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Abstract 9 

The diversity and high genomic mutation rates of viral species hinder our understanding of viruses 10 

and their contributions to human health. Here we investigated the human fecal virome using 11 

previously published sequencing data of 2,690 metagenomes from seven countries. We found that the 12 

virome was dominated by double-stranded DNA viruses, and young children and adults showed 13 

dramatic differences in their fecal enterovirus composition. Beta diversity showed there were 14 

significantly higher distances to centroids in individuals with severe phenotypes, such as cirrhosis. In 15 

contrast, there were no significant differences in lengths to centroids or viral components between 16 

patients with mild phenotypes, such as hypertension. Enterotypes showed the same specific viruses 17 

and enrichment direction after independent determination of enterotypes in various projects. 18 

Confounding factors, such as different sequencing platforms and library construction, did not result 19 

in a batch effect to confuse enterotype assignment. The gut virome composition pattern could be 20 

described by two viral enterotypes, which supported a discrete, rather than a gradient, distribution. 21 

Compared with enterotype 2, enterotype 1 had a higher viral count and Shannon index, but a lower 22 

beta diversity, indicating more resistance to the external environment’s harmful effects. Disease was 23 

usually accompanied by a viral enterotype disorder. However, a sample outside of the enterotyping 24 

mathematical space of enterotype database did not necessarily indicate sickness. Therefore, the 25 

background context must be carefully considered when using a viral enterotype as a biomarker for 26 

disease prediction. The disease, second only to the enterotype, explains significant variation in viral 27 

community composition, implying that double-stranded DNA is relevant to human health. Our results 28 

of investigating a baseline viral database highlight important insights into the virome composition of 29 

human ecosystems, and provide an alternate biomarker for early disease screening.  30 

1 Background 31 

In recent years, many studies have shown that viral colonization in the human body is highly related 32 

to human health and life. Cross-species virus transmission poses an extraordinary threat to human 33 

and animal health (Daszak et al., 2000). With advanced sequencing technology, the primary material 34 

for viral research has become viral genomes (virome), which enable viral identification and 35 

classification at the molecular level (Fujimoto et al., 2020; Gregory et al., 2020). The success of 36 

virome studies greatly relies on high-quality viral genomes (Minot et al., 2011). However, viruses are 37 

highly diverse and individual-specific (ref) and traditional purification strategies, culture, and 38 
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sequencing are labor-intensive and inefficient (Reddy et al., 2015), thus severely preventing the 39 

comprehensive and intensive study of viruses.  40 

The strategy of assembling the viral genome involves a comprehensive and in-depth analysis of the 41 

virome. David and colleagues launched the “Uncovering Earth’s virome” project to build The 42 

Integrated Microbial Genome/Virus (IMG/VR) database in 2016(Paez-Espino et al., 2016, 2017, 43 

2019; Roux et al., 2021). Recently, data of 28,060 metagenomes were used to mine 142,809 human 44 

gut viruses, and Gubaphage was found to be the second common virus branch in the human 45 

gut(Camarillo-Guerrero et al., 2021). These projects opened the prelude to the construction of viral 46 

genome database and laid the foundation for a comprehensive analysis of the human gut 47 

virome(Gregory et al., 2020). Disease is associated with the gut virome, but studies have ignored the 48 

importance of viral sequencing information in massive metagenome sequencing data. The 49 

construction of the viral genome database has enabled detailed research on the human gut virome. 50 

An enterotype is a cluster of microbes in the human gut and it describes the distributional of the 51 

human gut microbial community(Arumugam et al., 2011). Multiple studies have reported that there 52 

are two dominant enterotypes, which correspond to the individuals’ preference for digesting plant 53 

fiber or animal meat (Costea et al., 2017). The gut is an ecosystem, and the enterotype summarizes its 54 

microbial characteristics using mathematical methods(Arumugam et al., 2011; Holmes et al., 2012), 55 

but such knowledge is insufficient (Jeffery et al., 2012). Research on the composition patterns and 56 

function of the gut microbiome will significantly improve our understanding of its relationship with 57 

health and disease(Knights et al., 2014). Enterotypes can be used for gut microbial analysis, to 58 

inform disease treatment and prevention strategies, and may also provide a theoretical basis for diet 59 

therapy. The relationship between viral enterotypes and the human disease status is still largely 60 

unknown. Whether enterotypes can be used as biomarkers for predicting the disease status requires 61 

further research. 62 

In this study, we collected previously published human metagenomic sequencing data, conducted 63 

sample quality control through a fast pipeline, identified virus species, and determined viral 64 

abundance. Furthermore, we established a baseline database of the human gut virome based on 2,690 65 

