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Abstract  79 
Pancreatic Ductal Adenocarcinoma (PDAC) lacks targeted treatment options. Although 80 
subtypes with transcriptome-based distinct lineage and differentiation features have been 81 
identified, deduced clinically actionable targets remain elusive. We here investigate functional 82 
metabolic features of the classical and QM (quasi-mesenchymal)/basal-like PDAC subtypes 83 
potentially exploitable for non-invasive subtype differentiation and therapeutic intervention.  84 
A collection of human PDAC cell lines, primary patient derived cells (PDC), patient derived 85 
xenografts (PDX) and patient PDAC samples were transcriptionally stratified into the classical 86 
and QM subtype. Functional metabolic analyses including targeted and non-targeted 87 
metabolite profiling (matrix-assisted laser desorption/ionization mass spectrometry imaging 88 
(MALDI-MSI)), seahorse metabolic flux assays and metabolic drug targeting were performed. 89 
Hyperpolarized 13C-magnetic resonance spectroscopy (HP-MRS) of PDAC xenografts was 90 
used for in vivo detection of intra-tumoral [1-13C]pyruvate and [1-13C]lactate metabolism.  91 
We identified glycolysis and lipid metabolism/fatty acid oxidation as transcriptionally preserved 92 
metabolic pathways in QM and classical PDAC subtype respectively. However, these 93 
metabolic cues were not unambiguously functionally linked to one subtype. Striking functional 94 
metabolic heterogeneity was observed especially in primary patient derived cells with only 95 
individual samples representing high dependence on glycolysis or mitochondrial oxidation. Of 96 
note, QM cells actively use the glycolytic product lactate as oxidative mitochondrial fuel. Using 97 
HP-MRS, we were able to non-invasively differentiate glycolytic tumor xenografts with high 98 
intratumoral [1-13C]pyruvate to [1-13C]lactate conversion in vivo.  99 
Although PDAC transcriptomes indicate molecular subtype-associated distinct metabolic 100 
pathways, we found substantial functional metabolic heterogeneity independent of the 101 
molecular subtype. Non-invasive identification of highly glycolytic tumors by [1-102 
13C]pyruvate/lactate HP-MRS support individualized metabolic targeting approaches.   103 
  104 
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Introduction 105 
Despite enormous research efforts in the last 50 years, pancreatic ductal adenocarcinoma 106 
(PDAC) remains a fatal disease with marginal clinical advancement [Aung et al., 2018]. 107 
Although the oncogenic drivers as well as transcriptional and molecular profiles of PDAC have 108 
been studied in great detail [Chan-Seng-Yue et al., 2020; Moffitt et al., 2015; Waddell et al., 109 
2015], effective targeting strategies remain scarce. Sequencing efforts in large patient cohorts 110 
have identified distinct molecular PDAC subtypes with two dominant lineages: 111 
classical/pancreatic progenitor and quasi-mesenchymal (QM) /squamous/basal-like [Aung et 112 
al., 2018; Bailey et al., 2016; Cancer Genome Atlas Research Network. Electronic address 113 
and Cancer Genome Atlas Research, 2017; Collisson et al., 2011]. QM PDACs are associated 114 
with shorter median survival and resistance to first-line chemotherapy with FOLFIRINOX [Aung 115 
et al., 2018]. Yet, which cancer cell features contribute to the aggressive and therapy-resistant 116 
phenotype phenotype remains unknown.  117 
Metabolic plasticity, i.e. an individual cells ability to use different metabolic pathways in 118 
dependence of alternating growth conditions including oxygen and nutrient availability has 119 
been implicated as a major cause of therapy resistance in cancers [DeBerardinis and Chandel, 120 
2016]. This metabolic plasticity allows PDAC cells not only to adapt but to thrive on particularly 121 
scarce conditions of hypoxia and nutrient limitations [Biancur and Kimmelman, 2018] typically 122 
observed in PDAC. Recent transcriptional metabolic profiling of 33 cancer entities identified 123 
seven metabolic super-pathways that are selectively altered in specific cancer subpopulations 124 
and dramatically influence sensitivity to therapy. Cancers with upregulated gene signatures for 125 
carbohydrate, nucleotide and vitamin/cofactor metabolism show worse prognosis than those 126 
with enhanced lipid metabolism [Peng et al., 2018]. In PDAC, metabolic transcripts involved in 127 
glycolysis and cholesterol biosynthesis are associated with the classical and QM subtypes, 128 
respectively [Karasinska et al., 2020]. However, functional evidence that these pathways are 129 
indeed significantly operable in defined PDAC subtypes and thus therapeutically targetable 130 
are still largely missing.  131 
In this work, we analyzed metabolic transcripts present in the classical and QM PDAC 132 
subtypes in a large collection of samples reaching from long-term cultured PDAC cell lines to 133 
patient-derived primary model systems. We address to which extent are those transcriptomic 134 
signatures functionally mirrored and whether differences in the metabolic phenotype between 135 
subtypes allows non-invasive subtype identification. We observed strong heterogeneity in the 136 
metabolic behavior especially in patient-derived models and were able to in vivo non-invasively 137 
detect highly glycolytic PDACs based on high conversion of [1-13C]pyruvate to [1-13C]lactate 138 
and vice-versa by HP-MRS. Our work opens a perspective for a non-invasive monitoring of 139 
personalized metabolic targeting approaches. 140 
  141 
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Results 142 
Glycolysis and lipid metabolic transcripts are preserved in the classical and QM PDAC 143 
subtypes 144 
To analyze which metabolic features are associated with molecular PDAC subtypes, we first 145 
performed transcriptome-based molecular subtyping in multiple preclinical and clinical 146 
samples. RNA was isolated from conventional PDAC cell lines (n=8), patient derived 147 
xenografts (PDX, n=34) and primary patient derived cells (PDC, n=11) and RNA-seq or 148 
Microarray analysis was performed. Transcriptomes from bulk tissue of 204 PDAC samples 149 
from previously published resource was utilized (E-MTAB-1791). 150 
