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Abstract

Motivation

A key process in anti-viral adaptive immunity is that the Human Leukocyte Antigen system (HLA)
presents epitopes as Major Histocompatibility Complex | (MHC 1) protein-peptide complexes on cell
surfaces and in this way alerts CD8* cytotoxic T-Lymphocytes (CTLs). This pathway exerts strong
selection pressure on viruses, favoring viral mutants that escape recognition by the HLA/CTL system,
e.g. by point mutations that decrease binding of viral peptides to MHC |. Naturally, such immune escape
mutations often emerge in highly variable viruses, e.g. HIV or HBV, as HLA-associated mutations
(HAMs), specific to the host HLA alleles and its MHC | proteins. The reliable identification of HAMs
is not only important for understanding viral genomes and their evolution, but it also impacts the
development of broadly effective anti-viral treatments and vaccines against variable viruses.

By their very nature HAMs are amenable to detection by statistical methods in paired sequence /
HLA data. However, HLA alleles are very polymorphic in the human host population which makes
the available data relatively sparse and noisy. Under these circumstances, one way to optimize HAM
detection is to integrate all relevant information in a coherent model. Bayesian inference offers a
principled approach to achieve this.

Results

We present a new regression model for the detection of HAMs. As we choose a Bayesian approach we
can include the novel sparsity-inducing priors, and we obtain easily interpretable quantitative information
on HAM candidates. The basic model can be extended to include prior information relevant to HAM
detection, which we demonstrate by integrating predictions of epitope affinities to MHC [, predictions of
epitope peptide processing, and computation of phylogenetic background. This integrative method
improves performance in HAM detection considerably over state-of-the-art methods.

Availability
The source code of this software is available at https://github.com/HAMdetector/Escape.jl under a
permissive MIT license.
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1. Introduction

1.1 The HLA system

The human immune system recognizes viral infections
through two pathways: The innate and adaptive im-
mune response. T-cell, or “cellular”, immunity, which
represents one major arm of the adaptive immune sys-
tem, is modulated by Human Leukocyte Antigen (HLA)
molecules (Germain, 1994): Briefly, proteins that are
synthesized within the cell —which will include viral
proteins if the cell is infected—, are degraded in protea-
somes to peptides (Goldberg et al., 2002). Some of these
peptides are presented as epitopes on the cell surface
by HLA class I molecules. These viral peptide-HLA
complexes can then be recognized by circulating CD8*
Cytotoxic T-Lymphocytes (CTLS) through their T-cell
receptor (Murata et al., 2007). Following this recogni-
tion, the CTL can eliminate the infected cell (Harty et al.,
2000).

HLA class I molecules are encoded at three loci, HLA-A,
-B and -C, and these genes are very polymorphic with
more than 20,000 known alleles in humans (Robinson
et al., 2014). HLA molecules vary drastically in their
affinities to given epitopes so that cells from different
individuals, in general, present different peptides on
the cell surface. In other words, the HLA class I alleles
expressed by a given individual will determine their CTL
response to a given viral pathogen.

1.2 HLA escape

Virus variants arise continuously through mutation. Be-
cause the HLA system modulates CTL responses through
viral epitope presentation, it exerts strong selection pres-
sure towards virus variants that escape CTL recognition
(Borrow et al., 1997). Such variants could, for example,
carry mutations that reduce binding of viral epitopes
to HLA, or that reduce recognition of the epitope/HLA
complex by the CTL’s T cell receptor, or that alter pep-
tide processing so that epitopes are no longer presented

on the infected cell surface (Yewdell and Hill, 2002).

HLA diversity drives viral evolution in individuals where
a virus adapts to the specific HLA alleles expressed in
the host, and in human populations, where circulating
viruses adapt to HLA alleles commonly expressed in that
population (Kawashima et al., 2009). Upon transmission
to a new host with different HLA alleles, HLA escape
mutations may revert, particularly if they are associated
with a reduction in viral replication capacity Matthews
et al. (2008), but they can also persist, leading to their
population-level accumulation (Kawashima et al., 2009).

Whether and how quickly a given escape mutation is
selected in a host depends, e.g., on the viral genomic
background, the magnitude of the reduction in viral repli-
cation caused by changes in the viral proteins, the selec-
tion of compensatory mutations that recover fitness, and
the strength of immune response targeting the presented
epitope (Klgverpris et al., 2016).