metagenomes. We demonstrated the relationship between virus species and abundance in various 66 

ethnicities, countries, and diseases using different DNA library construction methods and sequencing 67 

platforms, and analyzed the association between viral community diversity and disease. Viral 68 

enterotypes were assigned by the Dirichlet multinomial mixture model (DMM). We independently 69 

identified enterotype-specific viral operational taxonomic units (vOTUs) for each dataset and 70 

resolved the inter-relationships among enterotypes from different projects by comparing the 71 

abundance of enterotype-specific viruses. Further, we compared the ecological diversity of viruses 72 

between different enterotypes, and evaluated the correlation of viral enterotype disorders and their 73 

diversity with diseases. The results of study elucidate the relationship between enteroviruses and 74 

human health in a large population and highlight the decisive role of viruses as molecular markers in 75 

identifying high-risk individuals. Viral research is likely to make an indispensable contribution to 76 

improving human health. 77 

2 Materials and methods 78 

2.1 Choosing an alignment method 79 

Alignment and assembly methods are used to detect viruses and estimate their abundance. 80 

MetaPhlAn(Segata et al., 2012)and its upgraded version, MetaPhlAn2(Truong et al., 2015), are 81 

alignment tools that use marker genes for alignment and have achieved great success in bacterial 82 
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genome alignment. However, many viral genomes do not have marker genes, and therefore, this 83 

strategy is not useful for viral classification and abundance estimation. Virome(Eric Wommack et al., 84 

2012), VirSorter(Roux et al., 2015), and VirFinder(Ren et al., 2017) use assembly methods to 85 

classify viruses and calculate abundance, but these tools require a large amount of computing 86 

resources and time and therefore cannot be applied to large projects. Some recently developed 87 

alignment tools, such as ViromeScan(Rampelli et al., 2016), VIP(Li et al., 2016), and HoloVir(Laffy 88 

et al., 2016) have been shown to perform well for bacterial genomes. However, they are impractical 89 

for aligning viral reads to genomes. Moreover, many software tools are for online use, which means 90 

that they are unsuitable for large-scale projects. VirMap(Ajami et al., 2018) software developed for 91 

processing protein and genome data can provide good results. It can be accurately identify the virus 92 

species regardless of the sequencing depth. However, this software involves substantial computing 93 

resources. After comparing the advantages and disadvantages of different software(Ajami et al., 94 

2018), we finally chose FastViromeExplorer(Tithi et al., 2018), a software based on k-mer alignment 95 

used by Kallisto(Bray et al., 2016). This software maps all reads to the reference and then uses the 96 

expectation-maximization algorithm to estimate the virus species and their corresponding abundance. 97 

2.2 Data collection and processing 98 

We downloaded all data from the National Center for Biotechnology Information (NCBI) sequence 99 

read archive (SRA). The SRA numbers for each project are shown in Supplementary Table 1. We 100 

only chose pair-end data from projects sequenced by the Illumina HiSeq 2000 or 2500 platforms. 101 

After processing the original data sample (Supplementary Figure 1) using Trimmomatics(Bolger et 102 

al., 2014)to remove the raw data and adapters of low-quality reads, we detected and removed 103 

contamination from the host’s DNA and RNA data, and discarded the unpaired reads. Finally, we 104 

used FastViromeExplorer software to align reads to IMG/VR v2. 105 

2.3 Viral contig taxonomic annotation 106 

We used Glimmer3 toolkit Version 3.02b(Delcher et al., 2007) to predict and extract the open 107 

reading frame of viral contigs with a minimum length threshold of 100 amino acids. The protein 108 

sequences were aligned to the UniProt TrEMBL database as of February 2021(Bateman et al., 2021) 109 

using BLASTX(Boratyn et al., 2012). The major voting system was then used as described 110 

previously to ascertain the family of a viral contig. A contig needed to be supported by five proteins 111 

to be considered as successful assignment; otherwise, the assignment was considered a failure. When 112 

a virus sequence was annotated to multiple families in taxonomic assignment, we choose the family 113 

with the largest proteins. When multiple families have the same number of proteins, the size of the 114 

accumulated E-value (BLASTX alignment) of all proteins was compared. 115 

2.4 Calculation of ecological diversity 116 

We first used Tximport(Soneson et al., 2015) R package to read the original abundance information 117 

of the virus (the output of Kallisto) from each project. The “betadiver” in the Vegan R package was 118 

used for calculating alpha and beta diversity. For alpha diversity, we first transformed the abundance 119 

information into integers and then used the “rrarefy" function to normalize abundance. We then used 120 

the “estimate,” “diversity,” and “specnumber” functions to obtain various measurement values of 121 

