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ABSTRACT 
 
Understanding the regulation of normal and malignant human hematopoiesis requires 
comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. 
Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell 
RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 
intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM 
compartments, respectively. Our data provide the most comprehensive description to date of 
the murine HSC-regulatory microenvironment and suggests a higher level of specialization of 
the cellular circuits than previously anticipated. Furthermore, this deep characterization allows to 
infer conserved features in human, suggesting that the layers of microenvironmental regulation 
of hematopoiesis may also be shared between species. Our resource and methodology are a 
steppingstone towards a comprehensive cell atlas of the BM microenvironment.  
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INTRODUCTION  

Uncovering pathogenetic mechanisms requires identifying the corresponding major groups of 

genes in the disease-relevant tissues1,2. To this end, collective efforts such as the Human 

Single-Cell Atlas have been launched, aiming at providing a single-cell map of human tissues 

and organs. A core case is the hematopoietic system, where single-cell RNA sequencing 

(scRNA-seq) has allowed to refine our understanding of hematopoiesis in mouse and human3–5. 

Furthermore, these studies have challenged the classical view of hematopoiesis differentiation 

as a compendium of discrete cellular states with decreased differentiation potential towards a 

more dynamic view in which hematopoietic stem and progenitor cells (HSPC) gradually pass 

through a continuum of differentiation states6–9. Moreover, recent studies using scRNA-seq 

technologies have shed light on the organization of the hematopoietic regulatory 

microenvironment in the mouse10–15. These studies have resolved some of the controversies 

regarding the overlap of stromal populations previously described and the description of certain 

discrete stromal cells as professional, hematopoietic cytokine-producing populations12. 

Moreover, further combination with in-situ technologies helped to delineate the relationship 

between specific stromal cell types in the murine BM12. This data has provided a wider and 

more dynamic picture of hematopoiesis and their regulatory microenvironment, allowing for a 

provocative hypothesis to rise, such as whether their specific association with given niches 

controls transcriptional states in hematopoietic stem cells and whether these states are 

reversible upon occupying alternative niches. 

Nevertheless, these studies are limited by the number of cells sequenced, potentially hampering 

our ability to resolve the full spectrum of cellular states and differentiation stages that define the 

stromal BM microenvironment. Further, knowledge on the conservation of the cellular 

composition in the human BM stroma is in its infancy due to the difficulty of obtaining high-

quality samples with sufficient stromal cell numbers from healthy individuals. This leaves us with 

two outstanding challenges; how to piece together such different fragments towards a 

comprehensive molecular atlas and to what extent such an atlas in mice is conserved in the 

human bone marrow.  

Here, we integrate three scRNA-seq datasets (two publicly available10,11 and one in-house) 

separately targeting two well-defined populations (endothelial and mesenchymal cells). The 

integration of distinct data sets required developing tailored bioinformatics pipelines to ensure 

the robust identification of cell types and stages. We identify 14 endothelial subclusters and 11 

subpopulations defining different stages of differentiation in the mesenchyme. Our analysis 

provides the most comprehensive atlas of the cellular composition in the mouse bone marrow. 
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Last, we asked to what extent such an atlas could provide insight into the less accessible 

human BM microenvironment. To this end, we made the first pilot study, profiling the human 

bone marrow using scRNA-seq, which was integrated with our mouse BM atlas. This analysis 

demonstrated substantial conservation between species.  
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RESULTS  
Data integration and high-resolution clustering strategy 

Figure 1 provides a graphical summary of the experimental design and the analysis flow. We 

integrated selected subsets of cells from three distinct mouse datasets: two recently published 

(“Tikhonova et al.”11, 6626 cells, and “Baryawno et al.”10, 38443 cells) and an independent 

dataset (“In-house” dataset, 13402). These datasets differ in the procedures for isolation of cells 

within the BM microenvironment. This includes unbiased isolation of cells lacking hematopoietic 

markers (“Baryawno”10 and “In-house”) (Fig. S1a) versus targeted isolation of populations of 

interest as in Tikhonova et al.11. Furthermore, not every cell type identified in one study is 

present in the other datasets.  

We decided to focus our analysis on those bona fide niche populations such endothelial (EC) 

and mesenchymal (MSC) cells due to their presence in the three studies and their relevance in 

controlling HSC maintenance. For the integrative analysis, we used the Tikhonova study as a 

reference to facilitate the integration, considering that their cells were isolated based on 

fluorescence reporter expression driven by cell-specific gene promoters: VE-Cad for endothelial 

cells and LEPR for mesenchymal cells. Therefore, to identify and label the cells of interest, we 

integrated separately “In house + Tikhonova” and “Baryawno + Tikhonova” (Fig. 2a) using the 

cell labels from the Tikhonova study. As a result, and after quality filters (see Methods), we 

labeled in each dataset endothelial cells (N=9587) and mesenchymal cells (N=5291) that were 

used for integration of the three datasets for each cell-type.  

Following the integration, endothelial and mesenchymal groups were used to identify cellular 

subtypes and stage-specific cells. However, current state-of-the-art clustering methodologies, 

including Louvain clustering16,17, could not discriminate robustly among different cell subtypes 

(Fig. 2b left panel and Fig. S3a), in part because there is a high degree of cell-to-cell similarity 

when considering cells of the same origin18. To enable robust sub-clustering, we customized an 

existing bootstrapping-based approach. In brief, first, a divide-and-conquer strategy is applied, 

where the first level of robust clusters is identified (see Methods). Next, we proceeded with 

another round of clustering, yielding the second level of robust sub-clusters. As a termination 

criterion, no sub-clustering was considered if a cluster was found to have no sub-divisions in the 

Louvain high-resolution clustering17,19 (Fig. 2b left panel and Fig. S3a). As a result, the cells 

are grouped into clusters; then, in the second step, we applied a bootstrapping-based 

methodology adapted from the Bosiljka study18 (see Methods and Fig. S2a) to quantify the 

robustness of each cluster. We formulated two evaluation metrics: for each cell, we computed 

“how many times it has been correctly assigned to the cluster proposed” (e.g. recall per cell in 
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Fig.S2d), and for each cluster, we quantified “how many cells are correctly assigned” (e.g. 

