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ABSTRACT 

BACKGROUND: Age and sex associated with changes in functional brain network topology 

and cognition in large population of older adults have been poorly understood. We explored 

this question further by examining differences in 11 resting-state graph theory measures with 

respect to age, sex, and their relationships with cognitive performance in 17,127 UK Biobank 

participants (mean=62.83±7.41 years).  

METHODS: Brain connectivity toolbox was used to derive the graph theory measures that 

assessed network integration, segregation, and strength. Multiple linear regression was 

performed the relationship between age, sex, cognition, and network measures. Subsequently, 

multivariate analysis was done to further examine the joint effect of the network measures on 

cognitive functions.  

RESULTS: Age was associated with an overall decrease in the effectiveness of network 

communication (i.e. integration) and loss of functional specialisation (i.e. segregation) of 

specific brain regions. Sex differences were also observed, with women showing more 

efficient networks which were less segregated than in men (FDR adjusted p<.05). Age-

related changes were also more apparent in men than women, which suggests that men may 

be more vulnerable to cognitive decline with age. Interestingly, while network segregation 

and strength of limbic network were only nominally associated with cognitive performance, 

the network measures collectively were significantly associated with cognition (FDR 

adjusted p≤.002). This may imply that individual measures may be inadequate to capture 

much of the variance in neural activity or its output and need further refinement.   

CONCLUSION: The complexity of the functional brain organisation may be shaped by an 

individual’s age and sex, which ultimately may influence cognitive performance of older 

adults. Age and sex stratification may be used to inform clinical neuroscience research to 

identify older adults at risk of cognitive dysfunction.  
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INTRODUCTION  

The brain is topographically organised into distinct networks. In the recent years, 

neuroscientists have examined networks to understand brain function in preference to the 

classic study of specific brain regions. There are several approaches to mapping these brain 

networks, with one approach being resting-state functional magnetic resonance imaging (rs-

fMRI). Rs-fMRI measures spontaneous brain activity as low-frequency fluctuations in bold 

oxygen level-dependent (BOLD) signals and is used to understand brain function (1). In 

network models of rs-fMRI data, functional brain networks are summarised into a collection 

of nodes (i.e., brain regions) and edges (i.e., magnitude of temporal correlation in fMRI 

activity between regions) (2, 3). This network model can then be used to study the global and 

local properties of the functional brain networks (Table 1). There is evidence that adult 

human brains are organised into groups of specialised functional networks that are able to 

respond to various cognitive demands (1). Therefore, studying the organisation of functional 

networks in the ageing brain may allow us to understand age-associated cognitive changes, 

even in the absence of brain disease (4, 5).  

Reorganisation of the functional networks in the brain has been observed with ageing, 

and is also associated with changes in cognition (6-10). Age-related alterations have been 

associated with a less efficient global network, decreased modularity, longer path lengths, 

and higher clustering coefficient, which may suggest a shift to more local organisation in 

older age (6, 8, 11, 12). These topological functional network changes occurred most 

pronouncedly in regions important for cognition. For instance, high clustering coefficients in 

some frontal, temporal, and parietal regions were related to lower performance in verbal and 

visual memory functions (13). Declines in default mode network, which comprises the 

medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices (14), 

are reported in ageing and have been associated with memory consolidation (15). In addition, 
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it has been observed that age has a mediating role in the correlation between local clustering 

coefficients and verbal memory learning scores (13).  Similarly, another study found that the 

relationship between aging and general decline in cognition could be mediated by changes in 

the functional connectivity measures such as path length (16).  

Previous studies have also shown sex differences in the organisation of brain 

functional networks using graph theory measures. Men showed network segregation (i.e., 

specialised processing of the brain at a local level) whereas women showed more network 

integration (i.e., how rapidly the brain can integrate specialised information at a global 

network level) (8). Another study observed that men had a higher clustering coefficient in the 

right hemisphere than the left hemisphere (17), suggesting that men had greater specialisation 

of the right hemisphere. In addition, age-related differences in reorganisation of functional 

connectivity may also differ by sex, with men showing increasing between-network 

connectivity (18) while women exhibiting less age-related decreases in the default mode and 

limbic networks (19). It is noteworthy that age-related changes in cognition also differ by 

sex. For instance, a recent study has observed that while women had significantly higher 

baseline global memory, executive function, and memory performance than men, they 

showed significantly faster declines in the global memory and executive function (20). 