alpha diversity. We used the “RLE” method embedded in “calcNormFactors” to normalize raw 122 

abundance for beta diversity. We used the “Hellinger” method in “Decostand” to transform the data 123 

and eliminate false similarities caused by many viruses whose abundance was 0. When the 124 

abundance of many viruses in the two samples were 0, some algorithms might consider them to have 125 

similar abundance distribution and conclude that they were close to each other. The real reason may 126 
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be that many viruses have not been detected. We used the “betadiver” and “betadisper” functions to 127 

obtain beta diversity, and then used Adonis2 to analyze the viral ecological differences between cases 128 

and controls, and corrected them with raw data size. The Kruskal test was used to determine whether 129 

there was a significant difference in the distance from the centroid between cases and controls. 130 

Tukey’s honestly significant difference test was used to determine differences in variance within and 131 

between groups.  132 

2.5 Enterotyping and MaAsLin2 analysis 133 

We used the DMM method to determine viral enterotypes in each project independently. Enterotypes 134 

were assigned using the “DirichletMultinomial” R package, with predetermined parameters of 1 to 10 135 

enterotypes, and enterotype data from each project were run 10 times. The smallest Laplace value 136 

corresponding to the number of enterotypes was considered as the optimal result. MaAsLin2 137 

(huttenhower.sph.harvard.edu/maaslin2) analysis was used to determine the specific vOTUs 138 

associated with enterotypes, with correlations considered significant at the 5% level (after multiple 139 

testing correction). We also applied the envfit function in Vegan to estimate the effect size of the 140 

structural variance explained by factors such as enterotype and disease. 141 

3 Results 142 

3.1 Sequencing data and summarization 143 

We collected 12.36 TB of metagenomic sequencing data from 18 previously published projects 144 

(Supplementary Tables 1 and 2). We selected data from 2,690 metagenome samples of high quality 145 

for the subsequent analysis (Supplementary Figure 1 and Supplementary Table 1), of which 1,092 146 

were samples were from women, 859 were from men, and 739 were from unknown sex. The length 147 

of sequencing reads from each sample were 2.26 to 8.55 G (Supplementary Table 1), and 148 

approximately 10% of strictly filtered reads were aligned against IMG/VR v2 viral sequences 149 

(Supplementary Table 3). We obtained 2,690 metagenome samples by choosing paired-end 150 

sequencing data from the Illumina HiSeq 2000 and 2500 platforms and excluding projects with a 151 

small data size (< 1 G).  152 

[insert figure 1 here] 153 

We annotated the geographic locations of the included projects on the basis of their predominant 154 

samples (Figure 1A). Because there were no specific sampling coordinates, each project was located 155 

by country. We annotated the viral taxonomy at the family level based on the protein sequence 156 

similarities (Minot et al., 2013; Hannigan et al., 2015). Approximately 50% of the viral genomes 157 

failed taxonomic assignment (Figure 1B), and double-stranded (ds) DNA viruses, such as 158 

Siphoviridae, Myoviridae, and Podoviridae, were the dominant enteroviruses as previously reported 159 

(Zuo et al., 2020). The density peak was close to zero, which indicated that the viruses were rarely 160 

shared among individuals (Supplementary Figure 2). The samples from Finland were outliers in the 161 

PCoA and tSNE plots (Figure 1C and D) because of the low viral diversity (Supplementary Figure 162 

3). This finding might be explained by age. The average age of individuals in the Finland project was 163 

1.5, and their gut communities did not reach stable states. Although the samples from the other six 164 

countries showed substantial variability in the PCoA and tSNE plots (Figure 1C and D), they 165 

belonged to the same cluster, especially the samples from the studies conducted in China. The studies 166 

from China had the most individuals, and the samples were spread over almost the entire plot. In the 167 

tSNE plot, we found that the samples from the USA and Peru were clustered in a local region, which 168 

indicated that the gut virome showed characteristics of geographical distribution.  169 
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[insert figure 2 here] 170 

To study the distribution characteristics of the viral species in samples with different phenotypes, we 171 

divided all samples from studies with a case–control design into three categories. These categories of 172 

controls, cases, and all represented healthy people, patients with various diseases, and all individuals, 173 

respectively. As more samples were included, the number of viral species showed exponential 174 

growth, with no significant difference between cases and controls until samples from ~100 175 

individuals were included (Figure 2A). After including ~100 individuals, the “case” curve showed a 176 

steep increased viral count. As expected, a significant increment in the number of viral species was 177 

observed when the number of samples was increased in the “all” curve. However, the three growth 178 

curves were essentially parallel (Figure 2A), which suggested that the overall number of viruses in 179 

the patient population after viral community disruption was limited. More interestingly, the “case” 180 

and “all” curves overlapped with each other after ~1000 samples. The reason for this finding could be 181 

that the case population contained all species of viruses in the control population. When we 182 

compared the growth curves of different projects, we found that the curves for Finland, Peru, and 183 