Immune escape is a driver of viral evolution in individ-
uals and populations, particularly for highly variable
viruses such as HIV or HBV (Alizon et al., 2011; Allen
et al., 2005; Rousseau et al., 2008; Lumley et al., 2018).
Methods to accurately detect immune escape mutations
are therefore critical. More broadly, an improved under-
standing of immune escape can aid in the development
of treatments and vaccines that rely on effective immune
responses.

1.3 Identifying HLA escape mutations

There are several experimental methods available to
study HLA escape (Czerkinsky et al., 1983; Brunner
etal., 1968; Lamoreaux et al., 2006; Altman et al., 1996).
However, these methods are relatively slow and costly,
especially for screening purposes. A promising approach
that makes efficient use of frequently available data is
to combine viral genome sequencing, host HLA deter-
mination, computational identification by statistical as-
sociation analysis, and targeted experimental validation
(Carlson et al., 2012).

As the selection pressure exerted by cytotoxic T cells de-
pends on successful recognition of viral peptides bound
to HLA molecules on the infected cell surface, escape
mutations are HLA allele specific and can therefore be
detected as HLA allele dependent amino acid substitu-
tions, or “footprints,” in sequence alignments of viral
proteins (Moore, 2002). Amino acid substitutions en-
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riched in viral sequences from hosts with a specific HLA
allele are termed HLLA associated mutations (HAM).

One way of quantifying this enrichment is Fisher’s exact
test (Fisher, 1922): For a given substitution S; at align-
ment position i and HLA allele H, a 2-by-2 contingency
table is constructed containing the absolute counts of
the number of sequences in the four possible categories
S, H), (S;, “H), (—S;, H) and (—S;, -H), where —S;
denotes any substitution except S;, and —H denotes any
HLA allele except H.

Fisher’s exact test is a conventional null hypothesis sig-
nificance test (NHST) that generates p-values. In this
case, the null hypothesis is that HLA allele H and sub-
stitution S; are independent, and the p-value is the proba-
bility of observing a deviation from independence that
is at least as extreme as in the data at hand under the
assumption that the null hypothesis is true.

Fisher’s exact test has the advantage of being fast and
easy to apply (Budeus et al., 2016), but it also has several
disadvantages (Carlson et al., 2008). The most striking
one is that viral sequences share a common phylogenetic
history, and, therefore, treating sequences as indepen-
dent and identically distributed samples may under- or
overestimate effect sizes. In the context of hypothesis
testing, this leads to increased false positive and false
negative rates (Osborne and Waters, 2002; Scariano and
Davenport, 1987).

Another issue with Fisher’s exact test is the genomic
proximity of human HLA class I loci (Francke and Pel-
legrino, 1977) leading to linkage disequilibrium — in-
heritance of HLLA alleles can be correlated. Therefore,
spurious HAMs can occur if associations of substitutions
with individual HLA alleles are tested: if HLA allele H;
is associated with an amino acid substitution R because
of immune escape, but H; is in linkage disequilibrium
with allele H», then this leads to an association of R and
H,, even without being an escape mutation from H,.

Carlson et al. (2008) developed the Phylogenetic Depen-
dency Network, a method that accounts for several of
the aforementioned problems, in particular phylogenetic
bias and HLA linkage disequilibrium. However, it is
based on null hypothesis significance testing.

mutations — 3/16

1.4 Issues with p-values for screening

There are fundamental statistical issues with p-values as
a screening tool (Amrhein and Greenland, 2017): with
small effect sizes and high variance between measure-
ments, as is often the case with biological data, statis-
tically significant results can be misleading, can have
the wrong direction (type S error), or can greatly over-
estimate an effect (type M error) (Gelman and Carlin,
2014). Such problems are more and more appreciated
in the context of the current “replication crisis” — in the
life sciences scientific claims with seemingly strong sta-
tistical support often fail to replicate (Ioannidis, 2005;
Begley and Ellis, 2012; Baker, 2016).

These problems are exacerbated if p-values are used
for screening purposes (multiple testing problem). The
probability of obtaining a statistically significant result
increases with each additional test, even in absence of
any real effect. When using p-values as a filter, it is
therefore likely to obtain significant effects that are in
fact not real. A common strategy to mitigate this problem
is to control the false discovery rate (Benjamini and
Hochberg, 1995). The downside of such adjustment
procedures is that only the very largest effects remain if
large datasets are screened.

Instead of performing many hypothesis tests and trying
to adjust for them, we prefer to fit a single, multilevel
model that contains all comparisons of interest. Multi-
level models can make the problem of multiple compar-
isons disappear entirely and yield more valid estimates
(Gelman et al., 2012).