Another study found that older men had steeper rates of decline on measures of 

perceptuomotor speed and integration as well as visuospatial abilities (21). Taken together, 

the findings show that sex may influence age-related functional reorganisation in the brain 

and improving our understanding of this may shed light onto why some cognitive abilities 

differ substantially by sex (22).  

There is evidence to show that changes in cognition may be due to the changes in 

functional network connectivity. Segregated functional networks, for instance, seemed to be 

associated with better long-term episodic memory and fluid processing (23). However, there 
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have been mixed findings regarding how resting-state functional connectivity differences 

relate to cognitive performance. One longitudinal study found age-related decline of within-

network connectivity in default mode and executive control networks but without 

associations with cognitive decline, whereas an association of between-network connectivity 

of default mode network and executive control network with processing speed was also 

observed (24). In contrast, another longitudinal study showed positive associations between 

within-network connectivity of the default mode network and memory performance (25).  

One previous study has investigated the functional network architecture of older 

adults with respect to age, sex, and cognitive performance (attention, episodic and working 

memory, executive function, and language) in a cohort of 722 participants with ages between 

55 and 85 years old (mean age of 67.1 years) (26). They found resting-state functional 

connectivity reorganisation with age, particularly in the visual and sensorimotor networks, 

which may suggest that these networks may mediate age-related differences in cognitive 

performance. In addition, the authors observed that men showed higher network integration 

whereas women showed more segregation, which may possibly facilitate sex-related 

differences in cognitive performance.  

This study aims to extend previous work by firstly examining age, sex, and cognitive 

function in association with functional network properties but in a much larger sample of 

17,127 UK Biobank participants. Additionally, a more extensive range of graph theory 

measures, which assess the global and local properties as well as the strength of the network, 

will be examined as summarised in Table 1. These measures are namely global efficiency, 

characteristic path length, Louvain modularity, transitivity, and strength of default, dorsal 

attention, frontoparietal, limbic, salience, somatomotor, and visual networks, which are 

typically found to change with aging (7) and are involved in multiple neuropathological 

processes (27-29).   
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METHODS AND MATERIALS  

Participants  

Data from 20,598 participants of European ancestry with rs-fMRI scans from the UK 

Biobank (aged between 44 and 80 years old) (30) were accessed in March 2019. The imaging 

assessment took place at three different assessment centres: Manchester, Newcastle, and 

Reading, UK. This project was approved by the NHS National Research Ethics Service 

(approval letter dated 17th June 2011, ref. 11/NW/0382), project 10279. All data and 

materials are available via UK Biobank (http://www.ukbiobank.ac.uk).  

 

Image pre-processing and graph theory analyses 

All participants underwent rs-fMRI scan on a Siemens Skyra 3T scanner (Siemens Medical 

Solutions, Erlangen, Germany). Rs-fMRI was obtained using a blood-oxygen level dependent 

(BOLD) sequence using am echo-planar imaging (EPI) sequence (TR = 0.735s, TE = 39 ms, 

FoV = 88 ´ 88 ´ 64, voxel resolution 2.4 ´ 2.4 ´ 2.4 mm), lasting for ~6 mins (for more 

details, see https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf).  We analysed 

the rs-fMRI data that were previously pre-processed by the UK Biobank (31). The pre-

processing steps involved: motion correction, intensity normalisation, high-pass temporal 

filtering, EPI unwarping, and gradient distortion correction. ICA+FIX processing (32-34) 

was then used to remove structural artefacts. Participants with motion of > 2mm/degrees of 

translation/rotation were removed. After image pre-processing and quality control, 18,500 

participants remained.   