#correct in Fig.S2e); see Methods for a detailed explanation. If a non-robust cluster was 

identified, the cells of such cluster were then assigned to the neighboring clusters repeating the 

Random-Forest based strategy. For instance, in the analysis of ECs, three levels of sub 

clustering were conducted (Fig. 2b middle and right panels). In Level 1, two clusters were 

identified (A and B), and considering that possible sub-clusters were identified in the Louvain 

high-resolution clustering (Fig.2b, (second panel from the left), they were sub-clustered 

resulting in Level 2. After Level 2 only three subclusters were further investigated (A1, A2, B3) in 

Level 3 (Fig.2b, third panel). Level 3 was identified as the final level, and a robustness analysis 

was conducted for the Level 3 clusters (Fig. 2b fourth panel, c-e and Fig. S2c-h). Non-robust 

clusters were eliminated and their cells were reassigned to neighboring clusters (see Methods). 

Similarly, we applied the same robust clustering to the mesenchymal stromal cells (Fig. S3a-h). 

By using this approach, we were able to describe 14 subclusters in the endothelium (Fig. 2b 

fourth panel and Fig. 3a) and 11 in the mesenchyme (Fig. S3a fourth panel and Fig. 3c). 

Encouragingly, we observed that the final subclusters were not biased to any study or any 

specific cell stage (Fig. 3b,d and Fig. S2b) and only clusters B2 and D3 did not have cells from 

the three datasets.  

A fundamental tenet of our analysis is that the identification of distinct cellular states in the 

microenvironment and the description of the gene markers defining those subtypes could only 

be resolved by integrating the three datasets. The rationale being that despite the partial overlap 

between the datasets, a larger number of cells would contribute to a deeper characterization of 

the subpopulations. To directly address this and using the markers derived from the integrative 

analysis, we conducted a series of analyses to assess whether the integration provided 

additional insights compared to each dataset.  

First, we investigated what percentage of final integrated-based markers were recovered by 

each dataset by itself (Fig. 3e,f upper panel), what percentage of false negatives (Fig. 3e,f 

middle panel), and false positives (Fig. 3e,f lower panel). For some of the subclusters, such 

as B3.4, A2.1, and A2.6 (endothelium) or C2.1 and C3 (mesenchyme), over 50% of the markers 

could not be detected by each dataset separately. In a second analysis, we quantified the 

robustness of the defined clusters using data from each study separately (Fig. 3g,h). Only the 

Baryawno dataset allows for the robust identification of all the subclusters except for B3.4 in the 

endothelium. However, performing the same clustering strategy using only the Baryawno’s 

dataset in the endothelium, could not identify all the subclusters with the same level of 

resolution compared to those observed with the integrated dataset (Fig. S4a). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2021. ; https://doi.org/10.1101/2021.07.17.452614doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.17.452614
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

Taken together, these data demonstrate that our customized approach for the integration of 

multiple datasets allows for a robust deconvolution of cell states when there is a high degree of 

similarity in between cells of the same origin.  

 

Deep characterization of the BM endothelial cell compartment 

Next, we aimed to characterize each of those 14 endothelial subclusters (Fig. 3a) based on the 

identified markers (Table S1). Using the expression of those molecular markers, we could 

discriminate between arteries and sinusoids (Fig. 4a and Table S2) in agreement with previous 

reports20–22
. Arterial clusters showed high expression of specific arterial genes such as Ly6a, 

Ly6c1, Igfbp3, and Vim (Fig. 4b upper panels). At the same time, sinusoidal cells were defined 

by their characteristic signature expressing Adamts5, Stab2, Il6st, and Ubd (Fig. 4b lower 

panels). Importantly, besides these already known markers, differential expression analysis of 

the integrative datasets revealed some novel genes specific of each endothelial population, 

such as Igfbp7 and Ppia for arteries and Cd164 or Blrv for sinusoids (Fig. 4c). The expression 

of these genes would be consistent with the role Igfbp7 and Blvrb in the maintenance of 

endothelial vasculature homeostasis23,24.  

Beyond characterizing arteries and sinusoids, we annotated their respective cell states using 

clusters markers based on genes (Table S1, Fig. 4d) and gene sets (derived from gene set 

enrichment analysis; Table S3, Fig. 4e). Our final annotation is described in Fig. 4f. Gene sets 

related to vasculature development and remodeling were identified within the endothelial 

subclusters, confirming the identity of this cell population (Table S3). We uncovered two 

subclusters (A1.1 and A2.5, respectively) within the arteries and sinusoids groups, which were 

enriched in gene sets involved in wounding. This finding is in agreement with the role of EC in 

pro- and anti-thrombotic processes25. Gene sets involved in extracellular matrix assembly, cell 

adhesion, and migration processes were specifically enriched in arteries, in line with the 

importance of these biological processes for vascular morphogenesis26. In relation to the 

structural support provided by arterial cells, subcluster B3.2 (actin, endocytosis) implicated in 

matrix remodeling was defined by the expression of RhoC, Apln, and Anxa2.  Other arterial 

subclusters such as ROS and Immune (A1.2 and B3.1, respectively) include highly expressed 

gene sets involved in the regulation of reactive oxygen species metabolic process and cytokine-

mediated signaling pathway. These findings are in line with the role of ECs in maintaining the 