For tumor subtype determination, we used publicly available transcriptionally subtyped PDAC 151 
cohorts (PDAC cell lines (GSE21654 [Maupin et al., 2010]) PDAC xenograft (E-MTAB-4029 152 
[Noll et al., 2016]) and bulk PDAC tissue (GSE16515 and GSE15471 [Pei et al., 2009] [Badea 153 
et al., 2008]) for benchmarking. After that, patient PDAC samples, PDX cohort and PDC 154 
samples were stratified to QM and classical group and gene set enrichment analysis (GSEA) 155 
was performed . In the PDAC patient sample cohort (204 samples), 88 were classified as 156 
classical and 116 as QM subtype. Samples clustering to the QM subtype presented significant 157 
enrichment of selected QM and squamous subtype assigner gene sets previously described 158 
[Bailey et al., 2016; Collisson et al., 2011] (figure 1b; supplementary table 1) supporting correct 159 
subtype assignment. 160 
In the PDX cohort, 22 classical and 12 QM tumors were identified and 6 classical and 5 QM 161 
among 11 PDCs. The 8 PDAC cell lines used in this study were previously classified as QM 162 
(KP4, PSN1, MIAPaca2, PaTu8988T) and classical (PaTu8988S, HUPT4, HPAFII, HPAC) 163 
[Daemen et al., 2015]. We analyzed gene expression of Vimentin (VIM) and E-cadherin 164 
(CDH1) as markers of mesenchymal and epithelial status respectively. QM PDAC cell lines 165 
presented high VIM and low CDH1 gene expression as typical for mesenchymal feature 166 
enrichment. Classical PDAC cell lines presented higher CDH1 and lower VIM expression 167 
(supplementary figure 1a). VIM and CDH1 expression correlated well with the subtype of the 168 
PDCs as well (supplementary figure 1b). 169 
After classification, QM and classical groups were compared by GSEA for HALLMARK, 170 
REACTOME and KEGG collections in all datasets. A full list of all enriched gene sets with 171 
respective Normalized Enrichment Score (NES) and False Discovery Rate (FDR) values is 172 
given in supplementary table 2. As expected for the mesenchymal phenotype, enrichment of 173 
epithelial-to-mesenchymal transition (EMT) gene set was observed in the QM group in PDX, 174 
PDC and patient PDAC samples (figure 1c). Analysis of metabolic transcripts revealed a 175 
remarkable stability of subtype-typical metabolic pathways throughout different models (figure 176 
1c). Transcripts involved in lipid metabolism (glycerophospholipid, sphingolipid, glycerolipid, 177 
glycolipid) as well as cholesterol metabolism were generally enriched in classical samples. In 178 
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PDX and patient PDAC samples of the classical subtype, the fatty acid (FA) metabolism gene 179 
set was also strongly enriched, suggesting not only structural but also active metabolic role of 180 
lipids in the classical subtype. Therefore, we next analyzed a generated fatty acid oxidation 181 
gene set containing 14 genes involved exclusively in the mitochondrial beta oxidation (FAO1) 182 
(supplementary table 3). This gene set was also significantly enriched in the classical patient 183 
PDAC samples (Figure 1d). 184 
In QM samples, transcripts involved in glycolysis and hypoxia were preserved (figure 1c). The 185 
hypoxia gene set was enriched in QM bulk PDAC tissue, PDX and PDC data sets, even though 186 
PDC cells were cultured under common laboratory normoxic conditions. Glycolysis/glucose 187 
metabolism as well as MYC-targets gene sets were also enriched in the QM patient PDAC 188 
samples, PDX and PDAC cell lines datasets. Interestingly, the glycolysis gene set was not 189 
enriched in the QM PDCs, possibly due to low sample numbers but also suggesting no 190 
unambiguous assignment of glycolytic genes to the QM subtype at least in PDCs. In summary, 191 
we observed strong transcriptional association of classical and QM subtypes with lipid/FA 192 
metabolism and glycolysis respectively. 193 
 194 
Classical and QM PDACs differ in lipid metabolism 195 
To address whether the identified metabolic transcripts are effectively translated into active 196 
lipid and glucose metabolism in the classical and QM subtype respectively, we first analyzed 197 
distribution of structural lipids, energy storing lipids and free fatty acid in PDAC cell lines and 198 
primary PDCs.  199 
Targeted metabolite profiling revealed enrichment of different structural lipids (sphingomyelins, 200 
lysophosphatidylcholines, phosphatidylcholines) in the classical PDAC cell lines (figure 2a, 201 
supplementary table 4) similar to what was previously described [Daemen et al., 2015]. In 202 
PDCs, a more heterogeneous distribution pattern was observed with generally higher 203 
accumulation of some structural lipids in the classical PDCs, however not as pronounced as 204 
in PDAC cell lines (figure 2a). These observations may hint for differences in the management 205 
of structural lipids in classical and QM subtypes.  206 
Next to structural lipids, storage lipids and FA are key branches of lipid metabolism. We thus 207 
investigated their distribution in 8 PDAC cell lines and 7 selected PDCs. OilRedO staining for 208 
storage lipids (neutral lipids, tryacylglycerols) revealed accumulation of lipid droplets in the QM 209 
lines PSN1, MIAPaca2 and Kp4 and in one classical line (PaTu8988S) (figure 2b). In contrast, 210 
lipid droplets were not detected in the classical cell lines HUPT4, HPAFII and HPAC nor in 211 
PaTu8988T cells. In primary PDCs, only PDC69 (QM) presented very high numbers of 212 
intracellular lipid droplets present in the majority of the cells, whereas scarce positive cells 213 
were found in PDC57 (QM). OliRedO positive cells were readily observed in classical PDC70 214 
(30-40% of cells). In classical PDC58, PDC59 and PDC89 cells, OilRedO positive cells were 215 
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in general not detected with only very few positive cells found in PDC89 (figure 2b). In terms 216 
of FA distribution, all 4 classical PDAC lines presented higher levels of free fatty acid (FFA) 217 
compared to the 4 QM lines (figure 2c). Among PDCs, the highest FFA levels were measured 218 
in classical PDC89 (figure 2c). In other investigated PDCs, FFA content did not correlate with 219 
the molecular subtype. PDC80, though QM, presented relatively high FFA levels and 220 