The regions of interest (ROIs) used to construct the network properties were selected 

from the Schaefer atlas (35) corresponding to 100 cortical regions classified into seven 

resting-state networks including frontoparietal control (FPCN), default mode (DMN), dorsal 

attention (DAN), salience ventral attention (SVAN), limbic (LIMB), somatomotor (SM), and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.25.453293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.25.453293


visual (VIS) networks. 3dNetCorr command from Analysis of Functional Neuroimaging 

(AFNI) (36) was used to produce network adjacency matrix for each participant. The mean 

time-series for each region was correlated with the mean time-series for all other regions and 

extracted for each participant. Further, these time courses are used to estimate the size of 

signal fluctuation in each node, as well as to estimate connectivity between pairs of nodes 

using L2-regularisation (rho = 0.5 for Ridge Regression option in FSLNets). More details can 

be found in Miller, Alfaro-Almagro (37). Partial correlation, r, between all pairs of signals 

was computed to form a 100-by-100 (Schaefer atlas) connectivity matrix, which was then 

Fisher z-transformed. Self-connections and negative correlations were set to zero. As rs-fMRI 

can vary across magnitude, the use of undirected weighted matrices may provide a more 

comprehensive picture of the functional brain networks. The stronger the weights, the 

stronger the connections between nodes. In addition, we used undirected graph because rs-

fMRI data do not permit inferences about the possible direction of information flow. 

However, undirected graph is useful as it allows us to identify existing connections between 

specific pairs of network nodes (38). Therefore, we used weighted undirected matrices in our 

study.  

All graph theory measures were derived using the Brain Connectivity Toolbox (BCT) 

(2). Functional integration can be assessed by global efficiency, which refers to the 

transmission of information at a global level, and characteristic path length, which is the 

average shortest distance between any two nodes in the network. To assess network 

segregation, which characterizes the specialized processing of the brain at a local level, we 

calculated the Louvain modularity and transitivity. Louvain modularity is a community 

detection method, which iteratively transforms the network into a set of communities, each 

consisting of a group of nodes. Higher modularity values indicate denser within-modular 

connections but sparer connections between nodes that are in different modules. Transitivity 
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refers to the sum of all the clustering coefficients around each node in the network and is 

normalized collectively. Finally, strength (weighted degree) is described as the sum of all 

neighbouring edge weights. High connectivity strength indicates stronger connectivity 

between the regions, which provides an estimation of functional importance of each network. 

Subsequently, we averaged the two hemispheres to derive a value for each node and averaged 

within each network to derive a value for each of the 7 networks for strength measures. A 

total of eleven graph theory measures were used in the current study. 

 

Cognition  

Cognitive assessments were administered on a touchscreen computer and were acquired at 

the imaging visit (instance 2). Seven tests from the UK Biobank battery of tests were selected 

to represent three cognitive domains(39, 40) namely processing speed, memory, and 

executive function, in this study. All test scores were first z-transformed and then averaged to 

form domain scores. Processing speed domain included the following tests: “Reaction Time” 

(average time to correctly identify matches in a “snap”-like card game task), “Trail Making 

A” (time taken to complete a numeric path), and “Symbol Digit Substitution” (number of 

correct symbol number matches within the time limit). “Numeric Memory” (maximum 

number of digits remembered correctly) and “Pairs Matching” (number of incorrect visual 

matching) represented the memory domain whereas “Trail Making B” (time taken to 

complete an alphanumeric path) and “Fluid Intelligence” (total number of questions that 

required logic and reasoning correctly answered) formed the executive function domain. 

Global cognition was computed by averaging the domain scores and z-transformed. After 

including those with cognition and graph theory data, the final sample in this study was 

17,127 UK Biobank participants.  
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Statistical analysis  

Statistical analyses were performed with R (V 4.0.0) (41). The graph theory measures were 

normalized using ranked transformed within the ‘rntransform’ function in R from GeneABEL 

package (42) and age was z-transformed for regression analysis. In line with previous studies 

(43), we controlled for imaging covariates, including head size, head motion from rs-fMRI, 

and volumetric scaling factor needed to normalize for head size, as well as scanning site and 

education. The network measures were residualised for imaging covariates and assessment 

centre and used in all subsequent analyses.  