2. Materials and Methods

Our general approach for HAMdetector is to fit Bayesian
regression models that captures relationships between
host HLA alleles and substitutions in viral proteomes.

This Bayesian approach is advantageous because it al-
lows use of: (1) prior information (e.g. knowledge of
effect magnitudes), (2) relevant additional information
(phylogeny, epitope information), (3) a problem-specific
structure, (4) partial pooling (Gelman, 2010).

2.1 Model backbone

We chose a logistic regression model as backbone be-
cause it is easily extensible, and because coefficients can
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be interpreted in the familiar way as summands on the
log-odds scale.

yix ~ Bernoulli(6y) (1)

D
6. = logistic (/sok +Y X jﬁjk> , ()

Jj=1

where y;; is the binary encoded observation of substi-
tution k in viral sequence i (each observed amino acid
state k contributes a separate column to y;); 0j is the
estimated probability that we observe substitution k in
sequence I; By is an intercept for substitution k, corre-
sponding to the overall log-odds for substitution k; X;;
is 1 if sequence i comes from host individual with HLA
allele j and 0 otherwise; B is the HLA regression coef-
ficient of HLA allele j for substitution k; D is the number
of HLA alleles in the dataset; the logistic inverse link
function transforms the linear model in parentheses to
the probability scale of 8.

The main parameters of interest for HAMdetector are the
regression coefficients B, as they quantify the strength
of association between the occurrence of substitution k
and each of the observed HLA alleles. The B are on the
log-odds scale, i.e., if we go from viral sequences from
hosts without HLA allele j to those from hosts with j,
the log-odds log(px/(1 — px)) of observing substitution
k increase by addition of f3;.

Reasoning about coefficients on the log-odds scale can
sometimes be unintuitive. A useful approximation to in-
terpret logistic regression coefficients on the probability
scale is the so-called divide-by-4 rule, which means that
a regression coefficient of 2 corresponds to an expected
increase on the probability scale of up to 2/4 = 50%.

2.2 Inclusion of additional information

On top of the paired data of viral sequences and host
HLA alleles modeled by the backbone (Eq 1), we extend
the model to include further information of relevance to
improve HAM detection, namely phylogenetic informa-
tion and predictions of epitope peptide processing and
MHC I affinity, as described in the following.

2.2.1 Phylogeny

Viral strains have a common phylogenetic history. Thus
substitutions are not independently and identically dis-
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tributed, and therefore violate a common assumption of
standard statistical methods. In fact, Bhattacharya et al.
(2007) demonstrated the importance of correcting for the
phylogenetic structure in identifying HLA associations.

A popular approach in phylogeny-aware regression of
binary variables is to estimate an additional multivari-
ate normally distributed intercept, where the covariance
matrix is based on the branch lengths of a given phyloge-
netic tree (Ives and Garland, 2009, 2014). This approach
turned out to be too computationally expensive in our
model, hence we chose a strategy similar to the one in
Carlson et al. (2008):

Consider a phylogenetic tree ¥ obtained from standard
maximum likelihood methods for a given multiple se-
quence alignment. We are interested in estimating P(y; =
1|¥), that is, the probability of observing the substi-
tution k in sequence i based on the underlying phylo-
genetic model. A quantity that can be readily com-
puted using phylogenetic software like RAXML-NG
(Kozlov et al., 2019) is P(¥|yx = 1). For this, we
keep the tree topology fixed, annotate the tree with the
binary observations y;; at its leaves and optimize the
branch lengths. P(W|y; = 1) is then the likelihood of
the annotated phylogenetic tree. Similarly, we can also
compute P(W|yy = 0) by flipping the annotation of se-
quence i from 1 to O (keeping all other observations).
With P(W|yy = 1) and P(¥|yy = 0) known and the
relative frequencies of O an 1 as priors, we can esti-
mate P(y; = 1|¥) by applying Bayes’ theorem. The
estimated probabilities based on phylogeny are then in-
cluded in the model as additional intercepts (second term
of logistic argument):

yir ~ Bernoulli(6;)
6, = logistic (ﬁok + Yogit (P(yx = 1|¥))

D
+) XikBjk)
=

3)

The logit transform is used because it cancels out with
the logistic inverse link function. The phylogeny term
acts as a baseline in absence of any HLA effects. As this
baseline itself is not certain but subject to errors of the
phylogenetic probabilities P(y; = 1|¥), we introduce
an additional parameter 7.
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2.2.2 Inclusion of CTL epitope predictions