Chinese populations with cirrhosis had significant differences (Figure 2B). The samples from the 184 

Finland project were obtained from only 1.5-year-old children, at which age the enterovirus 185 

community is not well established. It is unclear why the number of viral species in Peru samples were 186 

small at the beginning of the curve. The dramatic increase in the number of viruses in the Chinese 187 

population with cirrhosis may be due to severe disruption of the enterovirus community. We used 188 

unique species in cases and controls to define group-specific viruses and compared the change in the 189 

proportion of unique viral species between cases and controls (Supplementary Table 4). We found 190 

that the mean proportion of viruses in case samples was 26% and in control samples was 14%. 191 

Among all samples, the proportion of viruses that were unique to cases was 23%. Each case 192 

individual had an average of 10.99 viruses, and the ratio of viruses that were unique to controls was 193 

4%, and each control individual had an average of 2.43 viruses. Overall, there was an enrichment of 194 

viruses in cases. 195 

Table 1. Beta diversity for measuring the sample distance in projects with a case–control 

design. 
 

Project 
Adonis2 for 

disease 

Adonis2 for 

raw data 
ANOVA 

Kruskal 

test 

Sweden T2D* 5.00E-03 1.00E-03 6.34E-03 1.62E-03 

China cirrhosis 1.00E-03 1.00E-03 3.91E-09 8.41E-14 

China rheumatoid arthritis 2.40E-02 1.50E-02 0.86  0.48  

Austria carcinoma 1.00E-03 0.55  5.29E-04 7.89E-05 

China colorectal cancer 4.00E-03 3.10E-02 0.12  9.71E-03 

China hypertension 0.08  0.25  0.13  0.08  
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China coronary heart disease 1.00E-03 0.81  4.15E-02 1.79E-02 

China T2D discovery 2.60E-02 3.50E-02 1.75E-02 0.15  

China T2D validation 1.00E-03 2.90E-02 0.38  0.45  

China obesity 0.06  0.37  0.78  0.78  

      *Type 2 diabetes (T2D). 196 

3.2 Relationship of ecological diversity of viruses and disease 197 

The beta diversity of a microbial community is usually used to evaluate dynamic changes in an 198 

ecosystem (Koleff et al., 2003). A comparison of the results of projects with a case–control design 199 

revealed that the degree of imbalance in the viral community composition was related to the severity 200 

of the disease phenotype. An example of this finding is that the viral community in patients with 201 

cirrhosis (Figure 3A) was significantly different from that in healthy people (Adonis2, p = 0.001, 202 

adjusted for raw data size). Comparison of the distance to the centroid between patients and healthy 203 

individuals by the Mann–Whitney U test showed a significant dissimilarity (Figure 3B). Specifically, 204 

patients had a significantly larger distance than healthy individuals, which indicated that patients had 205 

a considerably disordered viral community. In contrast, we did not detect a significant difference 206 

between patients and healthy individuals in the hypertension project (Adonis2, p = 0.08, Figure 3C). 207 

We also compared the distance to the centroid for each pair of three cohorts (Figure 3D), and a 208 

significant difference was found only between patients with hypertension and healthy individuals 209 

(Wilcoxon, p = 0.036). 210 

We further investigated statistical differences in gut viral composition between case and control 211 

samples from various aspects to investigate changes in the viral community across different 212 

phenotypes. Using Adonis2, we found a significant difference in enteroviruses between cases and 213 

controls expect hypertension and obesity (Table 1), which suggested that their gut viral community 214 

was less affected by the disease state. Consistently, in cases with relatively mild phenotypes, such as 215 

hypertension or obesity, there was no noticeable differences in body metabolism compared with the 216 

controls. An analysis of variance (ANOVA) was used to determine whether there was a significant 217 

difference between two centroids (to test the component of viruses) between cases and controls. We 218 

found that the cirrhosis and cancer cohorts showed a substantial difference between two centroids 219 

