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Abstract 36 

 37 
Variable preferences for different foods are among the main determinants of 38 

their intake and are influenced by many factors, including genetics. Despite 39 

considerable twins’ heritability, studies aimed at uncovering food-liking 40 

genetics have focused mostly on taste receptors. Here, we present the first 41 

results of a large-scale genome-wide association study of food liking 42 

conducted on 161,625 participants from UK Biobank. Liking was assessed 43 

over 139 specific foods using a 9-point hedonic scale. After performing 44 

GWAS, we used genetic correlations coupled with structural equation 45 

modelling to create a multi-level hierarchical map of food liking. We identified 46 

three main dimensions: high caloric foods defined as “Highly palatable”, 47 

strong-tasting foods ranging from alcohol to pungent vegetables, defined as 48 

“Learned” and finally “Low caloric” foods such as fruit and vegetables. The 49 

“Highly palatable” dimension was genetically uncorrelated from the other 50 

two, suggesting that two independent processes underlie liking high reward 51 

foods and the Learned/Low caloric ones. Genetic correlation analysis with 52 

the corresponding food consumption traits revealed a high correlation, while 53 

liking showed twice the heritability compared to consumption. For example, 54 

fresh fruit liking and consumption showed a genetic correlation of 0.7 with 55 

heritabilities of 0.1 and 0.05, respectively. GWAS analysis identified 1401 56 
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significant food-liking associations located in 173 genomic loci, with only 11 57 

near taste or olfactory receptors. Genetic correlation with morphological and 58 

functional brain data (33,224 UKB participants) uncovers associations of the 59 

three food-liking dimensions with non-overlapping, distinct brain areas and 60 

networks, suggestive of separate neural mechanisms underlying the liking 61 

dimensions. In conclusion, we created a comprehensive and data-driven 62 

map of the genetic determinants and associated neurophysiological factors 63 

of food liking beyond taste receptor genes. 64 

  65 
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Introduction 76 

 77 

Food consumption is one of the most important factors influencing our 78 

health and contributes to a large amount of excess mortality in the world 1. 79 

With the near limitless availability of food in the Western world due to mass 80 

distribution, there has been a shift in factors driving dietary behaviour from 81 

merely consuming the food that is available to one of choice. For this 82 

reason, in parallel to understanding the effect of food consumption on 83 

health, there has been an increasing interest in understanding the drivers 84 

behind people’s choices in order to direct them toward being more 85 

nutritious and thus reduce the burden of various diseases. Food choice is a 86 

complex process which involves many different factors such as personal 87 

preferences, health status, ethical beliefs and context. Rather than 88 

measures of preference (or choice), liking of foods reflects the individual 89 

hedonic response to foods2  and is closely related to biology3–5. Thus, 90 

understanding food liking may be the first critical step in designing better, 91 

more targeted dietary interventions and more acceptable nutritious foods. 92 

 93 

Food liking is a complex trait clearly influenced by biology, psychology6, the 94 

surrounding environment7, branding8, culture9 and genetic inheritance10. In 95 
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particular, twin studies have shown that food preferences are moderately 96 

heritable traits, with around 50% of their variance in children being 97 

explained by genetic factors plus mostly shared environmental effects11,12. 98 

In adults, while heritability remains stable, the shared environmental 99 

component disappears in favour of the non-shared one (eg personal 100 

experiences)13–16  101 

 Although several recent GWAS have looked at the genetic variants 102 

associated with food consumption17–19, when it comes to liking attempts to 103 

identify the genetic factors underlying these food-liking traits have focused 104 

mostly on candidate gene studies20 (PMID: 22888812 105 

) (e.g., genes encoding taste receptors such as TAS2R43 and coffee 106 

liking21), with mixed results22. More recently, genome-wide approaches 107 

have been used to identify several genes related to the liking of different 108 

foods in an untargeted manner. For example, genetic variants have now 109 

been identified as being associated with the liking of sweet foods23  or more 110 

common foods24 such as cilantro/coriander25. However, these studies have 111 

focused either on specific sensations/tastes or tend to be small in sample 112 

size and are so underpowered to detect the likely modest effect sizes of 113 

common genetic variation on more specific food-liking traits.  114 

 115 
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Here, we present the results of a genome-wide association study (GWAS) 116 

for detailed food- and beverage-liking traits in more than 150,000 117 

participants from the UK Biobank study, with replication in up to 26,154 118 

individuals across 11 independent cohorts. Furthermore, we used genetic 119 

correlations combined with genomic structural equation modelling to create 120 

a multi-level map of the relationships between different food preferences, 121 

highlighting three main domains that we define as “Highly palatable”, “low 122 

caloric” and “learned” foods. We show that these dimensions are 123 

genetically correlated to distinct brain areas, behavioural, socio-economic, 124 

anthropometric, and biochemical traits which are expected to correlate with 125 

these food-liking factors, indirectly validating the model. Finally, we unravel 126 

the pleiotropic effects of many of the identified genetic variants, mapping 127 

them to the food-liking traits they influence directly.  128 

 129 

Methods 130 

 131 

Study populations 132 

UK Biobank 133 

Analyses were conducted on data collected in the UK Biobank study under 134 

project 19655. UK Biobank recruited more than 500,000 people aged 37 to 135 
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73 years from the United Kingdom between 2006 2010. The study, 136 

participants, and quality control have been described previously26. All 137 

subjects gave written informed consent. UK Biobank was approved by the 138 

North West Multi-Centre Research Ethics Committee (MREC) and in 139 

Scotland, UK Biobank was approved by the Community Health Index 140 

Advisory Group (CHIAG). We included only subjects who completed the 141 

food liking questionnaire and were of European descent. Full details of the 142 

genetic information, food-liking phenotypes are presented below. 143 

Genotyping was conducted using the UK Biobank or the UK BiLEVE Axiom 144 

Arrays. (Affymetrix, Santa Clara, CA, USA). Further details about 145 

imputation, principal components analysis, and QC procedures can be 146 

found elsewhere 147 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/genotyping_qc.pdf). 148 