As outlined earlier, escape mutations often appear as
HAMs. Given the underlying mechanism, it is not sur-
prising that escape mutations are enriched in CTL epi-
topes, i.e. in those viral peptides presented by MHC
I to TCRs (Bronke et al., 2013). This suggests that
knowledge of epitope regions can be used to boost HAM
detection. Fortunately, availability of large experimental
datasets (Vita et al., 2019) has enabled the development
of computational tools that predict with good accuracy
the binding of peptides to MHC I molecules encoded by
various HLA alleles (Mei et al., 2020).

Not only mutations in CTL epitopes can lead to failure
to present epitopes to T cell receptors, but also muta-
tions at epitope-flanking positions that interfere with
pre-processing of peptides, notably proteasomal cleav-
age of viral proteins (Milicic et al., 2005; Gall et al.,
2007).

In HAMdetector we use MHCflurry 2.0 (O’Donnell
et al., 2020) to predict epitopes that are properly pro-
cessed and presented by MHC 1. For this, we create an
input matrix of dimensions R x D, where R is the num-
ber of evaluated substitutions and D is the number of
observed HLA alleles in the dataset. The elements of
this matrix are binary encoded and contain a 1 if that
position is predicted to be in an epitope, and 0 otherwise.
Given an amino acid sequence, MHCflurry provides a
list of possible epitopes (9-13 mers) and HLA allele
pairs and calculates a rank based on comparisons with
random pairs of epitopes and HLA alleles. For the bina-
rization we use the rank threshold of 2% suggested by
MHCAlurry.

We use epitope prediction as information about the ex-
pected degree of sparsity, i.e. if we know that there is an
epitope restricted by a given HLA allele at that location,
we expect that this HLA allele is more likely to be asso-
ciated with substitutions at that position than the other
HLA alleles. This idea is implemented by increasing the
scale of the local shrinkage parameters A, depending
on epitope information:

Aji ~ Cauchy™ (0, 0,;exp(ZjkBepi))

4
Bepi ~ Normal ™ (1,2), @

where Zj; is 1 if HLA allele j is predicted to restrict the
alignment position corresponding to substitution k, and
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0 otherwise. The parameter f3.p; governs the increase in
scale of the corresponding local shrinkage parameters.
The larger the estimated values of B are, the more
likely it is to see non-zero regression coefficients for
these HLA alleles.

2.2.3 Sparsity-inducing priors

Sparsity-promoting priors (Piironen and Vehtari, 2017b)
can drastically improve predictive performance, because
the model is better able to differentiate between signal
and noise. These priors convey the a priori expectation
that most coefficients in a regression model are close
to 0, i.e. that non-zero coefficients are sparse. This as-
sumption is likely correct for HAMs: the dominating
mechanism that leads to HLA association of mutations
is probably selection of mutations that mediate escape
from MHC I presentation of epitopes; however, we know
that these epitopes are sparse, i.e. the number of actual
epitopes that are restricted by a given HLA allele is typi-
cally small compared to the number of all conceivable
epitopes. Thus, for most pairs of HLA allele and sub-
stitution, the association is likely truly zero. Note that
this reasoning does not preclude associations outside of
epitopes as sometimes observed for compensatory mu-
tations (Ruhl et al., 2011) but just implies that these are
more rare.

There is a range of sparsity-promoting priors with slightly
different properties. They share the common structure of
placing most probability mass very close to 0, with heavy
tails to accommodate the non-zero coefficients. For our
model, we use the so-called regularized horseshoe prior
(Piironen and Vehtari, 2017b), which is an improvement
of the original horseshoe prior presented by Carvalho
et al. (2010), in that it additionally allows some shrink-
age for the non-zero coefficients. The original horseshoe
prior is given by:

Bjx ~ Normal(0, Tzljzk)
Ajk ~ Cauchy™*(0,1) %)
7 ~ Cauchy™ (0, 19),

where fj; are the regression coefficients; T and Aj;
are the so-called global and local shrinkage parame-
ters, respectively; Cauchy™ is the positively constrained
Cauchy distribution; 7y is the overall degree of sparsity.
Shrinkage of the non-zero coefficients in the regular-
ized horseshoe prior is achieved by replacing Ajzk with
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% A% ..
A2, = 24 where the additional parameter ¢ governs
J T /Ijk

the magnitude of shrinkage for the non-zero coefficients.