(Table 1). The Kruskal-Wallis test was performed to determine whether the distance to the centroid 220 

in principal coordinates analysis was significantly different between the case and control groups, and 221 

the results were consistent with those of ANOVA. Compared with the controls, cases with more 222 

severe phenotypes, such as cirrhosis and cancer, showed substantial differences in gut viral 223 

composition (Table 1), whereas cases with relatively mild phenotypes, such as hypertension, showed 224 

no significant differences. 225 

[insert figure 3 here] 226 

3.3 Characterizing viral enterotypes 227 

The characteristics of enterotypes of the gut virome were the focus of this study. Data on enterotypes 228 

are generally used to help adjust population stratification in Metagenome-wide association studies 229 
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(MWAS) analysis (Wang et al., 2012). The correlation between enterotypes and disease phenotypes 230 

has received much attention in this field. The DMM method is commonly used for determining 231 

enterotypes of the gut microbiome and is more effective than the partitioning around medoids (Ding 232 

and Schloss, 2014). Different library construction methods, sequencing platforms, and other factors 233 

may lead to false-positive assignment of enterotypes. To avoid this situation, we adopted a project-234 

independent strategy for determining enterotypes. There were two or three enterotypes in most 235 

projects, while some projects only had one enterotype (Figure 1A, Table 2, Supplementary Figure 4). 236 

Enterotypes with the same intrinsic composition pattern were considered as the same. We used 237 

Maaslin2 to discover enterotype-specific vOTUs and then determined their enrichment direction on 238 

the basis of mean abundance. Similar enterotypes had the same specific vOTUs and the same 239 

enrichment trend. We manually classified enterotypes in all of the projects into three groups (Table 2, 240 

Supplementary Table 5). Enterotypes 1 and 2, which are the two major types, were widely distributed 241 

in all projects, which indicated that these two types of enterotypes were common across the project 242 

populations. However, enterotype 3 was rare. Unclassified individuals were not able to be 243 

confidently assigned to enterotype 1 or 2. 244 

A permutation test was performed to demonstrate the validity of manual classification, which 245 

involved randomly paired enterotypes from different projects. We assumed that paired enterotypes 246 

had the same specific vOTUs and enrichment directions. We assigned a lower error rate to paired 247 

enterotypes if they had more identical vOTUs and similar enrichment trends. We repeated pairing 5 248 

million times to obtain the distribution of pairing scores. These scores showed that our manually 249 

classified enterotypes had the lowest error rate (Figure 4A). Moreover, random pairing supported the 250 

three major enterotypes. Enterotypes 1- and 2-specific vOTUs were dominant (Figure 4B). The same 251 

enterotype-specific vOTUs with highly consistent enrichment trends indicated that the enterotypes 252 

from different projects had a similar pattern of virome composition (Figure 4B). Different DNA 253 

processing methods, sequencing platforms, ethics, age, and other confounding factors did not affect 254 

the identification of viral enterotypes. The vOTUs that were specific to unclassified enterotypes 255 

appeared complex. They intersected with either enterotype 1 or 2. Enterotype 3-specific vOTUs in 256 

different projects were less concordant than enterotypes 1- and 2-specific vOTUs. 257 

[insert figure 4 here] 258 

The microbiome is an ecosystem, the stability of which is reflected by the diversity of species in the 259 

system. As a species becomes more prosperous and uniform, the system’s diversity increases and it 260 

becomes more resistant to the effects of the external environment(Keesing et al., 2010). There are 261 

two dominant enterotypes in the viral community (Zuo et al., 2020), one of which has a high alpha 262 

diversity. The results of our study are remarkably close to expected results. Although the viral count 263 

varied among samples from different projects, enterotype 1 across the samples had more viruses than 264 

enterotype 2 (Figure 4C). A higher value of the Shannon index and a smaller sample distance in 265 

enterotype 1, compared with enterotype 2, indicated its more stable composition pattern. We found 266 

that more individuals were categorized as enterotype 1 than enterotype 2 (1204 vs. 716). By 267 

comparing the proportion of healthy samples with the two enterotypes, we found that individuals 268 

who were categorized as enterotype 2 had a higher risk of being sick than those who were 269 

categorized as enterotype 1 (odds ratio: 1.38, Fisher’s exact test, p = 0.01). We observed an 270 

interesting finding when we compared samples from the cirrhosis project and the Sweden mother-271 

child project. The third enterotype had the most discrete sample distribution in the cirrhosis project, 272 

and a higher viral count and Shannon index compared with the Sweden mother-child project (Figure 273 

3C). In contrast, the third enterotype had a large sample distance and the lowest viral count and 274 

Shannon Index in the Sweden mother-child project. The cases in these two projects had 275 
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diverse medical conditions. Specifically, the case cohort in the cirrhosis project had disordered gut 276 

virome due to the disease, which explains why the number of viruses in the samples did not decrease. 277 

In contrast, children in the Swedish mother-child project lacked a stable gut virome and had a lower 278 

viral count, which suggested that enterotype 3 in the samples of this project was not caused by any 279 

disease. 280 

The viral enterotype may play a dominant role in influencing the structural variance of the gut virome 281 

via a variety of factors. The Adonis test was used to determine the significance of viral enterotypes. 282 