 149 

Food-liking phenotypes 150 

Food-liking traits were collected through an online questionnaire comprising 151 

152 items, including both foods and non-food items, which was 152 

administered in 2019 to all UK Biobank participants who had agreed to be 153 

recontacted by the study. The questionnaire is an extension of the one 154 

previously used in Pallister et al. 201513 and Vink et al. 202015. Given that 155 
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the questionnaire was administered online to participants pictures were 156 

removed, and we used a 9-point Hedonic scale27, where 1 corresponds to 157 

“Extremely dislike” and 9 to “Extremely like”. Other options also included 158 

“Have never tried it” and “Prefer not to answer”. Details of the questionnaire 159 

can be found at 160 

(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/foodpref.pdf).  Of 161 

the 152 items, only the 139 pertaining to food and drink were retained for 162 

this specific study, while those which referred to habits such as physical 163 

activity were not included. Coffee- and tea-liking were measured asking 164 

both with and without sugar, we thus defined two additional measures for 165 

each: the first was the maximum score given to coffee and tea (coffee max 166 

and tea max) to reflect liking for the drink in the preferred way; the other 167 

was instead estimated as the difference between the sweetened vs the 168 

unsweetened drink to reflect polarization in liking, so higher values meant a 169 

higher liking for the sweetened drink while negative numbers reflected a 170 

stronger liking for the unsweetened drink. 171 

A full list of the food-liking traits used in the study, mean number of 172 

participants and standard deviation of responses can be found in 173 

Supplementary Table 1.  174 

 175 
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Statistical analyses 176 

 177 

GWAS  178 

Genome-wide association analysis was performed for each of the 144 179 

food-liking traits using the raw reported score rescaled so that values would 180 

range between 0 and 1. After regressing each food liking trait with age, sex 181 

and the first 10 genetic principal components, array type and batch, we 182 

accounted for genetic relatedness between the participants using 183 

GRAMMAR+ residuals28 as estimated in fastGWA29. Finally, GWAS was 184 

performed using regscan30 assuming an additive model on all SNPs with 185 

MAF > 0.001. Given the high number of food-liking traits analysed and the 186 

high correlation between them, to estimate study-wide significance, we first 187 

estimated the minimum number of independent components which 188 

accounted for at least 95% of the variance over all the traits. This was 189 

achieved by estimating the eigen decomposition of the genetic correlation 190 

matrix between all the studied food liking questionnaire items. We 191 

estimated that 34 components are sufficient to explain >95% of genetic 192 

variance and we thus considered a p-value of p<1.47 x 10-9 (5 x 10-8 / 34) 193 

as the study-wide significant threshold. Given that many loci showed 194 

association with multiple traits, we also considered all associations that 195 
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reached a conventional genome-wide significance threshold (p<5x10-8) if 196 

the SNPs were in the same genomic locus as a study-wide significant one.  197 

 198 

Clustering of food-liking items, hierarchical model construction.  199 

To describe the interrelationships between the food-liking questionnaire 200 

items we used hierarchical factor analysis where multiple steps of factor 201 

analysis are performed. In our case we first estimated the pairwise genetic 202 

correlations between all pairs of the original food-liking items from the 203 

questionnaire using the LD-score regression (ldsc) software31. We then 204 

performed hierarchical clustering using Ward’s D2 method, as implemented 205 

in the hclust function of R. We then visually defined a first set of groups that 206 

showed a high level of within-group correlation across the individual food-207 

liking items. We then estimated a first set of factors, one for each defined 208 

group of items. Validity of each of these models were estimated using 209 

GenomicSEM R package32 and looking at goodness of fit metrics, 210 

specifically comparative fit index (CFI) >0.9 and a Standardized Root Mean 211 

Square Residual (SRMR) <0.1. If the model did not have a good fit, we 212 

checked whether this could be due to single items and they were removed 213 

accordingly. Once the first level of factors was defined, we estimated the 214 

effect of each SNP on the factor variable, obtaining for each factor 215 
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complete GWAS summary statistics. We then estimated genetic 216 

correlations between the resulting factors, if any two factors exhibited a 217 

genetic correlation larger than 0.9, the items of the two groups were 218 

merged together and a new overall factor was estimated. The factors 219 

GWAS then become the starting point for building a higher order of factors. 220 

This procedure was repeated until we ended up with a hierarchical 221 

structure composed of only 4 high order factors and up to 4 levels. To 222 

make the results more readable we assigned to each of the factors a label 223 

to better interpret what it is capturing (e.g. Meat for the factor derived from 224 

all the meat items), however to keep the difference between observed and 225 

derived factor traits, we have added an “F” before the label (e.g. F-Meat) 226 

 227 

Estimation of the effect of each SNP with each factor. 228 

To estimate the effect of each SNP on each of the latent variables or 229 

factors, we first used GemonicSEM to estimate the loadings of each 230 

observed variable onto the latent one. We then applied the method 231 

described in Tsepilov et al 202033. Briefly the effect of each SNP on each 232 

factor is estimated as the weighted linear combination of the effect of the 233 

SNP on each index variable, where the weights are represented by the 234 

loadings of each item on the latent variable. This is analogous to using the 235 
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usergwas function in GenomicSEM, but leads to a large reduction in 236 

computing time.  237 

 238 

Comparisons between food liking and food consumption traits. 239 

In order to understand how our food-liking measures were related to diet, 240 

we performed genetic correlation analysis between the GWAS of the food 241 

frequency questionnaire and the alcohol consumption data, available 242 

through the Pan UKBB  project website 243 

(https://pan.ukbb.broadinstitute.org/). We also compared heritability (h2) 244 

estimated using LD-score regression. Heritability comparison and genetic 245 

correlations analysis was limited to those traits for which either the exact 246 

same item was present in both the food frequency questionnaire and the 247 

food liking questionnaire (e.g. white wine) or items with a corresponding 248 

and similar item between both questionnaires (e.g. Cheese). 249 

 250 

Genetic correlations with other complex traits. 251 

Genetic correlations with other complex traits for the three top order traits 252 

was performed using the ldhub web portal 253 

(http://ldsc.broadinstitute.org/ldhub/). Given the high number of correlations 254 

estimated, we selected a set of 31 traits representative of the socio-255 
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economic, anthropometric, blood biochemistry and health-related behaviour 256 

traits, to summarise the results.  257 

 258 

Locus definition and colocalisation analysis 259 

To define the boundaries of each locus, we first selected all SNPs with p-260 

value <1x10-5 and then estimated the distance between each consecutive 261 

SNP located on the same chromosome. Two consecutive SNPs were 262 

identified as belonging to different loci if they were more than 250 kb apart. 263 