With Eq 5 the global shrinkage parameter 7 is typically
very small and shrinks most of the regression coefficients
close to 0, whereas the local shrinkage parameters 4 j
can occasionally be very large to allow some coefficients
to escape that shrinkage.

The overall degree of sparsity 7y can be chosen based on
the expected number of non-zero coefficients (Piironen
and Vehtari, 2017a).

2.3 Full model specification

The full specification of the HAMdetector model is:

yix ~ Bernoulli(6;)
6, = logistic (ﬁok + ylogit (P(yy = 1]W))

D
+ ZXijﬁjk)
k=1

Bo, ~ Normal(0, 100%) (*)
Yc ~ Normal (Uphy Gghy)
Mphy ~ Normal(1,1) *)
Ophy ~ Normal ™ (0,0.5) (*)
Bepi ~ Normal+(1,2) (*) (6)

Bjx ~ Normal(0, Tfﬂfk)
_ c,%ljzk
c,% + T,?ljzk

¢? ~ Inv-Gamma(3.5,3.5) ()
Aji ~ Cauchy " (0, o;exp(ZjiPepi))

7 ~ Cauchy™ (0, 7oz (*)
o 1o 2

%" D-10\N

where N is the number of available annotated sequences.

72
jk

The full model specification includes some aspects that
were not covered in the previous sections. In particu-
lar, the overall phylogeny-weight ¥ in Eq 1 is replaced
in the full model by hierarchically modelled 7, which
allows partial pooling across substitutions (even with a
global parameter y the model works reasonably well).
The final additional parameters ijzk and Ty are explained

in detail in Piironen and Vehtari (2017b). Briefly, ijzk
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allows some regularization for the non-zero coefficients
and the parameterization of 7y allows to place a prior
on the expected number of non-zero coefficients. This
is particularly useful for logistic regression models, as
some shrinkage helps to deal with issues of separabil-
ity and collinearity that commonly occur with logistic
regression models.

2.3.1 Prior justification

Prior distributions are labeled with an asterisk in Eq 6.
They are weakly informative, which means that they
effectively limit posteriors to realistic magnitudes of
parameters. One exception to this are the intercepts fy,,
which are essentially flat because they are well identified
by the data alone.

The hierarchical mean and standard deviation of the
phylogeny coefficients 7y place most probability mass
on ¥ values around 1. In absence of any HLA effects, a
Y = 1 would mean that the estimate for the probability
of observing substitution k is identical to the probability
based on the phylogenetic model. This treats phylogeny
as a baseline, and any observations not attributed to
phylogeny must be explained by HLA alleles or noise.

The prior on c,% implies a Student-t prior with 7 degrees
of freedom and a scale of 1 on the non-zero HLA re-
gression coefficients ;. A Student-t prior with these
parameters is a reasonable default choice for logistic
regression models (Piironen and Vehtari, 2017b).

The value of 1y, implies 10 effective non-zero HLA
regression coefficients per substitution. The rationale
behind this parameterization is again outlined in Piironen
and Vehtari (2017b). The value of 10 corresponds to a
generously estimated magnitude based on available HIV
epitope maps (Yusim et al., 2018). The model is also
parameterized in a way that assumes an equal degree of
sparsity across all alignment positions a priori. We also
tried to model 7; hierarchically, but observed sampling
issues due to the resulting unfavorable geometry of the
posterior.

2.4 Model implementation

A Julia (Bezanson et al., 2017) package is available
at https://github.com/HAMdetector/Escape.jl to run the
model on custom data. Due to restrictions of depen-
dencies (MHCflurry and RAXML-ng), HAMdetector is
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currently only available on Linux, but can be run on Win-
dows using the Windows Subsystem for Linux (WSL?2).
All models were implemented in Stan 2.23 (Stan De-
velopment Team, 2021), a probabilistic programming
language and Hamiltonian Monte Carlo sampler for effi-
cient numerical computation of posterior distributions.
The Stan code is available in two versions: One opti-
mized for readability and one optimized for speed by
utilizing Stan’s multithreading and GPU capabilities.

2.5 Model diagnostics
2.5.1 Convergence diagnostics

We use the split-R convergence diagnostic to identify
Markov chain convergence issues (Gelman and Rubin,
1992; Gelman et al., 2013). We require a value of R
below 1.01 for all model parameters. Additionally, we
require that the effective sample size Ng (Stan Develop-
ment Team, 2021) is above 500 for all model parameters
and that sampling occurs without any divergent transi-
tions (Betancourt, 2017).