The results were significant in all projects. Our results explain most of the structural variance in the 283 

gut virome (Figure 4D). In the Peru and cirrhosis projects, the Adonis R squared values were 0.62 284 

and 0.57, respectively. Age, disease, BMI, raw data, and sex were not significant factors affecting 285 

viral enterotypes in most projects, but Adonis p values reached significance in several projects. 286 

Disease was the second most significant factor in the projects, which suggested that illness had a 287 

higher ability to reshape the gut microbiome than other factors. Characterizing the interaction 288 

between the gut virome and external stimuli was complex. Whether a single factor has a particular 289 

contribution requires consideration of the context of this factor. An example of this situation is that, 290 

in liver cirrhosis, the association between the gut virome and age was strong, but it was not 291 

significant for diabetes. 292 

Table 2: Manually categorized results for each project. 293 

Enterotype Enterotype 1 Enterotype 2 Enterotype 3 

Denmark no phenotype GP1 GP2 - 

China cirrhotic GP2 GP1 GP3 

Sweden mother-offspring pair GP3 GP2 GP1 

China rheumatoid arthritis GP1 GP2 - 

Austria carcinoma GP1 - GP2 

UK no phenotype GP1 GP2 - 

China colorectal cancer GP1 GP2 - 

China hypertension GP2 GP3 - 

China coronary heart disease GP1 GP2 - 

China T2D discovery GP1 GP2 - 

China T2D validation GP1 GP2 - 

China healthy Mongolian GP1 GP2 - 

China ankylosing spondylitis GP1 GP2 - 
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Groups in the same column were considered to belong to one enterotype. 294 

[insert figure 5 here] 295 

Enterotypes are useful for describing the gut microbial community, and determining the association 296 

between diseases and enterotype is important to detect high risk individual in population. In the liver 297 

cirrhosis project, individuals could be broadly divided into three categories (Figure 5A). Enterotypes 298 

1 and 3 were enriched in healthy individuals and patients, respectively (69 controls/16 cases vs. 2 299 

controls/64 cases, Supplementary Table 6), and enterotype 2 accounted for half of them (43 controls, 300 

43 cases, Supplementary Table 6). We found that the viral enterotype was significantly related to 301 

liver cirrhosis (Fisher’s exact test, p = 5.99E-24, Supplementary Table 7). Enterotype 3 was loosely 302 

distributed in individuals (Figure 5A). However, enterotypes 1 and 2 showed a closer relationship. 303 

These three groups did not have discrete clustering boundaries and demonstrated some overlap with 304 

one another in the PCoA plot. There was no apparent clustering of samples enriched locally due to 305 

the viral count or the Shannon index (Figure 5B). In the hypertension project, the clustering 306 

boundaries of enterotypes 1 and 3 were more pronounced than those for enterotype 2 (Figure 5C), 307 

and there was no overlapping area between the two clusters. This finding was surprising because 308 

individuals in enterotype 2 had a smaller viral count and a lower Shannon index (Figure 5D). Some 309 

of them were close to enterotype 1, while others had clusters of enterotype 3. However, the specific 310 

vOTUs and enrichment direction of individuals in enterotype 2 showed a high consistency (Figure 311 

4B), indicating that enterotype 2 was real. We found no significant association between the viral 312 

enterotype and hypertension (Fisher’s exact test, p = 0.3, Supplementary Table 7). Gut virome 313 

community disorders showed significant differences in the cirrhosis and hypertension projects, which 314 

indicated that not all diseases caused evident ecological perturbation in the human gut. Thus, 315 

applying viral enterotypes as biomarkers for predicting clinical disease requires specific 316 

consideration. 317 

4 Discussion 318 

Recent investigations have shown that enterotypes of the human gut can be divided into two 319 

categories based on their predominant flora (Bacteroidetes/Prevotella). Their functions correspond to 320 

the digestion of meat and vegetarian food (Arumugam et al., 2011; Costea et al., 2017). However, 321 

some researchers consider that the distribution of enterotypes is not discrete, but rather gradient. This 322 

viewpoint suggests that those two enterotypes are the two endpoints of the gradient distribution of 323 

Bacteroidetes/Prevotella(Jeffery et al., 2012). This study used the DMM method to assign viral 324 

enterotypes and showed that there were two enterotypes in most projects. Viral enterotypes did not 325 

have an apparent dominant virus. An explanation for this finding may be that most human 326 

enteroviruses are dsDNA viruses. As previously reported, dsDNA viruses are less harmful than RNA 327 

virus to the human body(Dutilh et al., 2014; Camarillo-Guerrero et al., 2021). These viruses do not 328 

undergo strong selection when colonizing the human gut, and there is no dominant viral strain that 329 

can occupy the whole human intestine. Recent studies have shown two common and harmless 330 

dsDNA virus branches in the human intestine, namely crAssphage(Dutilh et al., 2014) and 331 