REDOX balance and leukocyte regulation27,28. Sinusoidal-endothelial subclusters such as A2.1 

and A2.6 showed enrichment in GO terms related to artery development and endothelial 
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proliferation processes, two critical steps within the process of angiogenesis29. Furthermore, the 

sinusoidal subcluster A2.7 expressed gene sets involved in ion transport and signaling-related 

signatures. This is in concordance with the need of EC to constantly sense and adapt to 

alterations in response to microenvironmental cues30,31. Of note, ion channels play a role in EC 

functions controlled by intracellular Ca2+ signals, such as the production and release of many 

vasoactive factors such as nitric oxide. In addition, these channels are involved in the regulation 

of the traffic of macromolecules, controlling intercellular permeability, EC proliferation, and 

angiogenesis32. Importantly, several markers that were found only with the dataset integration 

correspond to genes within the GO categories used to label the clusters, hence, revealing their 

important role in defining the function of these cell states. For example, in subcluster B2, genes 

such as, Gja1, Tgfb3, and Ablim2 are involved in regulating cell junctions and cytoskeletal 

organization33,34.  

Taken together, these results suggest a remarkable level of specialization of the bone marrow 

endothelial cells. The specificity of the distinct functional states indicates that the endothelial 

compartment is a more dynamic and flexible tissue with a richer intrinsic repertoire than 

previously anticipated. 

 

Deep characterization of the BM mesenchymal cell compartment 

Applying the same robust clustering to mesenchymal stromal cells, we identified 11 subclusters 

and proceeded with the annotation (Fig. 3c, Fig. S3, and Table S4-S6). Based on the 

expression of canonical markers, we first discriminated clusters between early mesenchymal 

(MSC), and cells already committed to the osteolineage (OLN-primed) (Fig. 5a and Table S5). 

The high expression of Cxcl12, LepR, Adipoq, or Vcam1, among others, confirmed the identity 

of the early MSC group (Fig. 5b left column); whereas Bglap, Cd200, Alpl, or Col1a1 

expression revealed the presence of osteolineage committed cells within the mesenchymal 

compartment (Fig. 5b right column). Furthermore, we identified a number of previously 

unrecognized, differentially expressed genes between the MSC and OLN-primed clusters such 

as Sbds and Itgb1 for MSCs and Enpp1 and Vkorc1, for OLN-primed cell type population (Fig. 

5c). Itgb1, highly expressed in MSC is implicated in human chondrogenic differentiation of 

mesenchymal cells35. Among OLN-primed specific markers, Enpp1 and Vkorc1 have been 

shown to regulate bone development by regulating bone calcification36–39.  

Besides MSCs and OLN-primed MSCs, we identified additional subpopulations. Through the 

marker identification and gene set analysis of the 11 sub-clusters (Fig. 5d,e and Table S4,6) 

we were able to characterize and label each of the clusters as shown in Fig. 5f. GO terms such 
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as adipogenesis, assembly and organization, immune response, cell migration or muscle 

differentiation were enriched in the C2.3, C2.1, C1, C3, C4.2 and C4.1 subsets respectively, 

confirming the identity of this MSC cell group. Furthermore, terms related to extracellular matrix, 

chondrocyte differentiation and bone development, including bone formation, ossification, or 

epithelial migration, among others, were identified in the OLN-primed subclusters (C5, C6, and 

D respectively), verifying the identity of these more mature cells (OLN-primed cells) within the 

mesenchymal stromal cells.  

Taken together, these results demonstrate that the newly identified mesenchymal 

subpopulations could not be properly characterized without the multi-dataset integration and a 

novel clustering approach. Further, our data provide evidence of the heterogeneity of the 

mesenchymal compartment in the BM. 

 

Composition of the human endothelial and mesenchymal BM microenvironment 

While our data reveal a previously unrecognized heterogeneity in the murine BM endothelial 

and mesenchymal compartments, information about the composition of the human 

microenvironment and how much of this heterogeneity is observed in humans remains 

unanswered. To address this issue, we performed scRNA-seq analysis in prospectively isolated 

EC (TO-PRO-3-, CD45-, CD235-, Lin-, CD31+ and CD9+40,41) and MSC-OLN (TO-PRO-3-, CD45-, 

CD235-,Lin-,CD271+42–44, CD146+/-)  (Fig. S5a) from iliac crest bone marrow aspirates from four 

healthy young adults (20-30 years of age) (Fig. 6a). As described in Fig. 6b, we added 

additional filtering steps in the bioinformatic analysis to identify the two populations of interest, 

EC and MSC. As an additional quality control, we estimated the contribution of each human 

sample to EC and MSC subsets and cell cycle status (Fig. S5b,c). The EC (907 and 658 cells, 

clusters 1 and 6 respectively) (Fig. 6c and Fig. S5b middle panel) identity was confirmed 

based on the expression of canonical endothelial markers such as PECAM1 (coding for CD31), 

CD9, ICAM2, VLC, and ITGB1 (Fig. 6d and Table S7). In addition, examining functional 

pathways in clusters 1 and 6 revealed enrichment in GO terms associated with blood 

coagulation and hemostasis (Table S8). The MSC identity (249 cells, cluster 11, Fig. 6c and 

Fig. S5b middle panel) was confirmed by the expression of the mesenchymal specific genes 

(CXCL12 and LEPR) and the OLN-Primed specific genes ANGPT1, COL1A1, and VCAM1, 

among others (Fig. 6e and Table S7). Further, enrichment in functions associated with 

extracellular matrix organization and response to the mechanical stimulus was demonstrated in 

osteolineage cells (Table S8). In summary, the generated human data suggests that single-cell 

RNA sequencing from iliac crest aspirates can aid in describing the complexity of the human BM 
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microenvironment. Nevertheless, the limited number of EC and MSC, as well as the presence of 

contaminating populations did not allow a fine-grained clustering as the one performed in the 

mouse data. 