This approach allows locus identification based on peak shape rather than 264 

a fixed distance from a sentinel SNP.  A locus was then considered 265 

“significant” if it contained at least one SNP with p-value below 1.47x10-9. 266 

Loci which showed overlapping boundaries were merged. To finally test if 267 

the underlying causal SNPs between the merged loci were the same or 268 

were just close to each other in the genome, we utilised the HyPrColoc 269 

method34. Briefly, HyPrColoc  tests if a group of traits (e.g., food liking 270 

traits) colocalise and returns the probability of each SNP in the locus being 271 

causal. Moreover, it returns a separate overall regional colocalisation 272 

probability. We thus divided the positional loci into sub-loci based on the 273 

results of this analysis and then used the SNP with the highest probability 274 

of being causal for each cluster as sentinel SNP.  275 
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Meta-analysis and replication 276 

Replication of the GWAS for the questionnaire items was conducted using 277 

up to 26,154 samples coming from 11 different cohorts mostly of European 278 

ancestries: ALSPAC, INGI-CARL, INGI-VB , INGI-FVG, CROATIA-Korcula, 279 

NTR , Silk Road, the TWINS UK cohort, CROATIA-Vis and VIKING. Details 280 

of each cohort can be found in Supplementary Table 2 281 

Given that each cohort used a related but different questionnaire meta-282 

analysis was performed only on the overlapping food liking traits for which 283 

at least 10,000 samples were available. 284 

Given that different cohorts have used different scales we have rescaled 285 

the results so that they would reflect a scale going from 0 to 1.  Prior meta-286 

analysis QC on the summary stats was performed using EasyQC v 28.335.  287 

All traits were meta-analysed using inverse variance weighting conducted 288 

using METAL v 2018-08-2836. 289 

Given that only a limited number of traits was available for at least ten 290 

thousand samples it was possible to attempt replication of only 235 SNP-291 

trait associations. 292 

 293 

 294 
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Gene prioritisation 295 

To define the gene that was most likely to be responsible for the observed 296 

association at each locus, we proceeded with custom prioritisation 297 

according to the following criteria. We first ran haploR v.4.0.237 using r2=0.8 298 

as the threshold using the sentinel SNP in each sub-locus. If a SNP was 299 

not available within the HaploReg resource, we used the most likely 300 

available one. Then, genes were prioritised if the locus met one of the 301 

following conditions (in order of importance): 302 

1)   The sentinel SNP is itself or is in strong LD (r2>0.8) with a non-303 

synonymous SNP in the gene; 304 

2)   The sentinel SNP is itself or is in strong LD (r2>0.8) with a 305 

coding SNP in the gene (synonymous or in the untranslated 306 

region of the gene); 307 

3)   The top SNP is intronic or is in complete LD with an intronic 308 

SNP in the gene; 309 

4)   The top SNP is in strong LD (r2>0.8) with an intronic SNP in 310 

the gene; 311 

5)   The closest gene. 312 

 313 
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Estimating the direct effect of each SNP on specific food-liking and 314 

latent factor traits. 315 

One of the aims of this study was to understand which SNPs influence 316 

different food-liking traits and if these associations were mediated through 317 

some higher order latent factor or if it was directly influencing the food trait 318 

of interest. For example, if we consider alcoholic beverages, we can 319 

imagine that some SNPs may influence liking of lower order food traits 320 

such as beer or wine through overall liking of alcohol, or directly on beer-321 

liking or both. We thus aimed at untangling the direct effect of the SNPs on 322 

each food-liking and latent factor trait, from those mediated through other 323 

connected traits.  324 

 325 

To do this, we used GenomicSEM, which allows fitting the effect of each 326 

SNP onto multiple traits at the same time, while considering their 327 

relationships. The limitation, however, is that it is not possible to fit the 328 

effect of the SNP on all observed variables and the latent variable at the 329 

same time, given that the number of observed SNP estimates is less than 330 

the parameters we need to estimate.   331 

Therefore, we developed a strategy that enabled us to get all the required 332 

estimates. To illustrate this strategy, let’s imagine we have 3 correlated 333 
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food-liking traits (T1-T3), for which a SNP effect is available and where the 334 

common variance can be explained by a latent variable L1 (Fig 1 Panel (A-335 

1)). The first step of our analysis was to estimate the effect of the SNP on 336 

the latent variable L1 (Fig 1 Panel (A-2)); to fit the effect of the SNP on all 4 337 

traits at once to estimate all 4 parameters, we need to provide at least the 338 

same number of observed estimates. However, only 3 are available. To 339 

solve this, we created a new model, where we considered L1 as an 340 

observed variable and created a new dummy latent variable (DV) that 341 

explained all 4 traits and that was highly correlated (0.99) with L1. The SNP 342 

effect is then fit onto the original 3 food-liking traits (T1-T3) and the dummy 343 

variable such that we could obtain the estimate of the SNP effect on the 344 

latent variable and the residuals of the 3 food-liking traits at the same time. 345 

  346 

The described approach is useful to solve simple one factor models, but it 347 

cannot be directly applied to the complex hierarchical model we created, as 348 

it would be computationally infeasible. We thus split the hierarchical model 349 

of food items into smaller trees, where only one latent variable and its 350 

observable food traits were used. In efforts to retain the overall structure, 351 

we fixed the loadings of the food-liking traits onto the factor to be the same 352 
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as those estimated during the construction of the model. Fig. 1 panel B 353 

summarises this strategy.  354 

For all intermediate order traits, this approach led us to have for several 355 

factors 2 different conditional estimates: one where the latent factor trait 356 

was conditioned on the index food traits and another in which it 357 

represented the index trait.  To select which estimate captured best the 358 

direct effect, we select the one with the smallest absolute value of Z-score. 359 