comparable to a classical PDC59. Taken together, QM PDAC cell lines preferably stored their 221 
FA in form of lipid droplets, while in classical cells FA was freely available for cellular processes 222 
such as FA-mitochondrial beta oxidation or incorporation into structural lipids. In PDCs, a 223 
similar trend but higher diversity in distribution of FA and storage lipids was observed. 224 
Both structural and energy storing lipids are synthesized and matured in the endoplasmatic 225 
reticulum and the Golgi complex [Fagone and Jackowski, 2009; Pol et al., 2014]. Considering 226 
the observed differences in lipid management in QM and classical subsets, we analyzed Golgi 227 
complex morphology by anti-giantin immunofluorescence staining and observed a remarkable 228 
subtype-dependent Golgi morphology. In QM cell lines and PDCs, we observed a highly 229 
compact and well-organized Golgi complex with perinuclear localization. In contrast, classical 230 
cell lines and PDCs showed a dispersed Golgi complex (figure 2d). In some PDCs, we also 231 
observed heterogeneity within one cell population. In PDC69, though classified as QM and 232 
with a predominantly compact Golgi, some cells presented disperse Golgi structures as well. 233 
The same was true for classical PDC58 cells that presented compact and dispersed Golgi as 234 
well. In summary, Golgi complex showed a subtype-associated morphological organization 235 
potentially reflecting different needs of classical and QM cells for structural and energy lipids 236 
observed above.  237 
Distribution of FA and energy storing lipids suggested that QM PDAC cells do not use but 238 
rather deposit the FA in lipid droplets, while classical cells have FA freely available for eventual 239 
use in mitochondrial beta-oxidation as well. We thus investigated lipid metabolism in QM and 240 
classical cells by using the seahorse metabolic flux assays (figure 2e). These real-time assays 241 
are performed in living cells and evaluate Extracellular Acidification Rate (ECAR) and Oxygen 242 
Consumption Rate (OCR) as readouts of two major energy supplying processes, glycolysis 243 
and oxidative phosphorylation (OxPhos) respectively. We designed a short-term energy 244 
evaluating seahorse experiment by cultivating the PDAC cell lines and PDCs for 7 hours in 245 
media without glucose or glutamine where only intracellular intrinsically available resources, 246 
such as FA, are present. Basal cellular OCR was then measured. In such conditions, higher 247 
OCRs were observed in HPAF II, HPAC, HUPT4 and PDC89 classical cells (figure 2e) among 248 
cell lines and PDCs respectively, potentially attributable to oxidation of intrinsically available 249 
FA. Taken together, metabolic flux assays suggest that some classical cells actively oxidize 250 
FA to maintain their basal metabolism.  251 
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To validate these findings in a more complex and translational ex vivo setting, we analyzed 252 
the metabolite distribution in fresh-frozen PDX tumor samples as well. For this purpose, non-253 
targeted metabolic profiling of cryo-preserved PDX tissues using MALDI-MSI (matrix-assisted 254 
laser desorption/ionization- mass spectrometry imaging) was used. As in cells, accumulation 255 
of structural lipids in the classical PDX was detected. In 10 PDX (5 QM vs 5 classical), 256 
metabolite clustering into classical and QM groups was observed despite the limited number 257 
of samples (figure 2f). Considering significantly altered metabolites between classical and QM 258 
revealed by a U-test, we performed metabolic pathway analysis (supplementary figure 2a). 259 
Glycerophospholipid metabolism was among the top 5 most changed pathways with 260 
glycerylphosphorylethanolamine (m/z=214.049) and phosphatidylcholine (m/z=794.509) being 261 
significantly higher in the classical samples (figure 2f). Interestingly, D-4’- 262 
phosphopantothenate (m/z=280.0595), a coenzyme A (CoA) precursor, was expressed 263 
exclusively in classical PDX tumors (figure 2g). Additionally, we also performed MALDI-MSI in 264 
a cohort of human FFPE PDAC samples (tissue microarray, n=17). Samples were stratified to 265 
QM and classical based on histological expression of KRT81 and HNF1A expression as 266 
previously reported [Muckenhuber et al., 2018]. As in PDX tumors, higher levels of D-4’-267 
phosphopantothenate were detected in the classical human PDAC FFPE samples (figure 2g). 268 
CoA is central for many enzymatic reactions in lipid synthesis and FA oxidation [Rohrig and 269 
Schulze, 2016], probably underlying the enrichment of D-4’-phosphopantothenate in the 270 
classical samples.  271 
Taken together, prominent accumulation of structural lipids was detected in classical patient 272 
derived xenografts indicating preservation of lipid metabolic routes in a relevant patient-derived 273 
PDAC model system. 274 
 275 
Glycolysis is activated in selected PDAC cells  276 
Gene set enrichment analysis pinpointed glycolysis as the most prominent metabolic pathway 277 
present in QM samples. To confirm whether glycolysis is indeed active in QM PDAC cells, we 278 
performed the seahorse metabolic flux assay and evaluated glycolysis (ECAR) and OxPhos 279 
(OCR) in cell lines and PDCs cultivated in media containing physiological concentrations of 280 
glucose (5mM) and glutamine (2mM). Under these conditions, PSN1 and PDC69, both QM, 281 
presented the highest ECAR/OCR ratios among cell lines and PDCs respectively (figure 3a), 282 
indicating higher glycolytic activity in these cells (figure 3a). 283 
Hierarchical clustering of transcriptome data revealed generally higher expression of glycolytic 284 
genes in QM cell lines and PDCs, especially in PSN1 and PDC69 and PDC80 (figure 3b). 285 
Notably, genes coding the glycolytic enzyme lactate dehydrogenase A (LDHA), lactate 286 
exporter MCT4 (SLC16A3) and importer MCT1(SLC16A1) and HIF1a, a central transcriptional 287 
and cellular regulator of hypoxia and glycolysis, were also well expressed in PSN1, PDC69 288 
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and PDC80 cells (figure 3c). MCT4 has previously been suggested to be a marker of glycolytic 289 