 

Significant conservation of the EC and MSC population in the human BM 

microenvironment  

Based on the limitations of the human data, we next investigated to what extend the knowledge 

uncovered in mouse could be applied to identify subpopulations/cell states in the human BM 

microenvironment. As a first step, we used the markers identifying the different clusters in 

mouse to annotate the human cells using SingleR45, separately for EC (Fig. S6a,b) and MSC 

(Fig. S6c,d). We observed that markers identified in mouse allowed us to separate the cells into 

clusters for both human EC and MSC (Fig. S6a,c), although the scoring associated with the 

cells was not very strong (Fig. S6b,d) (there was not a perfect match between mouse and 

human EC and MSC populations). Nevertheless, this analysis suggests that part of the 

biological mechanisms defining the BM microenvironment may be shared between species.  

Therefore, we decided to investigate the conserved features between mouse and human per 

cluster. For endothelial cells, we analyzed the enrichment in mouse EC markers within the 

human EC most variable genes (MVG), and we observed that for most of the subclusters, 

around 20-30 markers genes were shared between species, which account for less than 20% of 

the total mice markers for each subcluster (Fig. 7a and Table S8-S9). However, we also 

observed that such numbers were associated with an enrichment score (ES) (by comparing 

expected vs. observed, see Methods) of up to two-fold for some of the clusters: wounding (A1.1) 

with 2.15-ES, the junction (B2) 2.26-ES, arteriogenesis (A2.1) 2.02-ES and Signaling (A2.7) 2.5-

ES (Fig. 7a). Importantly, for some of the subclusters as sinusoidal signaling (A2.7) and the 

arterial of angiogenesis (B3.3), these shared genes are critical for defining each of those EC 

functional states (Table S9). Both human and mouse ECs express DDIT4, JUN, CITED2, 

GADD45G, DUSP1, FOS, and CLDN5, which are part of a wide array of transcription factors, 

growth factors, and signaling pathways that have been described to regulate the maintenance of 

vascular homeostasis under physiological conditions46–48. Similarly, ECs subclusters involved in 

angiogenesis in both species shared the expression of RGCC, GATA2, KLF2, and CAV2 genes, 

which are known to be implicated in angiogenic related processes49,50. 

In the case of mesenchymal cells, using a similar analysis, we identified a high percentage of 

shared genes in all the subclusters, with up to 35% shared genes in ten out of eleven 

subclusters. It should be noted that we identified >3.5-ES for three subclusters, such as RNA-
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Myogenesis (C4.1), Factors-Immune (C4.2), and ossification (D2). Importantly, some of the 

shared genes correspond to genes that allowed the subcluster labelling through GO categories 

(Fig. 7b and table S8 and S10). Genes such as CXCL12, APOE, or IGFBP3 are associated 

with cell migration and lipid transport pathways among others51,52, and characterized the murine 

adipogenesis subcluster (C2.3). Other genes, such as IGFBP5, are involved in actin filament 

assembly and organization53 and defined the cell adhesion subcluster (C2.1). IFIT3, MIDN, and 

ILR1 belong to pathways associated to interferon regulation or autoimmunity54,55 and were 

identified in the immune response subclusters (C3 and C4.2). Additionally, the expression of 

COL5A1 and CADM1 genes, previously related to collagen fibril organization and bone 

mineralization processes56,57, defined the bone formation subcluster (D1). Moreover, genes 

such as SPP1 or CLEC11A, which are related to osteoblasts function and mineralization58–60 

defined the mouse OLN-primed MSCs subcluster associated to ossification (D2) and are also 

expressed in human MSC-OLN cluster. Altogether, this data indicates the conservation of the 

osteogenic microenvironment between both species. 

Together, our analysis suggests that deep characterization of cellular states in mice can be 

used to infer conserved features in the human BM microenvironment. Importantly, our data 

reveal a high degree of conservation regarding the complexity and heterogeneity of the EC and 

MSC compartment in the BM between mouse and human, suggesting that the layers of 

microenvironmental regulation of hematopoiesis and the identified plasticity in mice may also be 

shared between species. 
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DISCUSSION 

Our study dissects the intrinsic organization and the heterogeneity within the endothelial (EC) 

and mesenchymal cell populations (MSC) governing the BM microenvironment. This was 

accomplished through customized bioinformatics integration of multiple datasets along with the 

inclusion of over 50.000 murine bone marrow stromal cells. We were able to identify new 

subsets of MSC and EC but, but more importantly, to define new molecular markers for the 

identification of highly specialized subpopulations of cells in the BM microenvironment. Pathway 

enrichment analysis unveiled multiple, potentially transient cell states defined by differential 

gene expression and the enrichment of specific functional characteristics. Importantly, EC 

subsets were characterized by enrichment in pathways known to be essential for endothelial 

homeostasis maintenance, demonstrating a high degree of specialization in the endothelium. 

Similarly, multiple transient cell states in the MSC compartment were defined and characterized 

by their differentiation capacity. Importantly, our deep deconvolution of the heterogenous 

mesenchymal and endothelial compartments became feasible only by integrating multiple 

datasets. Of note, our analysis showcases that a research paradigm aiming for the generation 

of a detailed comprehensive molecular atlas of an organism requires both multi-omic data and 

computational integration. Here, we have relied on what is referred to as unpaired unimodal 

(scRNA-seq) data. Clearly, a natural next step is to use and further develop new computational 

tools that permit the integration61 of unpaired multi-omics datasets such as scRNA-seq, 

scATAC-seq, and other data modalities. Recent technological developments enable several 

multiple omics recorded from the same cell, i.e. paired data, which leverages our ability to 

dissect and molecularly characterize the intrinsic organization of the bone marrow niche 

environment. Advances in computational biology have started to develop such tools62–65. 