We can imagine that if the effect of the SNP is mediated through another 360 

trait, conditioning on this trait will lead to a decrease in the effect, and thus 361 

the estimate with the smallest effect would correspond to the correct one. 362 

Fig. 1 panel B1-3 reports a scheme of this strategy.  To test if the 363 

conditional SNP estimate was different from the original estimate we used 364 

the method from Clogg et al 199538: 365 

 366 

𝑍 =
𝛽! − 𝛽"

%𝑆𝐸#!
" + 𝑆𝐸#"

"
 367 

 368 

We considered “direct effect only” SNP/trait effects which showed p>0.05 369 

at this test.  370 
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   371 
Fig. 1. Strategy to map loci to specific traits. Panel A shows the strategy to 372 
fit the SNP effect contemporarily on all food liking traits in the model. We 373 
started with the SNP effect on each observed trait participating in the model 374 
(A-1). We then used GenomicSEM to estimate the effect of the SNP on the 375 
latent variable, L1, based on the observed ones (A-2). We finally used the 376 
SNP estimate on L1 as though it were directly observed and created a new 377 
dummy latent variable (DV) strongly correlated to L1 (0.99) and fit the SNP 378 
effect on LD and all participating food liking traits at the same time (A3). 379 
Panel B shows the strategy used to fit the multiorder model. The full model 380 
(B-1) is split into levels composed of 1 latent variable and its observable 381 
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variables and the strategy described in panel A is applied. This is repeated 382 
level-by-level (B-3) and then results of all conditioning models for each trait 383 
are compared. 384 
 385 
Functional and Tissue enrichment analysis  386 

For enrichment analysis we expanded the gene selection to all those which 387 

were mapped to loci which were associated with at least one of the food 388 

liking traits at p<5x10-8. Information about the full list of loci can be found in 389 

Supplementary Table 3. 390 

Tissue enrichment analysis was conducted using FUMA39 looking at the 391 

general and specific GTEx tissues as reference. Gene Ontology term 392 

enrichment analysis was conducted using the enrichGO() function from the 393 

clusterprofiler R package (3.16.1)40. 394 

 395 

Correlation with brain MRI traits. 396 

To estimate genetic correlation with brain MRI, we first obtained 3,260 397 

GWAS summary statistics on Imaging-derived phenotypes (IDP) from 398 

multimodal brain imaging (excluded diffusion MRI and ICA25) from Oxford 399 

Brain Imaging Genetics Server - BIG40 400 

(https://open.win.ox.ac.uk/ukbiobank/big40/)41. These IDPs included 401 

morphological traits as well as functional neural response traits. For the 402 

morphology measures cortical thickness, surface area and volumes were 403 
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calculated in regional brain areas for various parcellations of the brain 404 

(Freesurfer atlases).    405 

Briefly these areas/networks were derived by applying a technique called 406 

“group independent component analysis” (ICA) which identifies a 407 

prespecified number of networks as independent from each other as 408 

possible. This was estimated in UK Biobank using two different values: 25 409 

and 100 with the ICA100 identifying smaller brain areas. In particular for 410 

our analyses we used the ICA100 traits which include 55 non-artifact nodes 411 

and 1485 edges (between nodes) for a total of 1540 traits.  412 

The functional neural response traits included the average neural response 413 

over time during a resting-state scan in 55 non-artifact network maps from 414 

the ICA100 IDPs (each encompassing multiple regional brain areas), as 415 

well as the edges between all 55 ICA maps. The derivation of the ICA100 416 

traits has been described in detail elsewhere42. We removed IDPs with low 417 

heritability or large uncertainty of heritability estimates (p < 0.05), resulting 418 

in 2,329 IDPs tested for genetic correlations. Genetic correlations were 419 

estimated using high-definition likelihood (HDL)43 to maximise power. 420 

Genetic correlations were tested only with the three main dimensions 421 

coming from the hierarchical factor analysis. We applied FDR to correct 422 
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multiple testing on 6987 pairs (significance threshold was set to q<0.05) 423 

(Supplementary Table 4).  424 

 425 

Results 426 

 427 

Supplementary Table 1 presents descriptive summary statistics for the 428 

food-liking traits.  429 

 430 

Mapping the relationships between food items 431 

As the first step in our analysis, we aimed to map the relationships between 432 

the different food preferences. After running the GWAS on all the 433 

questionnaire items, we computed the genetic correlation matrix and 434 

compared it with the phenotypic one (Fig S1). The resemblance between 435 

the two correlations was very high (r=0.91, Supp Fig 1B), but the genetic 436 

correlations between the food-liking traits were on average twice as large 437 

as the phenotypic correlations, likely due to the high measurement error in 438 

the food-liking questionnaire. 439 

 440 

Looking at the hierarchical clustering of the foods based on their genetic 441 

correlations (Supplementary Fig 1A), two main groups of foods were easily 442 
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identified: one that included what could be considered “high-reward” foods, 443 

such as meat, desserts and fried foods, and another group that included a 444 

larger and wider variety of items ranging from fruit, to alcoholic beverages, 445 

unsweetened caffeinated drinks and cheese. 446 

 447 

Hierarchical factor analysis as described above led to a tree structure 448 

model composed of up to 4 levels (Fig 2A and supplementary file 1), with 449 

three main dimensions of food liking at the top with the final model 450 

comprising 119 questionnaire items out of the initial 144 .  451 

The first factor trait included highly energetically rewarding and widely 452 

accepted foods such as desserts, meat and savoury foods which we 453 

named “F-Highly palatable”. The second was composed mainly of low 454 

caloric foods such as vegetables, fruit and wholegrain, which we defined as 455 

“F-Low caloric”. The third was composed of items for which liking is 456 

generally acquired, such as unsweetened coffee, alcohol, cheese and 457 

strong-tasting vegetables, which we refer to as “F-Learned”. Finally a fourth 458 