PDACs [Baek et al., 2014]. We also observed both in PDX and bulk PDAC tissue samples that 290 
MCT4 (SLC16A3) was significantly higher expressed than MCT1 (SLC16A1) (supplementary 291 
figure 3a), further supporting a lead role of MCT4 as lactate transporter in tissue context. 292 
Furthermore, in PDAC patient samples, MCT4 gene expression was significantly higher in QM 293 
than in classical PDACs (figure 3d) 294 
An immunohistochemical analysis of MCT1, MCT4 and an established QM marker KRT81 295 
[Noll et al., 2016] in FFPE samples of 30 PDACs suggested that both MCT4 and MCT1 were 296 
expressed on cancer and stromal cells with however MCT4 more expressed on cancer cells, 297 
and MCT1 in the surrounding stroma (supplementary figure 3b). Multiplex 298 
immunofluorescence for PanCytokeratin (PanCK), KRT81 and MCT4 in 6 PDAC specimens 299 
showed that the proportion of MCT4 positive cells was much higher among KRT81 positive 300 
(30-50%) than KRT81 negative cells (< 20%) (figure 3e). Furthermore, high MCT4 gene 301 
expression also correlated with poor survival, supporting the correlation of MCT4 expression 302 
and QM subtype (supplementary figure 3c). 303 
Taken together, active glycolysis was observed in some of QM PDAC cells and correlated well 304 
with the high MCT4 expression. Our data support the use of MCT4 as a surrogate marker of 305 
QM PDACs with activated glycolysis.  306 
 307 
PDAC cells actively use lactate as oxidative fuel 308 
Active re-usage of lactate by its conversion to pyruvate and subsequent oxidation in the 309 
mitochondria has been suggested in PDAC [Hui et al., 2017]. However, whether this effect is 310 
especially attributable to lactate producing high glycolytic QM PDAC cells is still not known. 311 
Intrigued by high glycolysis and consequent high expression of lactate transporters detected 312 
in some of the PDAC cells, we also addressed lactate metabolism. To investigate this, we 313 
designed a seahorse metabolic flux assay experiment, where cells were cultivated for 7 hours 314 
in i) “basal” DMEM or RPMI media without glucose or glutamine supplementation or in ii) 315 
“basal” media supplemented with lactate (basal+10mM L-lactate). Consequently, metabolic 316 
flux measurement was performed and OCR values measured in media with and without lactate 317 
were compared. Interestingly, lactate was readily used as an oxidative fuel in cell lines of both 318 
subtypes with however more pronounced OCR increase in the QM PDAC cell lines (figure 3f). 319 
Lactate treatment led to an OCR increase in all PDCs as well, without pronounced subtype 320 
dependency (figure 3f). 321 
To substantiate this finding, we cultivated PSN1 (QM), PaTu8988T (QM) and PaTu8988S 322 
(classical) cells in physiological DMEM medium with 5mM glucose and 2mM glutamine without 323 
media change for 24-48-72-96 hours. Glucose and lactate concentrations in the media were 324 
measured at given time points. With time, glucose concentration in the media decreased and 325 
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lactate increased (0-72 hours), as expected due to glucose consumption and lactate 326 
production and accumulation. Once the glucose was consumed from the medium (approx. 327 
after 72 hours in PaTu8988T/PSN1 cells), lactate concentration in the media decreased, 328 
indicating that in absence of other resources, PDAC cells start consuming self-produced 329 
lactate (supplementary figure 3d).  330 
In conclusion, PDAC cells, regardless of subtype, not only actively produce and excrete 331 
glycolytically produced lactate but also actively re-use it potentially as an oxidative fuel. This 332 
phenomenon was more pronounced in QM than in classical PDAC cell lines. 333 
 334 
Metabolic inhibitors do not show subtype specific effects in primary PDAC cells 335 
Stratification to glycolytic and oxidative PDACs is a prerequisite for  patient-tailored metabolic 336 
treatment strategies. Thus, we sought to therapeutically address the observed metabolic 337 
differences and treated PDAC cells using an anti-glycolytic and two anti-oxidative metabolic 338 
drugs: the glycolytic inhibitor GNE-140 [Boudreau et al., 2016], the mitochondrial respiratory 339 
chain inhibitor phenphormin [Boudreau et al., 2016] and TriacsinC, inhibitor of FA acylation 340 
and activation for lipid synthesis, deposition and beta-oxidation [Tang et al., 2018] (figure 4a). 341 
We followed the concentration dependent inhibition of metabolic active cells via cell titer glo 342 
assay. GNE-140 treatment indeed induced a QM subtype-specific decrease in cell viability 343 
especially in the QM cell lines, being most effective in PSN1, MIAPaca2 and PaTu8988T cells. 344 
However, PDCs were in general less sensitive to GNE-140 and the observed inhibitory effects 345 
were not subtype-dependent. Phenformin treatment induced a decrease in viability equally 346 
efficient in both QM and classical PDAC cell lines, while PDCs were rather unaffected. Triacsin 347 
C was active in all cell lines with a trend towards stronger viability inhibition in QM cells, 348 
probably by targeting accumulation of fatty acid in lipid droplets observed in these cells. The 349 
compound was also active in primary cells, however without an obvious subtype-specific effect 350 
(figure 4a). Taken together, though the LDHA inhibitor GNE-140 presented stronger efficacy 351 
against QM PDAC cell lines as expected, in the PDCs we did not observe subtype specific 352 
inhibition of cell viability with neither glycolytic nor inhibitors of oxidative metabolism. 353 
 354 
Hyperpolarized magnetic resonance spectroscopy of [1-13C]pyruvate and [1-13C] lactate 355 
identifies QM tumors  356 
Pharmacological inhibition suggested efficacy of GNE-140 in glycolytic cells arguing for the 357 
need of unequivocal identification of highly glycolytic PDACs for successful metabolic 358 
targeting. However, detection of dominant metabolic pathways driving tumor phenotypes 359 
remains a highly challenging task and is currently not established in clinical routine. Thus, we 360 
sought to explore hyperpolarized magnetic resonance spectroscopy with hyperpolarized (HP) 361 