 

While our study did not directly address the influence between stromal cells in the hematopoietic 

stem cell niche and the HSCs, the deep resolution of our study allows for some inferences to be 

made. Of note, we detected the expression of vascular endothelial growth factor-C (Vegf-c) in 

mouse endothelial and mesenchymal cells (Table S1, S4, S5, S7, and S10). Vegf-c has 

recently been implicated in the maintenance of the perivascular niche and the recovery of 

hematopoiesis upon injury66. Vegf-c is specifically expressed in the endothelial B1 and 

mesenchymal C1 subpopulations, suggesting an important role of these specialized endothelial 

and mesenchymal cells in the preservation of the integrity of the perivascular niche. In addition, 

Apelin+ (Apln) endothelial cells have been recently implicated in HSC maintenance and 

regeneration upon injury67. Importantly, two endothelial subclusters (B3.2-actin endocytosis and 
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A1.1-wounding arteries) demonstrated expression of Apln, suggesting that these EC states 

represent specific sources of hematopoietic support and vascular regeneration upon injury. 

Osteolectin+ LepR+ - mechanosensitive peri-arteriolar mesenchymal cells with osteogenic 

potential - are implicated in lymphoid, but not HSC maintenance59. Importantly, osteolectin 

expression defines murine cluster D2 (ossification) and shows conservation in human MSCs, 

suggesting the preservation of a specialized lymphoid niche between species. 

 

Detailed characterization of the human BM niche has not yet been addressed. Approaches 

undertaken in a mouse system cannot readily be transferred to the human system. Furthermore, 

differences in sample processing can also impact the results. In that sense, our results, despite 

the low number of cells, may represent the first dataset that includes scRNAseq from the human 

endothelial and mesenchymal BM microenvironment. While we were able to identify 

mesenchymal and endothelial cells based on canonical markers shared with mice10,11,68–75, our 

human scRNAseq did not possess enough resolution to elucidate the heterogeneity of the 

human BM stroma to the same level as with the mouse data. Based on the extensive 

knowledge generated in the mouse, we therefore focused on characterizing how much of the 

information and targets from the mouse can be of interest in human characterization. This 

analysis allowed us to identify the expression of the human orthologs to the murine cluster-

defining genes with different degrees of enrichment in the endothelium and mesenchyme. 

Moreover, some of these shared genes in mice and human stromal cells corresponded to the 

GO-defining genes of the different clusters identified in the mouse. These findings suggest a 

significant degree of conservation regarding the cellular states that define the stromal 

microenvironment in mouse and human. Although additional studies and improved processing 

of human samples will be required for deep characterization of the human BM 

microenvironment, these preliminary results validate our integrative cross-species approach.  

 

As an example of the added value, the current study identifies candidates of relevance in the 

study of BM related diseases. Sbds, a ribosome maturation protein associated with the 

Shwachman-Diamond syndrome, represent a previously unrecognized marker of immature 

MSCs based on the dataset integration. Sbds deficiency has been implicated in ossification 

defects and metabolic changes in HSPCs76,77, potentially contributing to myelodysplasia  and 

AML onset in Shwachman-Diamond syndrome patients. On a broader note, deep molecular 

analysis of the BM microenvironment set the stage for computational disease modelling78. 
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Taken together, our study provides a deeper understanding of the composition and 

specialization of the BM microenvironment and point towards a significant degree of 

conservation between species. Moreover, we demonstrate the usefulness of the multi-dataset 

integration and the customized clustering approach used in our study to improve the resolution 

of complex tissues and organs. This approach promises to aid in the construction of cell atlases 

by reducing the resources associated with sequencing that a single lab will need to invest in 

order to obtain meaningful depth in single-cell analysis.  

 

Future studies integrating genome, transcriptome, epigenome, proteome, and anatomical 

positioning together with functional assays to correlate descriptive phenotypes with functional 

data will help fully resolve the composition, regulation, and connectivity in the BM 

microenvironment in health and disease.    
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MATERIALS AND METHODS 

Mouse and human samples 

Female C57BL/6J mice (CD45.2, Jackson Laboratory #000664) at age 20 weeks were used for 

scRNA-seq experiments. All animal experiments were performed in accordance with national 

and institutional guidelines and procedures were approved by the Ethical Committee for Animal 

Testing of the University of Navarra. 

 

The human sample collection and research conducted in this study were approved by the 

Research Ethics Committee of the University of Navarra. All the protocols used in this study 

were in strict compliance with the legal and ethical regulations. After informed consent, a total 

volume of approximately 60 mL bone marrow was obtained by aspiration from the posterior iliac 

crest from healthy young volunteers (20-30 years of age). 

 

Isolation and FACS sorting of murine bone marrow microenvironment cells 

Mice (x6) were euthanized via CO2 asphyxiation. Bones from humerus, radius, iliac crests, 

femurs and tibia were harvested in PBS 1X containing 2 % FBS and 2 mM EDTA (modPBS). All 

steps were performed on ice to preserve cell viability and RNA integrity. Muscles and soft tissue 

were thoroughly removed from the bones and BM cells were obtained by crushing in modPBS. 

Cells were then filtered through a 70 μm cell strainer and red blood lysed with ACK buffer 

(NH4Cl 150 mM, KHCO3 10 mM, and Na2EDTA 0,1 mM) for 10 minutes at room temperature 

(RT). Remaining calcified bone fragments were collected on a 50 mL conical tube and digested 

with the appropriate volume of PBS with 0.3% collagenase I and dispase (5 U/ml) during 15 min 

at 37ºC and shaking at 200 rpm. FBS representing 10% of the digestion volume was added to 

stop the collagenase digestion. After digestion, the calcified and crushed fractions were filtered 

through a 70 μm filter into a collection tube and pooled into one sample. Cells were 

subsequently stained for 20 minutes on ice first in the appropriate volume of modified PBS 1X (3 

ml/mouse) with 160 ul/mouse of biotinylated lineage cocktail (Mac1, CD3, Gr1, B220 and 

TER119) followed by incubation with streptavidin magnetics microbeads (100 μl/mouse). 