To explore age effects and sex-related changes in the networks, a multiple linear 

regression that modelled the targeted property of networks as the dependent variable and age, 

age2, sex (Female = 0, Male = 1), years of education, and age-by-sex and age2-by-sex 

interactions as predictors was undertaken. In addition, separate multiple linear regressions 

were performed to study whether the network measures influenced cognitive functions 

(dependent variable) with covariates as in the previous model.  

Multivariate analysis was done to further examine the joint effect of the network 

measures on cognitive functions after accounting for the same set of covariates in the 

univariate model.  Since the network measures are correlated we used penalised regression 

analysis using glmnet algorithm as implemented in the r package caret (44). The glmnet uses 

two penalty functions with tuning parameters to shrink the beta coefficients in the generalised 

linear model (glm). We used elastic net glm model with default options to identify the 

optimum tuning parameter estimates. Network measures and the covariates with non-zero 

regression co-efficient in the training step was fit with linear regression model. Likelihood 

ratio tests, p-values and the incremental r-square were computed by comparing the model 

with network measures (full model) again a model with only the covariates (base model).  
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False discovery rate – adjusted p-values were obtained by using Benjamini and Hochberg 

(45) procedure as implemented in the R function p.adjust.  

 

RESULTS  

Sample characteristics  

The current sample of 17,127 participants is a group of generally healthy middle-aged and 

older adults (range = 45.17 – 80.67 years, mean age = 62.83 ± 7.41 years) after including 

only samples with cognition and graph theory data. Of this sample 9,037 were women and 

8,090 were men, with an overall mean of 15.73 ( ± 4.74) years of education. Significant 

differences were observed for the demographics, graph theory measures, and memory scores 

between men and women (Table 2). Figure 1 shows the significant correlations between the 

network measures, except for transitivity, which was not significantly associated with any 

other measures.  

 

Age- and sex- related differences in functional brain network  

Figure 2 and Table 3 summarise the results of age- and sex- related differences in the graph 

theory measures. Global efficiency, Louvain modularity, and strength of the networks 

decreased significantly with age, whereas characteristic path length and transitivity increased 

significantly with age. The only exceptions were that strength of default and salience 

networks were not significantly associated with age.  

Sex was significantly associated with all measures, except for transitivity. Men 

appeared to have lower global efficiency, transitivity, and strengths of all the networks as 

well as longer characteristic path lengths compared to women. Men showed increased 

Louvain modularity compared to women. 
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Age and sex interaction were negatively associated with Louvain modularity, and 

strength of visual, limbic, and default networks. This implies that age-related changes in 

these measures were more apparent in males than females.  

 

Association of network measures with cognition  

We examined the network influence on cognition after controlling for age, age2, sex, and 

education. Although none of these results would survive correction for multiple testing, we 

report the results that were nominally significant. Louvain modularity showed positive 

associations with global cognition whereas transitivity was negatively associated with 

memory. Strength of limbic network also showed negative associations with global cognition 

and memory (Supplementary table 1).  

We further examined this relationship to see if it was moderated by age and sex. 

However, none of the interaction effects between network measures and age or sex on 

cognition were significant (Supplementary table 2).  

 

Multivariate analysis between network measures and cognition 

Given the significant correlations between the network measures, we further investigated 

whether the joint effect of the network measures contributed to cognition after controlling for 

age, sex, and education variables. A summary of the results of each of the examined models 

are presented in Supplementary table 3. We observed that while the R2 difference between the 

base model (age, age2, sex, and education) and the full model with the network measures was 

small, the joint effect of the network measures still significantly contributed to cognition 

(Table 4).  
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DISCUSSION  

Changes to resting-state networks due to ageing arguably reflect more fundamental 

alterations or adaptations at the general level of brain function (46). Graph theoretical 

approaches may be the most integrative way to investigate resting-state functional 

connectivity (RSFC) as it studies connectivity at both nodal and systems levels (46). 