[1-13C]pyruvate and [1-13C]lactate for potential differentiation of highly glycolytic from oxidative 362 
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tumors in vivo. For this purpose, rats were subcutaneously implanted with glycolytic QM PSN1 363 
and classical HPAC cells. Consistent with the respective molecular subtype, PSN1 tumors 364 
presented an undifferentiated mesenchymal phenotype, while HPAC tumors showed a more 365 
differentiated epithelial morphology (supplementary figure 4a). Once the tumors reached a 366 
minimal size of 5 x 5 mm, metabolic spectroscopy was performed. HP-[1-13C]pyruvate was i.v. 367 
injected into the tail vein and intratumoral distribution of HP-[1-13C]lactate was followed in real-368 
time. Using MRS, significantly more HP-[1-13C]lactate was detected in PSN1 compared to 369 
HPAC tumors, supporting higher label exchange between pyruvate and lactate specifically in 370 
PSN1 tumors (figure 5a and 5b). Lactate dehydrogenase (LDH) enzymatic activity measured 371 
ex vivo after the spectroscopy experiment in snap frozen tissues was also higher in PSN1 372 
compared to HPAC tumors (figure 5c) consistent with the in vivo finding.  373 
To evaluate whether lactate can also be used by tumors in vivo as observed in vitro in seahorse 374 
experiments, we also performed the reverse experiment and injected HP-[1-13C]lactate in 375 
PSN1 and HPAC tumor rats in vivo. Intratumoral HP-[1-13C]pyruvate was detected in PSN1 376 
tumors only (figure 5d) and not in HPAC tumors. Accordingly, significantly higher PApyr/PAlac 377 
ratios were measured for PSN1 than HPAC tumors (figure 5e). Taken together, highly 378 
glycolytic PSN1 xenografts could readily be discriminated based on high HP-[1-13C]pyruvate 379 
to HP-[1-13C]lactate conversion rates observed in HP-MRS. The data also showed that in 380 
glycolytic PDACs, exogenous lactate can be metabolized to pyruvate.  381 
We further confirmed the highly glycolytic nature of PSN1 xenografts by immunohistochemical 382 
analysis of glycolytic markers HIF1A and MCT4. MCT4 showed the typical membrane-383 
associated expression in cancer cells in both xenografts, with somewhat stronger staining 384 
intensity in PSN1 tumors (figure 5f). Intriguingly, HIF1A staining was found exclusively in the 385 
PSN1 tumors with typical nuclear expression pattern in the cancer cells (figure 5f). We also 386 
analyzed HIF1A and MCT4 expression in murine xenografts of human PDAC cell lines 387 
(supplementary figure 4b). Indeed, stronger MCT4 staining intensity was observed in the QM 388 
xenografts in general. Furthermore, specific nuclear HIF1A expression was limited to QM 389 
tumors (PSN1, KP4, MIAPaCa2, PaTu8988T), and not detected in classical tumors (HPAFII, 390 
PaTu8988S, HUPT4, HPAC) (supplementary figure 4b).  391 
 392 
 393 
  394 
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Discussion 395 
The challenge in PDAC is its enormous therapy resistance due to the evolution of aggressive 396 
cancer cells driven by oncogenic KRAS and loss of key tumor suppressors in a complex 397 
adapting microenvironment with various signaling effectors and biophysical and hypoxic 398 
restraints. Despite considerable genetic homogeneity with regard to oncogenic KRAS as lead 399 
driver, many studies support the existence of several molecular PDAC subtypes including 400 
classical/progenitor, QM/squamous/basal-like and hybrid states with more or less pronounced 401 
subtype specific transcriptional programs [Chan-Seng-Yue et al., 2020; Collisson et al., 2011; 402 
Moffitt et al., 2015]. Though indisputably present, functional aspects and phenotypic cues of 403 
the defined transcriptional subtypes are less well known. One key feature of PDAC is the 404 
metabolic rewiring directed by cell-autonomous and microenvironmental signals that may lead 405 
to phenotypic features not entirely captured by transcriptomic signatures. In this work, we 406 
aimed to address the functional metabolic aspects guided by transcriptome-defined classical 407 
and QM/basal like subtyping. We focused this analysis on patient-derived model systems 408 
including PDX and PDCs to value the molecular and metabolic heterogeneity in primary PDAC 409 
model systems. 410 
Gene expression analysis in four different model systems (cell lines, PDC, PDX and bulk tissue 411 
samples) indeed identified glucose metabolism/glycolysis/hypoxia and cholesterol/lipid/fatty 412 
acid metabolism as dominating metabolic transcripts of the QM and classical subtype, 413 
respectively. This is in line with the previously observed “glycolytic” and “lipogenic” subtypes 414 
in PDAC cell lines [Daemen et al., 2015] and the recently reported “glycolytic” and 415 
“cholesterogenic” transcriptional PDAC subtypes [Karasinska et al., 2020]. In functional 416 
assays, we also observed that these transcriptional cues were correlating with metabolic 417 
behavior with however notable heterogeneity especially in patient-derived cells. Neither the 418 
lipid nor glycolytic effect was equally exposed in all of the cells of one subtype.  419 
We identified PSN1, PDC69 and PDC80 as being typically glycolytic in seahorse assays and 420 
with high gene expression of the glycolytic markers HIF1A, LDHA and MCT4, supporting the 421 
translation of transcripts in active glucose metabolism. Interestingly, HIF1A, a major 422 
transcriptional regulator of cellular response to hypoxia [Semenza, 2010], was well expressed 423 
in highly glycolytic cells here grown in typical in vitro normoxic conditions, supporting intrinsic 424 
gene expression programs well preserved in QM cells. In line with our observations, MCT4 425 
has already been suggested as marker of glycolytic PDACs with poor prognosis [Baek et al., 426 
2014]. It should however be noted that Seahorse assays evaluate ECAR and OCR values in 427 
in vitro conditions and are very dependent on cell culture features such as current cellular 428 
density, growth pattern, cell cycle, current mitochondrial number [Little et al., 2020] and should 429 
be interpreted only as indication of the cellular energetic status. Better functional metabolic 430 
assays for in vitro and in vivo application are indeed needed.  431 
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Classical PDAC cells were rich in intracellular free FA, which were actively used in 432 