Negative selection was performed using Miltenyi LD columns according to manufacturers’ 

protocol. 

After selection, the sample was stained with the following combination of conjugated antibodies 

at a concentration of 1/200:  APC-Cy7 labeled streptavidin, BV510 labeled anti-CD45, APC 

labeled anti-CD45 and APC labeled anti-Ter119. Samples were then stained with 0.05 μM of 

Vybrant dye orange (VDO) at 37ºC for 30 minutes to label living cells. Annexin V was also 
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added, in combination with 7AAD to discard apoptotic and dead cells from the sample 

respectively. For annexin V staining, cells were stained with 1 μl/mouse of Annexin V-FITC on 

an appropriate volume of 1X Annexin V binding buffer in the dark for 15 min at RT. Samples 

were then resuspended in 1X Annexin V buffer and 5 μl of 7AAD dye (up to 1x106 cells) were 

added. BM non-hematopoietic cells were FACS sorted using BD FACSAria II sorter collected in 

PBS 1X supplemented with 0.05% UltraPure BSA and cell viability was assessed using 

Nexcelom Cellometer. Data were analyzed by FACSDiva (BD) or FlowJo (version 10.7.1) 

software.  

 

Isolation and FACS sorting of human bone marrow endothelial and and mesenchymal-

osteolineage cells 

All sample processing steps were performed on ice to preserve cell viability and RNA integrity.  

A total volume of approximately 60 ml of bone marrow was obtained by aspiration from the 

posterior iliac crest. Red blood cells were lysed twice with 45 ml of ACK buffer per 5 ml of 

human sample during 15 minutes at RT with rotation. Sample was then filtered through a 70 μm 

cell strainer, centrifuged, and stained for 30 min on ice with the following combination of 

conjugated antibodies at a concentration of 1/100 except anti-Lin (3ul/test- test 25x106cells): 

BV510 labeled anti-Lin (including CD3, CD10, CD19, CD45 and CD64), BV421 labeled anti-

CD235, BV421 labeled anti-CD45, FITC labeled anti-CD31, APC-Cy7 labeled anti-CD9, PE 

labeled anti-CD146 and PerCP-Cy5.5 labeled anti-CD271. Dead cells and debris were firstly 

excluded by FSC, SSC and adding 10 μl of TO-PRO-3. BM niche populations were 

prospectively isolated based on the following immunophenotype: ECs: TO-PRO-3-/Lin-/CD45-

/CD235-/CD9+/CD31+ and MSCs: TO-PRO-3-/Lin-/CD45-/CD235-/CD31-/CD271+/CD146+/-. 

FACS sorting was performed on a BD FACSAria II sorter, sorted BM niche cells were collected 

in PBS 1x and 0.05% UltraPure BSA and cell viability was determined using Nexcelom 

Cellometer. Data were analyzed by FACSDiva (BD) or FlowJo (version 10.7.1) software. 

 

Profiling by Single-cell RNA-sequencing (scRNA-seq) 

scRNA-seq was performed using the Single Cell 3' Reagent Kits v3.1 (10X Genomics) 

according to the manufacturer's instructions. For human samples, endothelial and mesenchymal 

cells were pooled before scRNA-seq was performed. Approximately 15,000 cells were loaded at 

a concentration of 1,000 cells/µL on a Chromium Controller instrument (10X Genomics) to 

generate single-cell gel bead-in-emulsions (GEMs). In this step, each cell was encapsulated 

with primers containing a fixed Illumina Read 1 sequence, followed by a cell-identifying 16 bp 
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10X barcode, a 10 bp Unique Molecular Identifier (UMI) and a poly-dT sequence. A subsequent 

reverse transcription yielded full-length, barcoded cDNA. This cDNA was then released from the 

GEMs, PCR-amplified and purified with magnetic beads (SPRIselect, Beckman Coulter). 

Enzymatic Fragmentation and Size Selection was used to optimize cDNA size prior to library 

construction. Illumina adaptor sequences were added, and the resulting library was amplified via 

end repair, A-tailing, adaptor ligation and PCR. Libraries quality control and quantification was 

performed using Qubit 3.0 Fluorometer (Life Technologies) and Agilent's 4200 TapeStation 

System (Agilent), respectively. Sequencing was performed in a NextSeq500 (Illumina) (Read 1: 

26 cycles, i7 Index: 8 cycles, Read 2: 49 cycles) at an average depth of 60,000 reads/cell in 

mice and 30,000 reads/cell in human. 

 

Single-cell RNA-seq Analysis of mouse samples 

Sample selection: Sample GSM3674224, GSM3674225, GSM3674226, GSM3674227, 

GSM3674228, GSM3674229 from GSE128423 by Baryawno, sample GSM2915575, 

GSM2915576, GSM2915577 from GSE108891 by Tikhonova and one in-house mouse bone 

marrow niche sample was included in this analysis. 

 

Filtering: the single cell analysis of mice samples analysis was performed using R (version 

4.0.3, 3.6.3) and Seurat (version 4.0.0, 3.2.3)79. Three bone marrow niche samples were filtered 

individually based on the 10th and 90th quantile of number of features and counts. Cells with 

more than 5% mitochondrial genes were also removed. Each dataset was normalized using 

SCTransform80 separately.  

 

Pairwise integration and selection of the target population: In-house dataset and Baryawno were 

integrated with Tikhonova separately using Seurat (version 3.2.3.). Using as a reference the 

annotation from Tikhonova dataset, cells that aligned with LEPR+ cells and VE-Cad+ cells were 

annotated as MSC and EC respectively. MSC-like cells and EC-like cells from different datasets 

were normalized again and integrated using Seurat without further filtering. 

