different populations. 1209 
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 1212 

  1213 
Fig. S15. Embedding results across populations. 1214 

The overall embedding results within the same 2D space for five different populations. 1215 
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 5-fold Cross-validation Imbalanced Testing 

 Hotspots Coldspots Hotspots Coldspots 

Icelandic 

2019(53) 

20,000 20,000 5,467 95,733 

 
51.07cM/Mb 1.78e10-10 

cM/Mb 

43.18cM/Mb 0.07 cM/Mb 

HapMap II 

2008(54) 

17,552 

10.5cM/Mb 

17,547 

0.5cM/Mb 

—— —— 

Sperm 2020(13) 
5,000 

19.96cM/Mb 

5,000 

1e10-20 cM/Mb 

—— —— 

 1219 

Table S1. Statistics of recombination hotspot dataset across different studies. 1220 

Statistical comparison of our hotspots/coldspots construction across different studies on the human 1221 

genome, with an imbalanced testing dataset on Icelandic 2019 dataset. The average recombination 1222 

rate of each study is attached under each row. 1223 
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 Hotspots Coldspots 

Icelandic Paternal     15,000 15,000 

 44.13cM/Mb 1.2e10-14cM/Mb 

Icelandic Maternal     20,000 

48.28cM/Mb 

20,000 

1.8e10-11cM/Mb 

   

Mouse(11) 9,620 

 

9,620 

 

Yeast 468 

 

468 

 

 1226 

Table S2. Statistics of recombination hotspot dataset across different species and sexes. 1227 

Statistical comparison of dataset construction across different sexes and different species. The 1228 

average recombination rate of each study is attached under each row. 1229 
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 1231 

 1232 

Population Code Population Hotspots Coldspots 

AFR African 
50,049 

27.45cM/Mb 

50,035 

0.0378cM/Mb 

AMR Admixed American 
18,160 

27.32cM/Mb 

18,152 

0.0390cM/Mb 

EAS East Asian 
27,030 

38.44cM/Mb 

27.020 

0.094cM/Mb 

EUR European 
31,283 

35.50cM/Mb 

81,273 

0.0380cM/Mb 

SAS South Asian 
32,593 

33.91cM/Mb 

32,583 

0.0383cM/Mb 

 1233 

Table S3. Statistics of recombination hotspot dataset across different populations. 1234 

Statistical comparison of the 1000 Genome(18) dataset construction across five populations with 1235 

corresponding recombination rate over each population. 1236 
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Data Method F1 Score % Accuracy % MCC % 

Icelandic(53) 

RHSNet 63.61 (±1.94) 66.47 (±0.62) 33.45 (±1.41) 

Equivariant CNN(52) 62.66 (±2.09) 65.93 (±0.51) 32.54 (±1.35) 

CNN 60.30 (±2.51) 62.96 (±0.99) 26.29 (±2.09) 

Paternal Map ♂ 

Icelandic(53) 

RHSNet-chip 64.49 (±1.85) 66.23 (±0.87) 32.71 (±1.83) 

RHSNet 63.17 (±1.58) 66.11 (±0.72) 32.70 (±1.84) 

Equivariant CNN(52) 63.08 (±1.58) 65.79 (±0.92) 31.99 (±2.01) 

CNN 60.31 (±2.62) 61.80 (±1.57) 23.80 (±3.18) 

Maternal Map ♀ 

Icelandic(53) 

RHSNet-chip 64.05 (±2.06) 65.57 (±0.78) 31.56 (±1.49) 

RHSNet 63.17 (±2.11) 65.47 (±0.75) 31.34 (±1.48) 

Equivariant CNN(52) 61.99 (±2.46) 64.74 (±0.66) 29.98 (±1.42) 

CNN 60.55 (±1.80) 62.35 (±0.98) 24.95 (±2.11) 

HapMap II(54) 

RHSNet 61.49 (±1.72) 64.02 (±0.44) 29.39 (±1.08) 

Equivariant CNN(52) 60.07 (±2.09) 63.81 (±0.64) 28.25 (±1.54) 

CNN 57.89 (±2.68) 60.28 (±1.37) 20.84 (±2.88) 

Sperm(54) 

RHSNet 68.92 (±3.51) 67.95 (±1.55) 36.55 (±3.0) 

Equivariant CNN(52) 67.87 (±2.41) 67.15 (±0.93) 34.62 (±1.71) 

CNN 68.33 (±2.43) 66.32 (±1.12) 33.21 (±2.43) 

Mouse(11) 

RHSNet 87.31 (±0.78) 86.32 (±0.72) 73.59 (±1.54) 

Equivariant CNN(52) 73.93 (±4.48) 75.41 (±3.32) 51.32 (±6.52) 

CNN 76.77 (±1.71) 76.25 (±0.94) 52.07 (±1.94) 

 1239 

Table S4. Detailed overall classification performance statistics on different datasets. 1240 

Detailed classification performance of the proposed RHSNet-chip and RHSNet, compared with the 1241 

baseline CNN model and the existing Equivariant CNN(52). RHSNet shows outstanding prediction 1242 

performance on multiple benchmark datasets: Icelandic(53), HapMap II(54), Sperm(13), and 1243 

Mouse(11), which are across different studies, sexes, and species. 1244 
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Method lambda weight Overall Accuracy% 

RHSNet -- -- 64.02 

Equivariant CNN -- -- 63.55 

Baseline -- -- 60.28 

PseAAC + SVM 3 0.05 54.24 

PseAAC + SVM 5 0.05 53.96 

PseAAC + SVM 10 0.05 54.61 

PseAAC + SVM 20 0.05 54.92 

 1245 

Table S5. Comparison of RHSNet against shallow learning methods. 1246 

Statistical results on the HapMap II(54) dataset, comparing the proposed RHSNet with another 1247 

bassline method: PseAAC(55) + Support Vector Machine (SVM(56)) classifier. Multiple 1248 

experiments with different sets of parameter lambda for pseudo-feature extraction are conducted. 1249 

The deep learning-based methods show a significant edge over the SVM-based classifier. 1250 
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Study PRDM9 allele hit@20 hit@50 hit@100 

Icelandic 

PRDM9-A 9 35 83 

PRDM9-C 0 6 10 

HapMap II 

PRDM9-A 5 16 49 

PRDM9-C 3 7 18 

Sperm 

PRDM9-A 19 35 69 

PRDM9-C 1 5 6 

 1253 

Table S6. PRDM9 alleles identification across different studies. 1254 

The hit@20/50/100 results of the RHSNet’s identification across different studies. 1255 

 1256 
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Population PRDM9 allele hit@20 hit@50 hit@100 

African 

PRDM9-A 20 58 124 

PRDM9-C 0 0 8 

American 

PRDM9-A 19 25 44 

PRDM9-C 0 4 12 

East Asian 

PRDM9-A 0 2 7 

PRDM9-C 0 2 3 

European 

PRDM9-A 14 24 48 

PRDM9-C 0 3 4 

South Asian 

PRDM9-A 30 71 90 

PRDM9-C 0 2 2 

 1260 

Table S7. PRDM9 alleles identification across different populations. 1261 

The hit@20/50/100 results of the RHSNet’s identification across different populations. 1262 
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