mitochondrial oxidation, allowing the cell to maintain the basal metabolism even in complete 433 
absence of glucose and glutamine. Our observations of different lipid/fatty acid usage of the 434 
subtypes may open a new road of further non-invasive imaging-based stratification of PDAC 435 
e.g. by using 1H-based diffusion-weighted magnetic resonance spectroscopy [Weidlich et al., 436 
2019] or other quantitative MRS methods [Nemeth et al., 2018].  437 
Heterogeneity was also present in reaction to metabolic therapies. Especially in the primary 438 
lines, neither the glycolysis inhibitor GNE-140 nor the OxPhos inhibitor Phenphormin or lipid 439 
metabolism inhibitor TriacsinC showed subtype specific effects. These results suggests that 440 
rigid classification of PDAC subtypes may not be sufficient as the basis for decisions regarding 441 
metabolic targeting approaches. Rather, individual PDACs may often present a continuum of 442 
different metabolic states that are more or less phenotypically presented depending on various 443 
cell-autonomous and non-cell-autonomous cues. Hybrid PDAC subtypes with transcriptomic 444 
signatures in between the classical and QM/basal-like states have been highlighted recently 445 
[Chan-Seng-Yue et al., 2020; Karasinska et al., 2020]. Similar to our study, a correlation of 446 
functional (seahorse) and molecular (RNA and protein) OxPhos was recently reported for 447 
PDAC cells [Masoud et al., 2020]. The authors also reported on metabolic heterogeneity and 448 
flexibility and shifts from OxPhos or glycolysis when necessary, supporting the existence of 449 
plastic metabolic states depending on the environmental challenges. It is reasonable to 450 
assume that among PDAC cells a whole spectrum from weak to highly mesenchymal and 451 
glycolytic QM, and weak to highly epithelial and lipogenic PDAC cells exists. The exclusive 452 
dependency on the one or the other metabolic pathway is thus an unlikely scenario. However, 453 
individual tumors with high activity of specific metabolic pathway may exist and their 454 
identification will be key to successful targeting. We show here that glycolytic PSN1 tumors 455 
were readily detectable with HP-MRS due to higher 13C-label exchange among pyruvate and 456 
lactate, indicating high activity of the last glycolytic enzyme LDHA and high intratumoral 457 
pyruvate to lactate conversion. Similarly, in breast cancer patients, high HP-[1-13C]pyruvate to 458 
HP-[1-13C]lactate conversion rates identified strongly glycolytic aggressive triple negative 459 
breast cancer with high HIF1a and MCT1 tissue expression [Gallagher et al., 2020]. This 460 
approach is already being used in personalized therapy monitoring in prostate and breast 461 
cancer [Aggarwal et al., 2017; Park et al., 2018].  462 
We were also able to in vivo confirm the reverse effect as well, the active import and conversion 463 
of HP-[1-13C]lactate into HP-[1-13C]pyruvate in PSN1 QM-type but not in HPAC classical-type 464 
xenografts. Lactate is since recently considered as one of the important actors in tumor 465 
metabolism [Brooks, 2018]. Tumors use the advantage of lactate being the second most 466 
abundant metabolite in the systemic circulation and readily feed the TCA cycle with pyruvate 467 
generated from lactate [Faubert et al., 2017; Hui et al., 2017]. Indeed, we also observed 468 
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OxPhos activation with lactate in PDAC cells, especially in the QM cell lines. It should be 469 
however noted that we performed the lactate supplementation assay in starved medium in 470 
absence of glutamine and glucose, an important TCA cycle fuel [Son et al., 2013]. Under these 471 
conditions, cells might divert to more drastic fueling of TCA cycle with lactate than 472 
physiologically typical. We speculate that the hypoxic microenvironment of the tumor favors 473 
the epithelial to mesenchymal transformation (EMT) of the cancer cells and appearance of the 474 
glycolytic QM tumors. These tumors potentially adapted their oxidative metabolism to fuels 475 
which are then locally produced, either by themselves or by neighboring cancer, stromal or 476 
immune cells.  477 
Although HP-MRS experiments were performed on a limited number of animals, they provide 478 
evidence for the concept that PDACs with high reliance on glycolysis are potentially detectable 479 
via HP-[1-13C]pyruvate/lactate spectroscopy also in clinical practice. Thus, identification of 480 
highly glycolytic, aggressive PDACs by HP-[1-13C]pyruvate and HP-[1-13C]lactate 481 
spectroscopy may be used to guide and monitor tumor treatment with anti-glycolytic therapies. 482 
In contrast to biopsy-based tumor characterization, metabolic imaging allows dynamic 483 
evaluation of the whole tumor limiting sampling bias and addressing tumor heterogeneity 484 
[Hayashi et al., 2020]. Though likely not all QM tumors are potentially extremely glycolytic, 485 
non-invasive detection of highly glycolytic PDACs detected by HP-[1-13C]pyruvate/lactate MRS 486 
may be first candidates for successful individual metabolic targeting approaches. 487 
 488 
  489 
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Material and methods 490 
Cell culture 491 
PDAC cell lines  492 
All PDAC cell lines have been obtained from the ATCC and regularly externally authenticated 493 
(at least once a year). PDAC cell lines (Psn1, Kp4, PaTu8988T, MiaPaca2, PaTu8988S, 494 
HPAC, HPAFII, HupT4) were grown in Dulbecco’s Modified Eagle Medium (DMEM, 495 
#11966025 and #A1443001,  Thermo Fisher Scientific, Waltham, USA) adapted to final 496 
concentrations of 5 mM D-glucose (Thermo Fisher Scientific, Waltham, USA), 2 mM 497 
L-glutamine, 5% v/v fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, USA), and 498 
1% v/v penicillin/streptomycin (P/S, Thermo Fisher Scientific, Waltham, USA) if not stated 499 
ootherwise.  500 

Patient Derived Cells (PDCs) 501 
For all metabolic analysis, PDC cell lines were cultivated in a 1:1 mixture of Keratinocyte-SF 502 
medium (#17005075, Thermo Fisher Scientific, Waltham, USA) and RPMI 1640 ( #11879020, 503 
Thermo Fisher Scientific, Waltham, USA) adapted to final concentrations of 5mM D-glucose, 504 