Therefore, in this study, we examined the topological age and sex relationship with functional 

brain networks, using graph theory measures, and cognition. We observed that most 

functional brain network measures showed decreasing strength of connectivity as well as 

reduced efficiency of communication and specialisation between the networks with ageing. 

However, the default mode and salience networks were an exception to this finding, with no 

significant results observed.  In addition, there were significant sex differences in brain 

functional network topology where women showed greater efficiency of networks and 

network strength but less modularity than men. Further, age-related changes were more 

apparent in men than women. Lastly, the collective effect of the network measures 

contributed significantly to cognitive performance, with the highest correlation being with 

processing speed. However, no one network measure was significant after multiple testing 

adjustment.  

We observed that global efficiency correlated negatively with age whereas 

characteristic path length correlated positively with age, which was similar to a previous 

study (13). This suggests an overall age-related decrease in the effectiveness of the 

communication between brain regions. In addition, the finding that modularity decreases with 

age has also been reported previously (7). This implies that increasing age is associated with 

a less differentiated functional modular structure, which may be either due to the increase in 

between-network connections or the decrease in within-network connections or both (7, 10). 

At younger ages, functional brain networks are more segregated with every network being 
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relatively specialised for distinct mental processes (10). The data suggest that there is some 

loss of functional specialisation of specific brain networks as the brain ages (47), which may 

be important for cognitive reserve and compensation in older adults. . Furthermore, we 

showed age-related decline in all of the other network strengths, excluding the DMN and 

salience network. However, results for other networks from previous studies are more 

complex. For instance, Betzel and colleagues (9) found within-network decline for higher 

order control and attention networks but stability for visual and somatomotor networks, 

whilst another study (7) showed increased global and local efficiency in the sensorimotor 

network in older compared to younger adults. Taken together, our data and others suggest 

age-related vulnerability in global network measures as well as specific network strengths.   

Importantly, we did not observe any age-related decline in the DMN and salience 

network. Prior works suggest that within-network posterior DMN connectivity, including the 

angular gyrus, anterior cingulate cortex, precuneus, dorsal prefrontal, and inferior parietal 

lobe, decreases with age, (6, 7, 9, 10, 26). In contrast, within the older adult population, DMN 

as a whole remains relatively stable  (26, 48). This finding is important as it shows that 

anterior-posterior DMN has differential vulnerability to age-related changes. Moreover, the 

salience network seems to remain relatively stable throughout the lifespan (10, 49) as well as 

in older age (26, 50). Interestingly, the DMN and salience network have also been implicated 

in age-related diseases such as Alzheimer’s disease (AD) and depression. One study observed 

that individuals with AD showed moderate decrease of within-network DMN between the 

posterior cingulate cortex and right hippocampus as compared to healthy controls but no 

differences were evident for whole-network DMN (51). Further, compared to older adult 

controls, individuals with AD showed significantly decreased within-network functional 

connectivity in the frontoinsular cortices and increased FC in medial prefrontal cortex in the 

salience network (52). Similarly, older adults with depression demonstrated higher within-
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network DMN in the left precuneus, subgenual anterior cingulate cortex (ACC), ventromedial 

prefrontal cortex, and lateral parietal regions than controls (53). In addition, regarding the 

salience network, within-network bilateral anterior insula showed decreased connectivity but 

bilateral ACC showed increased connectivity in middle-aged adults with depression 

compared to controls (54). These findings suggest that while the whole DMN may be 

preserved, within-network posterior DMN may be vulnerable to ageing and ageing-related 

diseases. 

The topology of functional brain networks differed by sex. We detected significant 

sex effects on all the assessed graph theory measures. Consistent with results from Zhang et 

al. (8) showing that female brains facilitated functional integration in young adults, we found 

that in older individuals, women indeed had higher global efficiency and shorter 

characteristic path length than men. Similarly, congruent with previous findings, we also 

observed women had higher normalised clustering coefficients (i.e. transitivity) than men (8). 