2.5.2 Posterior predictive checks

In posterior predictive checks, we simulate new data
from the inferred posterior distribution and the likeli-
hood, and we compare these simulated data with repre-
sentative real data (Gabry et al., 2019). A good model
should predict data that are consistent with real data.
This general idea was employed in two ways to test our
models.

For a first posterior predictive check we used calibra-
tion plots (Fig. 1): two binned quantities were plotted
against each other, the observed relative frequencies of
substitutions f(y; = 1), and the predicted probabilities
P(yi = 1|/model). In such a plot, a well-calibrated model
should yield points following the diagonal. Technically,
all observations were first sorted by increasing estimated
probability P(y; = 1|/model) and grouped into n bins.
For each bin, the fraction of observations with y;; = 1
(observed event percentage) was then plotted against
the midpoint of each bin. The cutpoints of the bins are
indicated by error bars.

Second, we assessed the abilities of different models
and methods to discover HAMs with HAM enrichment
plots. These plots are based on the observation that CTL
escape mutations are enriched in epitopes (Bronke et al.,
2013). Hence, the degree by which methods for HAM
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prediction recover this trend is a measure of model per-
formance. To implement this measure, we first ranked
all evaluated substitutions according to their respective
credibility of being a HAM, computed as integral of
the marginal posterior P(fj; > 0). For comparison with
established methods, namely Fisher’s exact test and Phy-
logenetic Dependency Network (Carlson et al., 2008),
ranked lists based on p-values were computed. Then we
calculated for each rank r the accumulated number N, (r)
of predictions of this rank or better ranks were located
inside known epitopes. The higher the curve N,(r), the
higher the enrichment of predicted HAMs in epitopes,
see e.g. Fig. 2.

2.5.3 Leave-one-out cross-validation

Another performance measure is the ability to gener-
alize to unseen data. To examine this ability for the
different model variants we performed leave-one-out
cross-validation (LOOCYV), using the efficient Pareto-
smoothed LOOCYV Vehtari et al. (2016).

From the LOOCYV, we obtain the Expected Log-Predictive
Density (ELPD) Y7, log( [ p(yi|0)p(8|yi—1)d6)) for sam-
ples i = 1,...,n, ith observation y;, data y;_; with the
ith data point left out, and model parameters 6. Thus,
the ELPD is the average log predictive density of the
observed data points based on the leave-one-out poste-
rior distributions. This measure has the advantage over
other performance measures like classification accuracy
of not only taking into account the location of the pre-
dictive distribution (the number of correct predictions)
but also the width, i.e. how confident the model is in its
predictions.

2.6 Data

The model was fit with several datasets consisting of
viral sequences paired to host HLA class I data:

* A large HIV dataset consisting of a subset of se-
quences from the HOMER (Brumme et al., 2007,
2008) cohort, the Western Australian HIV Cohort
Study (WAHCS, Moore (2002); Bhattacharya et al.
(2007)) and participants of the US AIDS Clin-
ical Trials Group (ACTG) protocol 5142 (John
et al., 2008) who also provided Human DNA un-
der ACTG protocol 5128 (Haas et al., 2003) (total
N = 1383). These data were in part also used
in the Phylogenetic Dependency Network study
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(Carlson et al., 2008). The dataset contains se-
quences spanning the gag, pol, env, nef, vif, vpr,
vpu, tat and rev genes.

* A set of 351 HIV sequences mostly spanning the
pol gene from the Arevir database (Roomp et al.,
2006).

* A set of 544 Hepatitis-B-Virus sequences (Timm
and Walker, 2021) The dataset contains sequences
of the preC/core, LHBs, Pol and HBx proteins.

* A set of 104 Hepatitis-D-Virus sequences contain-
ing the HDV-antigen (Karimzadeh et al., 2018).

* A set of 41 HIV sequences spanning the gag and
pol genes.

Lists of known epitopes were gathered from the Immune
Epitope Database (IEDB, Vita et al. (2019)).

2.7 Data preparation

For all sequences, we applied the following preparation
steps:

1. For each dataset, the sequences were split into
subsequences, either by protein or gene.

2. If not already present in this format, sequences
were translated into their amino acid representa-
tions.

3. RAXML-NG (Kozlov et al., 2019) version 1.0.0
was used to generate a maximum likelihood phylo-
genetic tree for each gene/protein using the -mode 1
GTR+G+1I option with all other parameters set
to default values. If available, we used RNA or
DNA sequences for this step, rather than protein
sequences.