4.5mM L-glutamine, 0.26mM sodium pyruvate, and 6%v/vFBS, and 1% v/v 505 
penicillin/streptomycin (P/S, Thermo Fisher Scientific, Waltham, USA) if not stated otherwise.  506 
 507 
PDX samples preparation  508 
Establishment of the PDX mouse model was performed using surgically resected PDAC 509 
tissues collected from patients.  510 
 511 
Seahorse metabolic flux assays  512 
All assays were performed following the manufacturer’s instructions (Agilent Technologies). 513 
 514 

Immunohistochemistry (IHC) and immunofluorescence 515 

Immunohistochemistry was performed according to standard laboratory procedures on PFA 516 
fixed, FFPE tissue samples. Antibodies used in this study: MCT4, Atlas Antibodies 517 
(HPA021451); HIF1a, BD Transduction laboratories (610959); MCT1, Abcam, ab85021; 518 
KRT81,  Santa Cruz, sc-100929; panCytokeratin , Abcam (ab6401); 519 

 520 
Hyperpolarized Magnetic Resonance Spectroscopy (HP-MRS) 521 
Animal handling 522 
All experiments were carried out in adherence to pertinent laws and regulations.  523 
 524 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.452145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.23.452145


 17 

Detailed explanations of all experimental procedures can be found in supplementary material 525 
and methods section. 526 
 527 
  528 
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Figures and figure legends: 734 
 735 
Figure 1: 736 
 737 

 738 
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Figure 1: Gene Set Enrichment Analysis (GSEA) identifies glycolysis, hypoxia and 739 
lipid/fatty acid metabolism are enriched in QM and classical PDAC samples 740 
respectively 741 
a) Graphical sketch of the used models and experimental flow in the study.  742 
b) Enrichment plots for the selected “Collisson QM” and “Bailey squamous GP2” assigner 743 
gene sets in our patient cohort. Both gene sets are enriched in here defined QM PDAC 744 
samples. FDR and NES presented in the figure. 745 
c) GSEA analysis for QM vs classical groups was performed for cell lines (n=8; 4QM, 4 746 
classical), Patient Derived Cells (PDC; n=11, 5 QM and 6 classical) Patient Derived 747 
Xenografts (PDX; n=34, 12 QM and 22 classical), and patient PDAC samples (n=204; 116 748 
QM, 88 classical). Presented are Normalized Enrichment Scores (NES) values for selection 749 
of metabolic gene sets identified as significantly enriched (False Discovery Rate, FDR q 750 
value <0.06) in QM or classical subtypes. Gene set databases HALLMARK, REACTOME 751 
and KEGG were used for analysis. Epithelial-to-mesenchymal transition (EMT, blue), 752 
glycolysis/glucose metabolism (orange), hypoxia (green) and MYC targets gene sets are 753 
commonly enriched in most of the QM datasets. In classical subtype, gene sets typical for 754 
cellular organization (tight junctions, cell-cell communication) together with 755 
lipid/cholesterol/fatty acid metabolism (dark blue) are enriched. d) Enrichment plots for Fatty 756 
Acid Oxidation (FAO) generated gene set and HALLMARK glycolysis gene set specifically 757 
enriched in classical and QM PDAC patient samples respectively.  758 
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Figure 2: 776 

 777 
Figure 2: Differences in lipid metabolism in QM and classical PDACs 778 
a) Volcano plots and hierarchical clustering for lipid metabolites, PC-phospatidylcholines, 779 
LPC-lysophospatidilcholines and SM-sphingomyelins in the QM and classical PDAC cell 780 
lines and PDCs as measured by Biocrates Absolute p180 kit. Upper panel: Volcano plots 781 
showing general enrichment of lipid metabolites in classical cell lines. This effect was present 782 
but less pronounced in PDCs. One dot presents one metabolite. Green dots present 783 
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significantly changed metabolites between classical and QM subtype with p <0.05 (Student’s 784 
T-test, unpaired, two-sided). Full list of metabolites, measured concentrations and 785 
abbreviations is given in supplementary table 4. Lower panels: hierarchical clustering of all 786 
analyzed structural lipid metabolites according to their measured concentrations in PDAC cell 787 
lines (84 metabolites) and PDCs (85 metabolites). Z score: red color indicates high, blue low 788 
intensity; b) OilRedO staining for lipid droplets in PDAC cells. Accumulation of lipid droplets 789 
observed in QM cell lines PSN1, MIAPaCa2, Kp4, in PDC69 and occasionally in PDC57. 790 
Among classical cell lines PaTu8988S was very rich in lipid droplets while in HPAFII, HPAC 791 
and HUPT4 cells lipid droplets were not detected. Classical PDC70 readily presented OilRed 792 
positive cells as well, while in PDC89 only very occasional single cells were positive. In 793 
classical PDC58, PDC59 lipid droplets were not detected. Red arrows indicate lipid droplets. 794 
Scale bar=10µm. c) Higher free fatty acid (FFA) in classical than in QM cell lines. PDC89 795 
(classical) presents the highest level of FFA among PDCs. P-values calculated by the Mann-796 
Whitney test. d) Immunofluorescence for Giantin, a Golgi membrane protein. Compact Golgi 797 
observed in QM cell lines PSN1, MIAPaca2, KP4, PaTu8988T and primary QM PDC57 and 798 
PDC80 cells. Disperse Golgi in classical lines HPAFII, HPAC, HUPT4, PaTu8988S and 799 
classical PDC59, PDC70, PDC89. Mixed Golgi structures with predominantly compact 800 
morphology observed in PDC69 (QM) and PDC58 (classical). Compact Golgi-white arrows. 801 
Disperse Golgi-red arrows. Scale bar 10µm. e) OCR levels measured for cell lines and PDCs 802 
after 7 hours of cultivation in media without glucose or glutamine. HPAC, HPAFII, HUPT4 803 
and PDC89 present high relative OCR levels suggesting oxidation of endogenous fatty acid. 804 
Presented are OCR values (mean±SD) calculated from 2-3 wells/cell line/per 10.000 seeded 805 
cells in one experiment. f) MALDI-MSI and m/z species clustering for classical (n=5) and QM 806 
(n=5) PDX samples. Left: hierarchical clustering of differentially expressed m/z species in 807 
PDX samples. Significantly changed m/z species (Mann-Whitney test) were included in the 808 
clustering. Red color-high intensity; Light yellow-low intensity; Metabolites of 809 