minor group was composed of F-sweetened caffeinated drinks. 459 

 460 

 461 
 462 
 463 
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 464 

 465 
 466 
 467 
 468 
Fig 2. Food-liking map and genome-wide association results. (A). 469 
Hierarchical model of relationships between liking of different foods. The 470 
leaves represent the original food liking traits which were measured with 471 
the questionnaire. Colours reflect the membership in one of the four 472 
independent dimensions: Red, F-Highly palatable; Blue, F-Learned; Green, 473 
F-Low Caloric; Light brown, F-Caffeinated sweet drinks. F-Savoury foods 474 
are colored purple as they contribute to both F-Highly palatable and F-475 
Learned Foods. (B). Upper panel represents the relationship between the 476 
minor allele frequency and effect size. As in most complex traits, there is an 477 
inverse relationship between MAF and effect size. Lower panel represents 478 
the same SNPs but r2 is reported on the y axis, showing no relationship 479 
between the two measures. (C). 3D Manhattan plot, only SNPs with 480 
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p<5x10-8 have been reported. Colours reflect those used in panel A. (D). 481 
Bird’s-eye view of the Manhattan plot. Each dot represents the top SNP 482 
from each of the sub-loci. 483 
 484 
F-Low caloric and F-Learned traits showed a moderately strong genetic 485 

correlation (rG = 0.59), while the F-Highly palatable trait was more or less 486 

completely independent from either (rG, 0.05 and 0.16, respectively). Finally 487 

the F-Caffeinated Sweet Drinks showed a weak positive correlation with the 488 

F-Highly palatable dimension (rG =0.39) and a weak negative correlation 489 

with the F-Learned and F-Low caloric groups (rG=-0.3 and rG= -0.25, 490 

respectively).  491 

 492 

Genetic Correlation with food consumption 493 

Overall, we detected a very strong correlation between the liking measures 494 

and their corresponding consumption traits (Fig 3, Supplementary Table 5), 495 

with all correlation coefficients being >0.7, with the exception of beer 496 

(rG=0.4) and white bread (rG=0.1). Looking at heritability estimates, the 497 

mean SNP heritability for the liking traits (~0.08) was double that for the 498 

consumption traits (~0.04), and food liking always showed higher values, 499 

with the exception of dried fruit, where there was little evidence of a 500 

difference and tea, where heritability was higher for consumption.  501 
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 502 
 503 
 504 

 505 
Fig 3. Genetic comparison between food liking and food consumption traits. 506 
Panel A. reports the genetic correlations between consumption and liking of 507 
the same food for all foods for which both were available, bars represent 508 
95% CI. Panel B. Comparison between SNP heritability of food 509 
consumption (red) and liking (green). Bonferroni-corrected significant 510 
differences are indicated with a star. 511 
 512 
 513 
 514 
 515 
 516 
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 517 
 518 
 519 
Genetic correlation with other complex traits. 520 

 521 
Fig 4: Genetic correlation between the three main food liking factors and 522 
other selected complex traits. X indicates FDR > 0.05. 523 
 524 
Genetic correlations with other complex traits (Fig 4 and Supplementary 525 

File 2) showed differences between the three main F-traits. The F-highly 526 
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palatable trait showed correlations with higher indices of obesity (higher 527 

BMI and body fat percentage), lower socioeconomic status and lower levels 528 

of physical activity despite showing a positive correlation with non-529 

sedentary jobs. F-Highly palatable was also correlated with higher sodium 530 

and creatinine in urine, likely reflective of a diet richer in protein and added 531 

salt. The F-Low caloric trait showed positive correlation with higher physical 532 

activity and use of dietary supplements but also with a non-sedentary job 533 

suggesting that people reporting higher liking for the F-Low caloric trait 534 

show a general tendency for a “healthier” lifestyle. This is reflected also by 535 

the negative correlation with urinary sodium and creatinine suggestive of a 536 

healthier diet and with lower body fat percentage. The F-Learned trait was 537 

positively correlated with indexes of higher socioeconomic status such as 538 

years in schooling and a sedentary job, a overall healthier blood lipid and 539 

obesity profile and higher physical activity although it also correlated with 540 

higher likelihood of having smoked and higher alcohol consumption.  541 

 542 

GWAS results. 543 

In our GWAS of food liking, we identified evidence for 1401 genetic 544 

associations divided into 173 loci (Fig 2 , Supplementary Table 6). 143 loci 545 

out of 173 corresponding to 1270 out of 1401 associations showed 546 
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correlations with multiple traits, with the FTO locus being associated with 547 

58 traits, suggesting high levels of pleiotropy.  548 

 549 

Pleiotropy and colocalisation 550 

Colocalisation analysis with HyperColoc (Supplementary Tables 7 and 8) 551 

showed that most traits that were associated in the same locus, also 552 

colocalised. Within the 143 loci, 138 showed at least one group of traits 553 

which colocalised with each other for a total of 203 distinct clusters. 225 of 554 

the 1270 association did not colocalise with any other trait.  555 

 556 

Replication 557 

Replication analysis in up to 26,154 people (median 15,736) from 11 558 

different cohorts was able to replicate 61 (one tailed p<0.05 and same 559 

direction of effect) out of 235 testable associations (26%) (Supplementary 560 

Table 9). However, 194 associations corresponding to 82.5% showed 561 

consistency of direction of effect (binomial test p=5x10-25).   562 

 563 

Gene prioritization 564 

Gene prioritization (see Methods for details) allowed us to identify 250 565 

genes as being most likely causal. Close to half of the associations (43.8%) 566 
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were intragenic, with roughly 7% of non-synonymous variants and about 567 