2.8 Data availability

The data underlying this article were provided by permis-
sion. Data will be shared on request to the corresponding
author with permission of the respective co-authors.

3. Results

In order to understand what the different building blocks
of HAMdetector contribute, we applied four different
Bayesian models of increasing complexity to each dataset,
starting with the standard logistic regression model (Eq 1),
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Figure 1. Calibration plot for the HBV PreC/core
protein.
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and adding then the further components, i.e. the horse-
shoe prior (Eq 5), phylogeny (Eq 3), and epitope predic-
tion, resulting in the full model (Eq 6). For comparisons
to existing methods, we also applied Fisher’s exact test
and the Phylogenetic Dependency Network Carlson et al.
(2008) to the same data.

3.1 Run times and convergence

For a standard office computer, run times of HAMde-
tector on the smaller HDV dataset were of the order of
minutes and on the order of hours for the Hepatitis B
dataset. For the large HIV dataset, the models were run
overnight. Run times scale approximately linearly with
the product NK, where N is the number of sequences
and K is the number of substitutions. All model fits
showed no signs of inference issues. In total, samples
were drawn from four Hamiltonian Markov chains with
1000 iterations each after 300 warm-up iterations. The
effective sample size exceeded 500 for all model param-
eters, R convergence diagnostic values were below 1.01
in all cases.

3.2 Posterior predictive checks

The model yields well-calibrated posterior predictive
probabilities of substitutions. This is exemplified in
Figure 1 for HBV core protein, but also holds true for
the other datasets (Supplementary Figures “Calibration
plots”).

The predictions of the tested models are enriched in
epitopes over baselines for almost all tested datasets
(Fig. 2 for HBV preC/core protein and Supplementary
Figures “HAM enrichment plots” for other datasets). Al-
though the relative and absolute performance varies by
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protein (see supplementary figure “HAM enrichment
summary”’), HAMdetector consistently outperforms all
other methods in all but two datasets, and performs on-
par with the other methods in these two cases. For the
best ranked HAMs, Fisher’s exact test performs about as
well as the HAMdetector backbone logistic regression
model (model 1 in Fig. 2). Each of the following three
model stages of HAMdetector increases HAM enrich-
ment further. The horseshoe prior alone (model 2) is a
drastic improvement over model 1, even though it does
not include any specific external information. The logis-
tic regression model with horseshoe prior works roughly
as well as the Phylogenetic Dependency Network Carl-
son et al. (2008), which includes much more information.
Model 3 with its additional inclusion of phylogeny has
higher enrichment than model 2, and finally, the full
model 4 with the inclusion of epitope prediction leads
to a further improvement. Note that model 4 only uses
epitope prediction software and does not use any infor-
mation of experimentally confirmed epitopes. The latter
are here only used for model evaluation.

The Bayesian approach lends itself to incorporation of
prior knowledge which usually helps in accurate model-
ing and prediction. In fact, a considerable effect is con-
firmed by the HAM enrichment plots with their ladder
of improvements with increasing inclusion of informa-
tion. It may be particularly surprising that the sparsifying
horseshoe prior has such an impact although it does not
use specific prior information. However, this is in prin-
ciple the same mechanism as for the other information
components: it is known that HAMs are sparse per HLA
allele, and therefore supplying this information to the
inference improves predictions. Figure 3 illustrates the
effect of the sparsifying prior with an example, the sub-
stitution 11D in HIV integrase (Arevir dataset). There
is no evidence for an association of HLA-A*01 with
this substitution, whereas for HLA-B*44 the data is con-
sistent with a strong association. The horseshoe prior
has the effect of shrinking towards O specifically those
regression coefficients with weak evidence of an associ-
ation (A*01 in Fig. 3). This reduces the standard error
for the remaining coefficients, leading in our example to
narrowed histogram for the association with B*44 in the
model with horseshoe prior.
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Figure 2. HAM enrichment plot for HBV preC/core
protein: number N, of associations inside the boundary
of known epitopes vs. rank r. D: Phylogenetic
Dependency Network; F: Fisher’s exact test; 1: simple
logistic regression model with broad Student-t priors; 2:
logistic regression model with horseshoe prior; 3:
logistic regression model with horseshoe prior and
phylogeny; 4: full model with epitope prediction.
Unannotated gray lines at the bottom of the graph are
HAM enrichment curves for random permutations of
the list of HLA allele - substitution pairs and act as
baselines.
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without horseshoe prior
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with horseshoe prior
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Figure 3. Marginal posterior distributions of regression
coefficients for the association of substitution 11D of
the HIV integrase with HLA alleles A*01 and B*44.
Top half: inferred with logistic regression model,
bottom half: inferred with logistic regression with
sparsifying horseshoe prior.
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Table 1. ELPD changes as HAMdetector components
are added. Data computed for HBV preC/core protein.
All differences in ELPD are larger than several times the
estimated standard error (column segifr), indicating that
models that include more information have better
predictive performance.