However, men exhibited stronger Louvain modularity which suggests that there may be sex 

differences even within network segregation. It has previously been reported that women tend 

to exhibit overall higher within-network RSFC (55), which is consistent with our finding that 

women had higher network strengths than men. Similarly, consistent with previous findings 

that women show less age-related decreases in RSFC in the default and limbic network (19), 

we found that age-related changes in strengths of the limbic and default networks in addition 

to Louvain modularity and strength of visual network were more apparent in males than 

females. This suggests that ageing-related changes in the functional brain network are 

different in the two sexes and that this difference may in part account for the differential 

vulnerability in cognitive decline between men and women.  

Functional connectivity architecture in the brain has been associated with cognitive 

performance in older adults independent of age, sex, and education in this study. We 
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observed that decreased Louvain modularity was nominally associated with decline in global 

cognition and that decreased transitivity was nominally associated with decline in memory. 

Individuals with less segregated networks exhibited poorest memory ability after controlling 

for age, which may suggest that network segregation may be an age-invariant marker of 

individual differences in cognition (10). In addition, prior evidence from cognitive training 

interventions has shown that higher modularity at baseline in older adults was associated with 

greater cognitive training improvements, especially in sensory-motor processing (56). 

Furthermore, given that the limbic network derived from the Schaefer parcellation comprises 

the orbitofrontal cortex and temporal pole, and these regions are associated with memory 

formation (57) and executive function (58), it supports our finding that the strength of the 

limbic network showed negative associations with memory and executive function. While 

there is nominal significance between individual network measures and cognition, the joint 

effect of all the network measures contributed significantly to cognition after accounting for 

age, sex, and education. This suggests that cognitive decline observed in older adults may be 

partially explained by independent changes in brain functional network organisation. It also 

implies that individual network measures may be inadequate to capture much of the variance 

in neural activity and the functional output. Future studies are needed to combine various 

strategies to more holistically understand the network topology in relation to cognition.  

The strengths of this study include a well-characterised large middle and older aged 

cohort, uniform imaging methods, the inclusion of a range of network measures associated 

with age and ageing-related diseases, and the examination of a number of cognitive domains. 

This is the largest study of its kind thus far.  However, limitations should also be considered. 

Firstly, this study is cross-sectional, which precludes the ability to detect subtle changes in 

the functional brain topology over time within individuals. Secondly, while using weighted 

undirected matrix circumvents issues surrounding filtering/thresholding the connectivity 
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matrix to maintain significant edge weights represented in a binary matrix, there are inherent 

difficulties associated with the interpretation of the results. As brain signals recorded from 

resting-state fMRI are typically noisy, it is possible that edge weights may be affected by 

non-neural contributions (59). Despite this, with careful denoising of the resting-state fMRI 

data (60, 61) and covarying for motion, it is possible to minimize the noise in the data. Given 

that we have performed motion correction and included it as a covariate as well as performed 

regularisation on the imaging data, we are confident that the estimation of the partial 

correlation matrix derived for subsequent analysis of the graph theory measures is valid. 

Moreover, while we were only interested in investigating whole network functional 

connectivity, given the findings from DMN and salience network, it may be beneficial to 

look at individual nodes within the network to more holistically capture the nodal topology. 

Lastly, given the principles of neurobiology, we assumed that network properties influence 

cognition and not the other way around. This question needs to be examined longitudinally to 

confirm the directionality of the relationship.  

In conclusion, in this large population-based study age was associated with decreased 

overall network integrity and specialised processing of the brain at a local level. Women had 

better functional network topology properties than men, with men tending to have denser 

within-network connections but sparser connections between-network connections. This 

work demonstrates the complexity of functional brain organisation that is shaped by age, sex, 

and other factors, which ultimately may influence cognitive performance of older adults.  
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Table 1. Graph theory measures and their association with age and age-related diseases 
 

Graph theory 
measures  Definition  Associations with age and 

ageing-related diseases 

Global efficiency 

How effectively the information is 
transmitted at a global level and is the 
average inverse shortest path length. 
Higher values imply greater efficiency.  
 