Gubaphage(Camarillo-Guerrero et al., 2021). These two dominant virus branches may correlate with 332 

the two main viral enterotypes observed in this study. We analyzed the abundance of vOTUs 333 

corresponding to each enterotype and found that in different projects, the OTUs and enrichment 334 

direction of a specific virus in the same viral enterotype were consistent. Therefore, existing evidence 335 

and our findings support the view of two discrete viral enterotypes. 336 
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There was a third enterotype in several projects, but because of limited evidence, we could not 337 

conclude that it is ubiquitous in the human gut. In the hypertension project, researchers found that all 338 

specific vOTUs in the enterotype were shared with enterotypes 1 and 2. PCoA analysis also showed 339 

that individuals were located in the interconnection area, which is likely to explain a gradient 340 

distribution. In the liver cirrhosis project, 64 of the 66 samples were from patients, and the third 341 

enterotype was significantly related to patients. Unlike the hypertension project, the third enterotype 342 

in patients with liver cirrhosis was not related to the number of viruses. In other projects, viral 343 

enterotypes 1 and 2 had more specific viruses and a higher consistent enrichment direction in contrast 344 

to the rare specific viruses of viral enterotype 3 and an inconsistent enrichment direction. This result 345 

suggests that a third viral enterotype in various projects may not have belonged to the same cluster. 346 

Therefore, we cannot conclude that there was a stable presence of viral enterotype 3 in the 347 

population. We speculate that interaction between emergence of a disease and disorder of the gut 348 

virome may contribute to emergence of viral enterotype 3. Our results are in agreement with existing 349 

studies on the disruption of the human gut community that accompanies disease(Wang and Jia, 2016; 350 

Yu et al., 2017; Nakatsu et al., 2018). 351 

In this study, enterotype 1 had a higher viral count and Shannon index compared with enterotype 2. 352 

In addition to having a smaller sample distance, we speculate that enterotype 1 might have more 353 

stable viral ecological communities than enterotype 2. We found enterotype 2 had 1.38 times more 354 

patients than the one in enterotype 1. This result suggests that a stable microbial community has a 355 

higher ability to resist the influence of external stimulations. In the cirrhosis project, enterotype 3 was 356 

characterized as being enriched in patients and having an extremely disordered gut virome. 357 

Enterotype 3 had the largest sample distance and highest number of virus species. A possible reason 358 

for this finding is that bile acid secretion in patients with liver cirrhosis is obstructed, which leads to 359 

drastic changes in the gut microbiome of the patients. This may have resulted in large-scale 360 

replacement of the virome and reduced similarity of virus species in this patient population. It is also 361 

possible that the microenvironment of viral evolution in the human body is disturbed owing to 362 

disease progression or the similarity of virus species is decreased due to a shift in the distribution of 363 

the ecological gradient. We also found a large distance in samples from the Sweden mother-child pair 364 

project, with the viral count being significantly lower than the global average level. A possible 365 

explanation for this finding is that the gut microbiome of young children is developing and has yet to 366 

reach a stable state(Derrien et al., 2019). 367 

We determined enterotypes at the bacterial and viral levels in the China diabetes(Wang et al., 2012), 368 

and found a strong correlation between enterotypes at these two levels (China T2D discovery: p = 369 

1.70E-07; China T2D validation: p = 1.58E-11, Fisher’s exact test, Supplementary Table 8). We 370 

found that enterotypes (bacterial and viral levels) were not randomly distributed and that the bacterial 371 

community had a strong selection effect on the viral community. However, bacterial- and viral-level 372 

enterotypes were not correlated or were weakly correlated with sex, age, BMI, and disease 373 

(Supplementary Table 9). This finding may be explained by the use of high-abundance bacterial and 374 

viral species for determining enterotypes. A high abundance of bacteria or viruses in the intestine is 375 

significantly related to disease. Such a high abundance directly and severely affects the human body, 376 