the same proportion (~6%) of SNPs located either in the 3’ or 5’ 568 

untranslated region. Only ~1% could be explained by synonymous variants. 569 

Rather unsurprisingly, 12 of the prioritised genes encoded either taste (4) 570 

or olfactory receptors (8) and highlighted many novel associations. For 571 

example, the strongest association we detected was between OR4K17 and 572 

liking of onions (beta=0.31 on a 9 point scale, p=4 x 10-71).  573 

Amongst taste receptors, associations were identified only for bitter 574 

receptors and all were associated to traits belonging either to the learned or 575 

low caloric group while none were associated with the Highly palatable 576 

foods. A similar pattern was observed also for the genes encoding olfactory 577 

receptors. Of particular interest are the variants of the TAS2R38 gene, 578 

which were associated with salty foods, alcoholic beverages, horseradish 579 

and grapefruit, confirming our previous results17,44, which provided 580 

evidence for association between this locus and adding salt to food and 581 

consuming red wine, but also expanding this finding to other alcoholic 582 

beverages.  583 

Similarly, there were other cases which corroborated and expanded upon 584 

previous reports. For example, variants near the FGF21 gene, which has 585 

been previously associated with consumption of sweet foods45, were also 586 
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negatively associated with stronger-tasting foods, especially fish but also 587 

eggs, mayonnaise and fatty foods.  588 

 589 

Distinguishing direct from mediated effects.  590 

As shown by the colocalization analysis, the hierarchical relationships 591 

between the food preference traits give rise to a very high level of 592 

pleiotropy. Thus, in order to be able to predict the potential function of the 593 

identified genes, it is important to be able to understand at which level of 594 

the hierarchical tree of food liking the variant is primarily associated with. If 595 

we think of liking fruit, for example, we can imagine that some variants may 596 

be associated with all fruits while others may be associated with specific 597 

fruits such as apples or oranges. To resolve this issue, we fit the effect of 598 

each sentinel SNP onto all nodes of the model at the same time as outlined 599 

in Materials and Methods and determine if the observed effect was direct or 600 

mediated through one of the correlated traits. Of the initial 1261 601 

associations which could be tested within the hierarchical model, only 495 602 

were inferred to be direct effects. As an exemplar case, Fig 5 shows the 603 

effects of this approach for the ADH1B locus.  604 
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 605 
Fig 5. Example of univariable vs conditioned analysis of rs1229984. The 606 
path graph represents the hierarchical model up to the alcohol trait. 607 
Numbers over the edges report the standardised loadings. Colour is 608 
proportional to effect size. Effect sizes with p<1.4x10-3 have been shrunk to 609 
0.  610 
 611 
As can be seen, there was strong evidence that the rs1229984 SNP was 612 

associated with most alcoholic drinks. However, this SNP had a lesser 613 

effect on the stronger alcoholic drinks, suggesting a different weight of 614 

alcohol-liking, depending on its concentration. After the conditional 615 

analysis, only the effect of rs1229984 on alcohol remained unchanged, 616 

suggesting that ADH1B may exert most of its effect on alcoholic beverages 617 

through liking of alcohol in general, although residual effects remain on 618 

wine and white wine. Figures for most likely causal SNPs of the 208 619 

association clusters comprising the full model can be found in 620 

Supplementary File 3 and Supplementary Table 10  621 
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Tissue and Functional enrichment analysis 622 

Functional enrichment expanding the gene selection to all loci with p<5x10-623 

8 (Supplementary Table 3), resulted in very strong enrichment of cellular 624 

components and biological processes related to neurons and specifically to 625 

glutamatergic and GABAergic synapses (Fig 3), both important and well-626 

known modulators of hedonic responses to foods. These results are in line 627 

with the tissue enrichment analysis, where the only tissue that showed 628 

evidence for upregulation was the brain (Fig 6; Supplementary Table 11-629 

12) 630 
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 631 
 632 
Fig 6. Enrichment analysis of food-liking genes. Figure represents the 633 
results of the GO terms and tissue up-regulated genes using the prioritised 634 
genes from all loci with p<5x10-8. Right panels show the summarised 635 
significant GO Terms (FDR <0.05) while the left ones report the tissue 636 
enrichment using the general tissues (upper panel) and the specific ones 637 
(bottom panel).  638 
 639 
 640 

 641 

 642 
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Genetic correlation with brain morphology and connectivity traits 643 

Genetic correlations with the brain morphology traits and IC100 rfMRI 644 

networks (Fig 7 and Supplementary table 13) evidenced clear differences 645 

in both types of traits. The morphological associations with the learned and 646 

low-caloric liking dimensions are characterized by negative correlations 647 

with cortical thickness in frontal (middle frontal, inferior frontal and orbital), 648 

parietal (intra-parietal and pre-cuneus) and occipital (cuneus, calcarine and 649 

lateral) areas, as well as positive correlations with cortical surface area in 650 

frontal/parietal transition area at the base of the (peri) central sulcus, in the 651 

temporal lobe in the fusiform area, and insula. In contrast, the Highly 652 

palatable liking dimension shows negative correlations with striatal volumes 653 

(in putamen and caudate) and no evident positive correlations.  654 

 655 

The connectivity network trait associations are also characterized by 656 

overlap in networks between learned and low-caloric, which both show 657 

(positive and negative) associations with frontal (somato-motor, language), 658 

parietal (intra-parietal), temporal (hippocampus, fusiform) and occipital 659 

(cuneus) areas. The Highly palatable food liking dimension shows few 660 

associations with connectivity networks, and when it does, they are 661 
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characterized by positive associations with rostral frontal-parietal networks 662 

in frontal eye fields and intra-parietal cortex. 663 

Summarizing, the morphological and network connectivity associations of 664 

the food-liking dimensions show parallel effects in the brain, such that both 665 

learned and low-caloric factors show associations with morphology in 666 

frontal, parietal and occipital areas and connectivity in networks involving 667 

the same areas, while the high-palatable dimension shows distinct 668 

associations, notably a negative association with morphology of striatal 669 

areas.  670 

 671 
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 672 
 673 
Fig. 7. Genetic correlations between three main food-liking dimensions and 674 
brain MRI traits. Only traits with qvalue<0.05 have been reported. Panel A 675 
reports the genetic correlations between the three main liking dimensions 676 
and brain MRI morphological traits. Colour reflects the atlas used while size 677 
of the dots size is proportional to q-values. Panels B,C and D genetic 678 
correlations with the ICA100 network traits. 679 
 680 
 681 
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Discussion 682 