Older age was associated with 
reduced global efficiency 
compared to younger 
participants (12) 
 

Characteristic path 
length 

It is the average of all the distances 
between every pair of nodes in the 
network. It reflects the integrity of the 
network and how fast and easily 
information can flow within the 
network. Shorter characteristic path 
length reflects more efficient 
transmission of information.  
 

Older age was associated with 
longer characteristic path 
lengths compared to younger 
participants (13) 

Louvain Modularity  

Community detection method, which 
iteratively transforms the network into a 
set of communities or modules, each 
consisting of a group of nodes. Higher 
modularity values indicate denser 
within-modular connections but sparser 
connections between nodes that are in 
different modules.  
 

Brain networks in the elderly 
showed decreased modularity 
(less distinct functional 
networks) but findings were 
mixed (10) 

Transitivity 

Total of all the clustering coefficients 
around each node in the network and is 
normalized collectively. Higher values 
represent greater specialisation of the 
brain.  
 

Patients with Alzheimer's 
disease (AD) showed lower 
normalized clustering 
coefficient (i.e. transitivity) 
(62) 
 

Strength Sum of all neighbouring edge weights. 
High connectivity strength indicates 
stronger connectivity between the 
regions.  
 

Age-related differences were 
observed in network-level 
functional connectivity such as 
increases in auditory network, 
decreases in connectivity in the 
visual, frontoparietal, dorsal 
attention, and salience 
network. However, findings 
were mixed (6, 7, 9).  
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Table 2. UK biobank sample characteristics and descriptive statistics (mean ± standard 

deviation) of graph theory measures and cognition measures in women and men  

 Women Men t-value p-value 

Age, years (range) 62.21 ± 7.23 (45–80) 63.53 ± 7.55 (45-80) -11.660 < 0.001 

Education, years 15.44 ± 4.75 16.06 ± 4.70 -8.540 < 0.001 

Graph theory measures  

Eglob 0.180 ± 1.010 -0.205 ± 0.952 25.573 < 0.001 

Charpath -0.199 ± 1.009 0.234 ± 0.904 -28.919 < 0.001 

Louvain modularity -0.086 ± 1.014 0.123 ± 0.964 -13.758 < 0.001 

Transitivity 0.071 ± 0.989 -0.089 ± 0.992 10.544 < 0.001 

DMN 0.191 ± 1.006 -0.227 ± 0.942 28.021 < 0.001 

DAN  0.199 ± 1.005 -0.230 ± 0.945 28.643 < 0.001 

FPCN 0.149 ± 1.019 -0.176 ± 0.950 21.499 < 0.001 

LIMB 0.160 ± 0.991 -0.203 ± 0.973 24.158 < 0.001 

SVAN 0.185 ± 1.010 -0.225 ± 0.935 27.415 < 0.001 

SM 0.024 ± 1.026 -0.037 ± 0.923 3.992 < 0.001 

VIS 0.194 ± 1.004 -0.222 ± 0.943 27.807 < 0.001 

Cognition 

Memory 0.01 ± 0.943 0.11 ± 1.002 -4.604 < 0.001 

Executive 0.12 ± 0.928 0.13 ± 0.990 -0.616 0.538 

Processing speed 0.18 ± 0.945 0.14 ± 0.964 1.968 0.049 

Global cognition 0.14 ± 0.917 0.16 ± 0.983 -1.178 0.239 

 

Analyses were conducted using independent samples t-test for continuous variables. Graph theory measures and 

cognition are in z-scores i.e. negative value represents poorer score, except for characteristic path length.  