That is a microbial infection, not a harmonious symbiosis, which is in contrast to the current 377 

understanding of the gut community and health. Wang et al. used enterotype as a covariate in their 378 

study and proposed a useful method to stratify human gut microbiomes in MWAS, which effectively 379 

improved the power of hypothesis testing(Wang et al., 2012). Although we found a strong correlation 380 

between bacterial and viral enterotypes, they were not proven to be equivalent. Therefore, we suggest 381 

using bacterial and viral enterotypes as independent covariates in MWAS. More in-depth 382 
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investigations are warranted to determine whether this strategy can efficiently reduce false-positive 383 

and false-negative rates of investigating pathogenic microbiomes. 384 

We used MaAsLin2 to identify viruses that were specific to enterotypes and disease. We found that 385 

the number of vOTUs that were specific to disease was significantly lower when we simultaneously 386 

entered these two factors into the software program than when we entered only disease. In the 387 

cirrhosis project, 56 vOTUs were specific to the disease state (q-value ≤ 0.05), when the enterotype 388 

was excluded. In contrast, we found 241 and 7 vOTUs were specific to the enterotype and disease, 389 

respectively, when we included these two factors simultaneously. There were 21 vOTUs tested as 390 

disease-related became enterotype-associated. These results suggest that viral enterotypes need to be 391 

taken into account is MWAS. Although much of the literature suggests that most dsDNA viruses are 392 

not strongly associated with disease, we cannot rule out the contribution of dsDNA viruses to illness. 393 

To better determine the efficacy of using enterotypes to identify the disease state, a standardized 394 

method is first required for determining enterotypes. One such standardized pipeline for enterotypes 395 

was previously reported by Costea et al. (2017). Researchers have also established an enterotype 396 

database of the gut microbiome community on the basis of the MetaHIT dataset (Qin et al., 2010; le 397 

Chatelier et al., 2013). They then built a machine learning model and trained it by applying the 398 

MetaHIT dataset and the corresponding enterotypes. Finally, this model was used to predict the 399 

enterotypes of testing samples on the basis of their bacterial abundance matrix. We independently 400 

assigned enterotypes in different projects and found that the two manually adjusted categories shared 401 

the most specific viruses and similar enrichment directions. This consistency masked the batch 402 

effects among different datasets, and demonstrates the ability of viral enterotypes to identify 403 

individuals with disease. The construction of a large-scale viral enterotype database to define the 404 

enterotyping mathematical space of healthy individuals might be helpful to detect individuals with 405 

disease outside the mathematical space. Therefore, we believe that using viral enterotypes of the gut 406 

virome community as a feature for disease prediction will significantly improve the accuracy of 407 

disease prediction. 408 
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 551 

Figure 1: Location, taxonomic assignment, and abundance of the 2,690 samples. A: Geographic 552 

locations of the 18 projects, with classification by the number of enterotypes. B: Pie chart shows viral 553 

taxonomic assignment at the family level by protein alignment. C: Principal Coordinates Analysis 554 

(PCoA) plot based on the Bray–Curtis distance and the relative abundance of viruses. D: t-555 

Distributed Stochastic Neighbor Embedding (tSNE) plot based on the relative abundance of viruses. 556 

 557 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.26.453761doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.26.453761
http://creativecommons.org/licenses/by-nd/4.0/


  Running Title 

 
17 

 558 

Figure 2: Cumulative curves of the number of virus species against the number of samples. A: 559 

Cumulative curves of cases, controls, and all samples. Only samples from studies with a case–control 560 

design were included. B: Cumulative curves of sample data divided into seven countries. 561 

 562 
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 563 

Figure 3: Gut virome characterized by beta diversity in the included projects. (A) Principal 564 

coordinates analysis plot of the cirrhosis project. Each ellipse represents a cohort, and the point 565 

connected by the straight gray lines represents the centroid. (B) Boxplot of the distance to the 566 

centroid. A significant difference in the distance to the centroid was found between the two groups. 567 

(C) Principal coordinates analysis plot of the hypertension project. (D) Boxplot of the hypertension 568 

project with comparison for each pair of the three groups. 569 

 570 
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 571 

Figure 4: Characterization of viral enterotypes in all projects. A: We used the random pairing method 572 

to confirm the accuracy of artificial enterotype classification. The density map shows the score 573 

distribution of 5 million permutations, and the red line indicates the score of the manual category. B: 574 

The categories of manual enterotypes in different projects show a high concordance of their specific 575 

vOTUs and enrichment direction. C: Ecological diversity of different viral enterotype populations. D: 576 

Effect of different covariates on the structural variance of the gut virome community. 577 
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 579 

Figure 5: Detailed PCoA map of liver cirrhosis and hypertension. A: Samples of liver cirrhosis were  580 

plotted in relation to their phenotype and enterotypes. B: Samples of liver cirrhosis were plotted in 581 

relation to their viral count and Shannon index. C: Samples of hypertension were plotted in relation 582 

to their phenotype and enterotype. D: Samples of hypertension were plotted in relation to their viral 583 

count and Shannon index. 584 
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