 

Clustering: After filtering and quality control, a divide-and-conquer strategy was applied to the 

clustering of mouse ECs and MSCs separately. Firstly, following integration, dimension 

reduction with principal component analysis (PCA), data visualization with Uniform Manifold 

Approximation and Projection (UMAP), computation of K-nearest neighbors and clustering using 

resolution of 1 were performed as a reference of high-resolution limit. Secondly, IKAP81 was 
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applied to each integrated dataset as “level 1” clustering (Fig. 2,b).  Each cluster from level 1 

was then compare with the high-resolution reference. The cluster from level 1 was further 

divided using IKAP to level 2 if the cluster were far from cluster limit. The process would be 

repeated until at least one cluster reach cluster limit.  

 

Cluster evaluation: To evaluate the stability of these clusters, a bootstrapping strategy was 

adopted18. The strategy was conducted in a pairwise manner with basic steps as follow: 

1. Select two clusters, randomly split the clusters to five equal groups and use one group of 

cells (20%) as testing dataset. 

2. Identify the set of differentially expressed genes (DEGs) between the 2 clusters using the 

Wilconxon Rank Sum test. 

3. Train a random forest classifier with 20 genes selecting the top 10 DEGs from each cluster 

based on average log2 fold change. 

4. Applied the classifier to the 20% testing dataset. 

5. Repeat step1-4 for five times for different groups such that each cell in these two clusters 

was classified once. 

6. Repeat step1-5 ten times. 

7. Repeat step1-6 for all cluster pairs  

 

There are three types of results that can be summarized from this bootstrapping strategy: 

1) For every pair of clusters, a cell pertains to which one most of the time? If a cell has been 

assigned to a cluster more than five times in 10 runs, then this cluster was considered as 

dominant cluster for this cell. 

2) For every cell: how many times it was assigned to its original cluster? We defined recall per 

cell as the proportion of assignment to its original cluster in all runs from all comparisons 

made between clusters. See Fig. S2d. 

3) For each cluster: how many times out of all pair comparisons, it was the dominant cluster for 

cells in this cluster? The times a cluster has been dominant cluster for a cell ranges from 0 

to the total number of comparisons made between clusters. We represent this type of result 

with a bar plot shown the distribution of cells with different times that this cluster has been its 

dominant cluster in all comparisons (Fig. S2e).  

 

Clusters where more than 50% of the cells has been “incorrectly” assigned robustly at least 

once to another dominant cluster will be considered unstable (Fig. S2, cluster A2.2). The cells of 
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such cluster will be assigned to other clusters (see dominant plots, Fig. S7 as an example) 

using – to that end - a random forest classifier as described before. 

 

Gene Set analysis: After clustering, DEGs of each cluster were identified using a Wilconxon 

Rank Sum test.  For each cluster, the relevant gene sets were identified using the top 50 DEGs 

using clusterProfiler (version 3.18.1)82. 

 

Added value analysis 

Added value 1: Comparing the DEGs defined by individual dataset and integrated dataset. The 

individual datasets were normalized with SCTransform and DEGs were identified within top 

3000 most variable genes using a Wilconxon Rank Sum test. For integrated dataset, DEGs 

were identified within top 3000 most variable genes from integrated assay using a Wilconxon 

Rank Sum test. False negative and false positive rate were calculated by comparing the DEGs 

identified by integrated dataset and individual dataset (Fig. 3e,f). 

 

Added value 2: Cluster stability evaluation for individual dataset. To understand if the clusters 

identified from three datasets can remain stable within a single dataset or not, the bootstrapping 

strategy was applied to each dataset with the annotation identified by the integrated dataset.  

 

Added value 3: Comparing cluster identified by a single dataset. To further understand if the 

clusters can be identified by one dataset only, Baryawno dataset was used as an example 

considering its large cell populations. The same pipeline from normalization to bootstrapping 

was applied to this dataset and the clusters identified from this single dataset was compared 

with the clusters identified by three datasets using Jaccard index. 

 

Single-cell RNA-seq Analysis of Human samples 

Preprocessing of sequencing data: Preprocessing of single-cell RNA-seq data for each in house 

sample were conducted by CellRanger count from Cell Ranger (version 6.0.1) using reference 

genome GRCh38. 

 

Sample filtering: The single cell analysis of human analysis was performed as described in 

before except for human cells with more than 10% mitochondrial genes were also removed. 

Because the exploratory data analysis revealed potential contamination of B cells, we applied 
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an additional filter: cells with more than 10% reads mapped to immunoglobin genes were 

excluded from downstream analysis. 

 

Integration: After filtering, each sample was normalized using SCTransform and integrated 

using 3000 most variable features using Seurat. Following integration, dimension reduction with 

PCA, data visualization with UMAP, computation of K-nearest neighbors with 20 dimensions 

and clustering using resolution of 0.4 were performed.   

 

Select EC and MSC (without further integration): Clusters were annotated based on biological 

insights on markers. Cluster 11 were identified as mesenchymal and cluster 1, 6 were identified 

as endothelial. During the exploratory analysis, human EC cells were subclustered at resolution 

0.4 and one of the clusters identified was further filtered for the downstream analysis because 

the cells in the cluster were not expressing EC marker genes. Several outliers from human MSC 

cells were also removed. 

 

Compare human MVGs with mouse DEGs: Human EC specific MVGs (932) and human MSC 

specific MVGs (976) identified from “RNA” assay were used. The MVGs from human EC or 

MSC were compared with DEGs from each mouse cluster. The enrichment score for a given 

cluster i was defined as the ratio between “the number of genes shared between human MVGs 

and mouse DEGs from cluster i” and “the expected number of genes”, where the later was 

computed as follows: 
����������������� 

��������
�  �� ,   ��: the number of DEGs from mouse cluster i. 