Abbreviations:  Eglob, global efficiency; Charpath, characteristic path length; Vis, strength of visual network; 

SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, strength of salience 

network; LIMB, strength of limbic network; FPCN, strength of control network; DMN, strength of default 

network 
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Table 3. Age- and sex- related differences in graph theory measures 

 
* represents significance  

Abbreviations: b = beta; SE, standard error, Padj, adjusted p-value; AgeXsex, age and sex interaction; Eglob, global efficiency; Charpath, characteristic path length; Vis, strength of 

visual network; SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, strength of salience network; LIMB, strength of limbic network; FPCN, 

strength of control network; DMN, strength of default network 

Graph theory measures b  
Age 

SE  
Age 

b  
Sex 

SE  
Sex 

b  
AgeXsex 

SE  
AgeXsex 

Padj  
Age 

Padj  
Sex 

Padj  
AgeXsex 

Eglob -0.108 0.011 -0.170 0.021 -0.014 0.016 3.74E-21* 1.29E-15* 0.391 

Charpath 0.043 0.011 0.226 0.021 0.034 0.016 1.67E-04* 3.78E-26* 0.068 

Louvain modularity -0.181 0.011 0.166 0.021 0.046 0.016 1.05E-57* 2.96E-15* 0.016* 

Transitivity 0.072 0.011 -0.042 0.021 0.024 0.016 4.55E-10* 0.048* 0.179 

DMN 0.004 0.011 -0.287 0.021 -0.044 0.016 0.772 4.28E-41* 0.016* 

DAN  -0.055 0.011 -0.181 0.021 -0.006 0.016 1.71E-06* 2.27E-17* 0.681 

FPCN -0.025 0.011 -0.194 0.021 -0.015 0.016 0.032* 1.11E-19* 0.391 

LIMB 0.142 0.011 -0.263 0.021 -0.043 0.016 3.14E-36* 3.04E-35* 0.016* 

SVAN 0.000 0.011 -0.223 0.021 -0.026 0.016 0.971 2.29E-25* 0.145 

SM -0.093 0.011 -0.090 0.021 -0.031 0.016 5.86E-16* 2.27E-05* 0.093 

VIS -0.071 0.011 -0.106 0.021 -0.076 0.016 5.12E-10* 6.80E-07* 1.21E-05* 
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Table 4. Multivariate analysis of the joint effect of the network measures with cognitive 

function 

Cognitive domains df LR 
R2 full 
model R2 base R2 diff Padj 

Processing speed 7 3.224 0.239 0.237 0.002 0.002 

Executive function 9 3.503 0.132 0.128 0.004 5.29E-04 

Memory 8 3.650 0.045 0.041 0.004 5.29E-04 

Global cognition 3 4.480 0.188 0.184 0.004 7.75E-05 

 

Abbreviations: df, number of network measures in the model; LR, likelihood ratio, diff, difference; Padj, 

adjusted p-value 

Networks included in the final model:  

Processing speed – Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual Network, 

Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Salience Network, 

Strength of Limbic Network  

Executive function - Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual Network, 

Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Salience Network, 

Strength of Limbic Network, Strength of Control Network, Strength of Default Network 

Memory - Age, Age2, Sex, Education, Global efficiency, Transitivity, Strength of Visual Network, Strength of 

Dorsal Attention Network, Strength of Salience Network, Strength of Limbic Network, Strength of Control 

Network, Strength of Default Network 

Global cognition - Age, Age2, Sex, Education, Louvain Modularity, Transitivity, Strength of Visual Network, 

Strength of Somatomotor Network, Strength of Dorsal Attention Network, Strength of Limbic Network, 

Strength of Control Network, Strength of Default Network 

Full model includes network measures and base model includes only covariates
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Figure 1. Correlations between the graph theory measures 

 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Abbreviations: Eglob, global efficiency; Charpath, characteristic path length; Vis, strength of visual network; 

SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, strength of salience 

network; LIMB, strength of limbic network; FPCN, strength of control network; DMN, strength of default 

network 
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Figure 2. Age- and sex- related differences in the graph theory measures 

 

Lines represent the fitted values for men (blue) and women (red) separately. The middle line shows the fitted 

equation evaluated at the mean value of education for each sex, while the top and lower lines represent 

confidence bands. Abbreviations: Eglob, global efficiency; Charpath, characteristic path length; Vis, strength of 

visual network; SM, strength of somatomotor network; DAN, strength of dorsal attention network; SVAN, 

strength of salience network; LIMB, strength of limbic network; FPCN, strength of control network; DMN, 

strength of default network 
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