 683 

In this work, we have for the first time examined the genetic bases of food 684 

liking in a wide and comprehensive way. We have shown that it is possible 685 

to use genetic correlations to study the relationships between the food traits 686 

highlighting the complexity of these relationships and identifying three main 687 

distinct overall dimensions. We have also shown that these dimensions 688 

show different correlation patterns with both morphological and functional 689 

brain MRI traits.  Furthermore, we have identified 171 loci involved in 1401 690 

locus-trait associations, most of which have never been described before. 691 

Finally, we have used genomic structural equation modelling to disentangle 692 

many of the associations highlighting the main effects from those at least 693 

partly mediated through the effect of other food traits.  694 

 695 

Food liking has been consistently shown to be a heritable trait in twin 696 

studies11–16. Here, we have shown that food liking also has a non-negligible 697 

SNP heritability and that it is twice as big as that of food consumption, in 698 

line with the idea that food liking is more influenced by biology than actual 699 

behaviour.  700 

 701 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454120


 

The fact that the genetic correlations between liking and food behaviour 702 

was relatively high, even when measured ~10 years apart, suggests that 703 

the genetic factors underlying these two processes are very similar, while 704 

differences likely arise mostly from environmental factors and from the 705 

inherent differences between liking and choice. The fact that food liking is 706 

still so strongly correlated to consumption, even if measured later in time, 707 

suggests that food liking is relatively stable through time, at least in adults. 708 

Looking at the comparison between genetic and phenotypic correlations 709 

amongst the food items, they resemble each other quite closely (r=0.91), 710 

although the genetic correlations are twice as big as the phenotypic 711 

correlations. This likely reflects the random measurement error inherent in 712 

the use of questionnaires in measuring food liking and shows that genetic 713 

correlations may have advantages to assessing inter-relationships among 714 

food-related phenotypes. This strong relationship has been particularly 715 

useful in defining our hierarchical model, increasing our ability to identify 716 

the underlying dimensions common to multiple foods.  717 

 718 

Whilst the current study is not the first to map how liking for different foods 719 

are related to each other, this is the largest and most comprehensive study 720 

to date, having used more than 150 thousand people and covered a wide 721 
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range of food groups and flavours. In many cases, foods were clustered as 722 

expected (e.g., fresh vegetables and fruit) but in other cases have 723 

highlighted big differences in foods which are commonly considered as a 724 

single group. For example, while the genetic correlation between “cooked 725 

vegetables” and “salad vegetables” is very strong (0.79), when we consider 726 

also vegetables with stronger tastes such as spinach or asparagus (the 727 

“strong vegetables” group),  this results in a much weaker correlation (0.38 728 

and 0.54, respectively), despite the fact that these items would have 729 

generally all been considered “vegetables”. Our hypothesis-free approach 730 

thus captured these previously undescribed differences, which are of great 731 

importance in interpreting the results of nutritional studies.  732 

 733 

When compared with the results from Vink et al15, our results show a clear 734 

resemblance between our first order traits and those identified through 735 

PCA. However, our strategy of using a multi-order hierarchical model 736 

allowed the identification of only a few higher order dimensions, highlighting 737 

the minimal correlation between very high reward foods such as sweets, 738 

meat and fried (the “F-Highly palatable” group) and other lower caloric and 739 

stronger taste intensities (F-Low caloric and F-Learned).  740 

 741 
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Looking at the genetic correlation with other complex traits we can see that 742 

the F-Highly palatable factor is, as expected, correlated with a worse 743 

anthropometric and lipid profiles, with signs of a diet rich in protein and salt. 744 

The F-Low caloric and F-learned show the opposite pattern, both 745 

associated with lower indices of obesity and a better blood lipid profile, with 746 

a diet lower in salt and protein. When we however look closer, these two 747 

factors do show some differences. The F-Learned factor is associated with 748 

a higher educational attainment and a sedentary job, likely indices of higher 749 

socioeconomic status, while for the F-Low caloric we see a different pattern 750 

where there is no correlation with educational attainment but a positive one 751 

for non-sedentary jobs. 752 

  753 

Looking at the genetic correlations with the brain MRI morphological traits, 754 

while F-low caloric foods and F-Learned ones again show some 755 

agreement, the F-high palatable foods shows none with the other liking 756 

dimensions. Strikingly the Highly palatable foods correlated only 757 

(negatively) with striatum in putamen and caudate. Over-consumption of 758 

highly palatable energy-dense foods and adiposity are both associated with 759 

downregulation of neural responses in these areas. When we look at the 760 

areas involved with the other two other dimensions, we note they associate 761 
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with areas involved with sensory responses, identification and decision 762 

making.  These results indirectly confirm and validate our findings showing 763 

that the dimensions we have derived are not just an artefact of statistical 764 

inference, but correspond to true biological processes. Alternatively, they 765 

may reflect adaptations to dietary choices that result from the liking 766 

dimensions. They also suggest the existence of two distinct processes, 767 

mostly independent from each other, which underlie liking for the two 768 

groups of foods. This has profound implications in how food preferences in 769 

these two domains arise and in the shaping of future studies aimed at 770 

understanding them better.  771 

 772 

Many studies which have looked at the genetics of food liking have focused 773 

on taste receptors, particularly on bitter ones. In this study, we have been 774 

able to confirm some of the previous findings such as that of the TAS2R43-775 

46 locus and coffee liking21. For example, we observed a strong 776 

association between TAS2R38, responsible for PROP and PTC bitter taste, 777 

and both alcoholic beverage and salt liking, confirming our and others’ 778 

previous results on consumption17. We could not, however, replicate the 779 

association with any vegetable and, in fact, we found only weak evidence 780 

for such an association with broccoli, which was also in the opposite 781 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454120