 

SingleR analysis between mouse and human 

To annotate human cells using mouse clusters as reference the singleR tool (version 1.4.1)45 

was utilized for ECs and MSCs separately. Cell type specific MVGs with expression values 

“integrated” assay from Seurat object were used for this analysis.  
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FIGURES 

Figure 1. Overview of the paper. Graphical brief description of the paper. 

Figure 2. Data integration and high-resolution clustering strategy. (a) Integrated analysis of 
the bone marrow niche datasets (two publicly available, Tikhonova et al. and Baryawno et al., 
and one generated in our lab, in-house) separately for two well-defined populations (endothelial 
and mesenchymal cells). Tikhonova et al. data set are used as a reference considering their 
separated cell profiling strategy for COL2.3+, LEPR+ and VE-Cad+ populations. In the top row, 
a UMAP projection is depicted for each single-cell RNA dataset. In the left-lower (“In-house + 
Tikhonova”) and in the right-lower (“Baryawno + Tikhonova”) data sets are integrated to identify 
endothelial and mesenchymal populations. (b) Clustering strategy: the analysis of endothelial 
cells as an example. An upper limit to the cluster is set for the clustering (left panel) using 
Louvain high-resolution clustering. Then, an iterative divide-and-conquer strategy identifies the 
optimal level of clusters at different levels:  Level 1 (second panel from the left), Level 2 (third 
panel), and Level 3 (fourth panel). (c), (d), (e) The robustness analysis for sub-clustering B3 
(from Level 2 to Level 3). Specifically: (c) sub-clusters identified, (d) the fraction of assignments 
to its original cluster using a random-forest + bootstrapping strategy and (e) summary of the 
results (d) per cluster, #correct indicates the times a cluster is a dominant cluster (see Methods) 
for a cell inside in all pairwise comparisons (see Fig.S2 for the sub-clustering analysis of A1 and 
A2).   

Figure 3. Quality control and added value of the clustering analysis. (a) Representation of 
the final endothelial clusters. (b) Left panel: proportion of cells per dataset in each cluster in the 
final Endothelial clustering analysis. Right panel: proportion of cells per cell cycle stage using 
Seurat in each cluster in the final Endothelial clustering analysis. (c,d) Similar as (a,b) for MSC. 
(e,f) The added value of the integrated approach. Upper panel: every cell depicts the % of 
markers identified per cluster using only one dataset when compared with the markers identified 
in the total dataset. Middle panel: every cell depicts the % of False Negatives. Bottom panel:  
every cell depicts the % of False Positives when comparing the analysis conducted within each 
dataset with the integrated analysis (considered as the correct result). (e) and (f) are 
respectively associated with endothelial and mesenchymal cells. (g,h) Robustness of the cluster 
characterization using only cells from a single dataset but maintaining the same cluster 
structure. (g) and (h) are respectively associated with endothelial and mesenchymal cells. 
 
Figure 4. Deep characterization of the endothelial cell compartment in the BM. (a) UMAP 
representation of arteries (red) and sinusoids (blue) within the endothelial cell population. The 
right-bottom subpanel depicts the final endothelial clusters identified. (b) Violin plot of gene 
expression for known markers of arteries and sinusoids cell sub-types. (c) Violin plot of gene 
expression for new marker candidates separating arteries and sinusoids cell sub-types. (d) Dot 
plot of the top 5 markers for each endothelial subcluster. Dot size corresponds to the proportion 
of cells within the group expressing each gene, and dot color correspond to the average 
expression level. (e) Selected set of gene-sets derived from the gene-set analysis conducted 
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with top 50 markers per cluster (see Methods). (f) Final clustering of the endothelial cell 
population and the labeling assigned based on marker genes and gene-set analysis.   

Figure 5. Deep characterization of the mesenchymal cell compartment in the BM. (a) 
UMAP representation of mesenchymal (red) and Osteolineage-primed (OLN-primed) (blue) 
within the mesenchymal compartment. The right-upper subpanel depicts the final mesenchymal 
clusters identified. (b) Violin plot of gene expression for known markers of Mesenchymal (red) 
and Osteolineage-primed (blue) cells. (c) Violin plot of gene expression for new marker 
candidates separating Mesenchymal (red) and Osteolineage-primed (blue) cells. (d) Dot plot of 
the top 5 markers for each mesenchymal subcluster. Dot size corresponds to the proportion of 
cells within the group expressing each gene, and dot color correspond to the average 
expression level. (e) Selected set of gene-sets derived from the gene-set analysis conducted 
with top 50 markers per cluster (see Methods). (*) transmembrane receptor protein 
serine/threonine kinase signaling pathway. (f) Final clustering of the mesenchymal cell 
population and the annotation based on marker genes and gene-set analysis.   

Figure 6. Composition of the human endothelial and mesenchymal BM 
microenvironment. (a) Experimental design for the human BMM characterization. (b) Scheme 
of customized bioinformatics pipeline filtering the cells with a large number of Immunoglobulin 
genes. (c) UMAP visualization of color-coded clustering of the human BM microenvironment 
after filtering cells. (d,e) Expression of representative markers for endothelial population (d) and 
mesenchymal-osteolineage cells (e) using an UMAP representation. 

Figure 7. Conservation analysis of the EC and MSC population in the human BM 
microenvironment. (a,b) Quantification of the conservation for EC (a) and MSC-OLN (b) cells 
for each cluster.  The enrichment of those genes that are cluster markers in mouse and 
observed in most variable genes (MVG) of EC and MSC human cells respectively. The right 
column shows, among the genes identified in human, those that are part of the gene-sets used 
to label the cluster. 
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