glycerophospholipid metabolism, glycerylphosphorylethanolamine (m/z=214.049)  and 810 
phosphatidylcholine (m/z=794.509) are significantly higher in the classical PDX samples. P-811 
values calculated by Mann-Whitney test. g) H&E and false color visualization of D-4’- 812 
phosphopantothenate (m/z=280.0595) in cryo-sections of PDX samples. D-4’- 813 
phosphopantothenate is detected exclusively in classical PDX. D-4’- phosphopantothenate is 814 
detected exclusively in classical PDX. Framed graph : D-4’- phosphopantothenate is also 815 
prominently enriched in the human classical FFPE samples as well (classical n=9, QM n= 8). 816 
P-values calculated by Mann-Whitney test. 817 
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 821 
Figure 3:  822 

 823 
Figure 3: Glycolysis evaluation in PDAC.  824 
a) ECAR to OCR ratios (ECAR/OCR) as measured by seahorse metabolic flux assay for 825 
PDAC cell lines (left) and PDCs (right) cultivated in medium supplemented with 5mM glucose 826 
(physiological concentration) and 2mM glutamine. Higher ECAR/OCR ratio indicates higher 827 
glycolysis under these conditions. Presented are mean±SD values calculated for minimum of 828 
4 wells/cell line in one experiment. b) Hierarchical clustering analysis for glycolytic genes 829 
using gene expression data for cell lines (RNA-seq) and PDCs (HT12 Illumina bead assay). 830 
Z-score: red color-high expression, blue color-low expression. PSN1, PDC69 and PDC80 831 
show high expression of all investigated glycolytic genes. c) qPCR for LDHA, MCT1 832 
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(SLC16A1), MCT4 (SLC16A3) and HIF1a in the established and primary cells. Highest gene 833 
expression levels observed in PSN1, PDC69 and PDC80 (all QM) among cell lines and 834 
PDCs respectively. Beta-glucuronidase (GUSB) expression was used as house-keeper 835 
control. d) SLC16A3 gene expression is higher in QM than in classical in patient PDAC 836 
samples. P value calculated by Student’s T-Test (unpaired, two sided). e) Multiplexed 837 
immunofluorescence staining of MCT4 (glycolysis marker), cytokeratin 81(KRT81-QM 838 
marker) and pan-cytokeratin (cancer cell marker) on 6 patient PDAC FFPE samples. White 839 
arrows indicate overlapping MCT4 and KRT81 signals. Scale bar: 10µm. Lower graph: 840 
quantification of respective populations in 6 PDAC samples by Halo. Around 30-50% of 841 
KRT81 positive cancer cells are also MCT4 positive; among KRT81 negative cancer cells, 842 
less than 20% are also positive for MCT4. Populations determined in the same sample, one 843 
line indicates one patient. f) Upper panel: schematic representation of the performed 844 
seahorse assay. Cells were cultivated in “basal” medium (no glucose, no glutamine) or in 845 
“basal” media supplemented with 10mM Sodium-L-Lactate (“basal+lactate”) for 7 hours in 846 
total and OCR levels are measured. Ratios among OCR values measured for “basal+lactate” 847 
and “basal” only media are calculated and presented. Ratio above 1 indicates increase in 848 
OCR due to lactate application. Presented are mean values of minimum 2 independent 849 
experiments (mean±SD). P values calculated by the Mann-Whitney test for QM vs classical 850 
cells. 851 
  852 
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Figure 4:  853 

 854 
 855 
Figure 4: PDAC cells show differential response to metabolic inhibitors 856 
Dose response curves of cell lines and PDCs to glycolysis inhibitor GNE-140, OxPhos 857 
inhibitor Phenphormin and lipid metabolism inhibitor TriacsinC. IC50 values are presented in 858 
tables, micromolar values (µM). Blue-classical cells, red-QM cells. GNE-140 inhibitory effects 859 
are stronger in QM than in classical PDAC cell lines. Effects in PDC lines are subtype 860 
independent. Phenphormin and TriacsinC do not show subtype specific effects in cell lines or 861 
PDCs. Presented are mean dose response curves and IC50 values of 2 independent 862 
experiments.  863 
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Figure 5: 873 

 874 
 875 
Figure 5: Magnetic resonance spectroscopy (MRS) of HP-[1-13C]pyruvate and HP-[1-876 
13C]lactate inter-conversions in PSN1 (QM) and HPAC (classical) PDAC xenografts in 877 
rats. 878 
a) Left to right: schematic presentation of HP-[1-13C]pyruvate i.v. injection into rats with 879 
xenotransplanted PSN1 and HPAC tumors, T2-weighted sagittal anatomy image (scale 880 
bar=1cm) of a rat bearing a subcutaneous tumor and graphs demonstrating signal intensity 881 
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time courses of HP-[1-13C]pyruvate and HP-[1-13C]lactate measured intratumorally in PSN1 882 
(left) and HPAC (right) rat xenografts. The HP-[1-13C]lactate curve (red) is higher for PSN1 883 
than for HPAC xenografts. b) Calculated relative AUC ratios of HP-[1-13C]lactate to perfused 884 
HP-[1-13C]pyruvate showing higher conversion rate in PSN1 (n=4; 1.325 ± 0.418)  than in 885 
HPAC tumors (n=5; 0.5349 ± 0.175). P=0.006. c) Ex vivo measurements of lactate 886 
dehydrogenase activity in imaged tumor sample. Higher activity in PSN1 (n=5; 501794 ± 887 
341920 U/L) than in HPAC tumors (n=5; 62796 ± 24641 U/L) detected. P=0.045. d) Left to 888 
right: schematic presentation of HP-[1-13C]lactate injected into rats with xenotransplanted 889 
PSN1 and HPAC tumors, signal Intensity (SI) spectra of perfused HP-[1-13C]lactate (top) and 890 
detected HP-[1-13C]pyruvate (bottom) for PSN1 (n=4) and HPAC (n=3) tumors The spectra 891 
have been summed over 10 time points covering maximum tumor enhancement and 892 
normalized to the lactate signal. Higher peak to background ratios (P/B 3.7-9.2) were 893 
observed in PSN1 tumors in comparison to P/B ratios in HPAC tumors (P/B 1.6- 3.0). e) 894 
Signal intensity quantification: PApyr/PAlac ratios are significantly higher in PSN1 (1.49 ± 895 
0.30, n=4) than in classical tumors (0.51± 0.51, n=3). P=0.024. PA-peak area. All P-values in 896 
this figure calculated by Student’s T-test (unpaired, two-sided). f) Immunohistochemistry for 897 
HIF1a and MCT4 in rat xenografts. HIF1A specific nuclear staining detected exclusively in 898 
PSN1 (QM) tumors. Scale bar=100µM. 899 
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