 

direction of what would be expected considering previous candidate gene 782 

studies. Given that we have looked at a large range of vegetables and the 783 

large sample size used, this result questions all previous candidate gene 784 

studies that have identified such associations46. Similarly, we found little 785 

evidence for an association with any of the genes coding for the sweet and 786 

umami receptor subunits (TAS1R1-3), again questioning some previous 787 

reports in much smaller samples of the association between these genes 788 

and sweet liking46.  789 

 790 

When we look at the genes associated with flavour perception (see Fig S2), 791 

namely taste and olfactory receptors, we found that they associate only 792 

with the learned and low caloric foods and never with the Highly palatable 793 

foods. It is possible to speculate that this may have an evolutionary 794 

meaning, where variants which would lower liking of caloric dense foods 795 

such as those in the Highly palatable foods would be selected against, 796 

while those which increased acceptance of learned foods which are 797 

generally more aversive, would expand one’s diet and thus chances of 798 

survival. Further, more specific evolutionary genetics studies are needed to 799 

test this hypothesis. 800 

 801 
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Many genes already known to be associated with the consumption of 802 

specific foods showed a more complex association pattern, influencing a 803 

much broader range of food likings. For example, we have found that the 804 

variant rs1229984 within the ADH1B gene was expectedly associated with 805 

liking alcoholic beverages, mirroring the results on alcohol consumption. 806 

However, when we looked beyond simple genome-wide significance and 807 

reduced our p-value threshold, we found that it shows a marginal 808 

association with liking sweet foods with a concordant direction of 809 

association (see Fig S3). A recent GWAS of sweet liking23 conducted in a 810 

Japanese cohort where ALDH2, a variant known to be associated with 811 

alcohol consumption, is also associated with sweet liking but with the 812 

opposite effect where the allele associated with higher liking of alcohol is 813 

associated with lower liking of sweet foods. Both ADH1B and ALDH2 gene 814 

products are responsible for metabolising alcohol in the liver and their 815 

association with alcohol consumption is believed to be through the 816 

accumulation of acetaldehyde, which gives an unpleasant feeling and thus 817 

will reduce alcohol consumption (and liking in our case) through 818 

conditioned learning. So although in both populations there is a genetic 819 

overlap between alcohol and sweet liking, this relationship is in opposite 820 

directions. These results suggest that the observed association is unlikely 821 
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to be due to a biological mechanism but further studies involving people 822 

who have never consumed alcohol are needed to resolve this issue.  823 

 824 

Another important example is FGF21 which has been reported to be 825 

associated with consumption of sugar and protein19,45 826 

. Previous studies have shown that FGF21 is elevated by low protein and 827 

high carbohydrate consumption47. Soberg et al48 have previously shown 828 

that the rs838133 A allele is associated with lower levels of FGF21 and 829 

with higher consumption of sweet foods without an increase in energy 830 

intake or obesity. Our results are in line with these studies, with the A allele 831 

of rs838133 associated with higher liking of sweet foods, however when we 832 

look at the lower liked foods, although proteic foods are amongst them, 833 

they are represented by fish and cheese, but not by any of the meat traits 834 

(Fig S4). Moreover, we find a much wider range of traits which also include 835 

many strong-tasting vegetables and spices suggesting that the role of 836 

FGF21 is indeed to shift liking from sweet to savoury foods, but not 837 

necessarily all in the same way.  838 

 839 

This example clearly shows how useful our results are in interpreting 840 

previous associations, greatly increasing our understanding of the 841 
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phenomena behind food choices. Our results also highlight the importance 842 

of examining food liking as a whole instead of as sets of distinct 843 

sensations/food groups or macronutrients, where the interpretation of the 844 

results in one food dimension need to take account of the other factors in 845 

order to be properly interpreted. This is particularly important when 846 

studying the consequences of food liking on health status and particularly 847 

when performing Mendelian randomisation studies involving food traits. 848 

 849 

Another interesting example is the association between a non-synonymous 850 

variant in the GIPR gene and liking of the foods in the low caloric group. 851 

GIPR encodes the receptor of glucose-dependent insulinotropic peptide 852 

(GIP), one of the two incretins and has been associated with BMI, in 853 

particular the A allele is associated with lower BMI49 and higher liking of low 854 

caloric foods and lower liking of fatty foods such as mayonnaise, cheese 855 

and cream (but not fatty meat products such as sausages) (Supplementary 856 

Fig. 5). GIPR encodes the receptor for the glucose-dependent 857 

insulinotropic peptide (GIP), that together with the Glucagon-like peptide-1 858 

amide (GLP-1) represent the two human incretins. Amongst many other 859 

functions, incretins have been shown to regulate energy metabolism by 860 

acting in separate neuronal populations of the central nervous system50. 861 
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GLP-1and GIP have been shown to regulate food consumption 862 

synergistically by acting on the hypothalamic arcuate nucleus increasing 863 

neuronal activation and expression of pro-opiomelanocortin50. While both 864 

hormones are secreted in the presence of sugar, GIP responds also in the 865 

presence of free fatty acids51 . In a recent study52, CNS-Gipr knockout mice 866 

showed lower food intake when exposed to a high fat diet with smaller 867 

meals with consequent lower weight. Our results align very well, suggesting 868 

that GIPR, similarly to FGF21, is acting through a shift in preferences away 869 

from fatty foods and toward lower caloric foods, leading to a lower BMI.  870 

Both these examples point to regulation of food liking as a possible path 871 

through which to regulate food intake quality in order to, for example, help 872 

people comply with dietary plans beyond simple regulation of appetite. 873 

 874 

In conclusion, we have presented the largest GWAS of food liking in more 875 

than 150 thousand individuals. We provided strong evidence that the 876 

dimensions of food liking are not only rooted in culture and familiarity but 877 

have an important biological basis, while identifying hundreds of novel 878 

associations between genetic variation across the human genome and 879 

liking of different foods. This not only greatly increases our knowledge in 880 
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the field but opens up numerous paths for further studies aimed at better 881 

understanding the processes behind food choice.  882 
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