ELPDyifr | sediff
logistic regression (baseline) 0.0 00
+ horseshoe prior 949.8 | 65.2
+ phylogeny 44409 | 944
+ epitope prediction 63.1 | 18.9

3.3 Leave-one-out cross-validation

To quantify the ability of the four different model stages
of HAMdetector to generalize to unseen cases, we com-
puted the ELPD with Pareto-smoothed leave-one-out
cross-validation. Table 1 shows results for the HBV
preC/core protein in terms of ELPD changes with each
new model stage. Each new model stage adds ELPD, i.e.
is better at generalizing than the simpler model stages.

The model with horseshoe prior alone already has a
much higher ELPD than the standard logistic regression
model, even though it does not use any specific external
data. This is because including the sparsity assumption
allows the model to better separate signal from noise and
the uncertainty of the close-to-zero coefficients does not
propagate into uncertainty of predictions.

Including phylogeny further improves model performance
a lot, as the assumption of independent and identically

distributed data is replaced with specific information

from the shared phylogenetic history.

While addition of sparsity and phylogeny has an effect on
all substitutions and samples, epitope prediction only in-
fluences those substitutions that are restricted by a given
HLA allele and only those samples that are annotated
with the allele. Therefore, inclusion of epitope prediction
does not improve ELPD as much as inclusion of phy-
logeny and the sparsity assumption. However, inclusion
of epitope prediction is highly useful for determining
which HLA alleles are associated with a substitution, as
shown in the previous section.
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3.4 HAMs in HDV as test case

The Hepatitis D Virus (HDV) dataset (Karimzadeh et al.,
2019) is an excellent test case: we have (1) a set of paired
HDV sequences and patient HLA alleles, (2) HAM pre-
dictions by Fisher’s exact test as implemented in Se-
gFeatR (Budeus et al., 2016), and (3) an in-vitro assay
to quantify the effect of the predicted HAMs on IFN-
y release of CD8" T cells (IFN-y production assays,
Karimzadeh et al. (2019)). This allows us to see whether
HAMdetector decreases the false positive rate in compar-
ison to the simpler Fisher’s exact test, and we can make
bona fide predictions on previously undetected HAMs.
We have 15 HAMs predicted in HDV by Fisher’s exact
test at significance level 5 x 1073 (Table 2) as published
(Karimzadeh et al., 2019). The corresponding p-values
have no clear relation to experimental confirmation, i.e.
p-values for confirmed HAMs are not generally lower
than those of non-confirmed ones.

For HAMdetector, we use in Table 2 the posterior proba-
bility of a positive regression coefficient (P(fj;x > 0) as
measure for the confidence in having detected a HAM.
HAMs with strong support have a posterior probability
close to 1, associations with no support a probability
close to 0.5 (corresponding to a regression coefficient
centered around 0). The five predicted HAMs with top
posterior probabilities (all > 0.90) have all been exper-
imentally confirmed. There is only one outlier with
posterior probability 0.75 (P89T and B*37).

HAMdetector strongly supports 15 substitution - allele
pairs that have previously not been identified (question
marks in last column of Table 2). All of them have associ-
ation probabilities of 0.90 or higher, while their p-values
from Fisher’s exact test exceed the significance level of
5 x 1073 used in Karimzadeh et al. (2019). Given the
superior performance of HAMdetector on the experi-
mentally tested HAMs, these 15 bona fide predictions
suggest that most true HAMs may still to be discovered.
A striking example is K43R - A*02 with a p-value of
0.22 in Fisher’s exact test but a HAM-probability of 0.90
and location inside an A*02 restricted epitope.

3.5 Linkage disequilibrium

For three of the false positives proposed by Fisher’s
exact test (Table 2), HAMdetector identifies associations
with the same substitution but a different allele (P49L—
B*13 instead of P49L-A*30; K43R-A*02 instead of
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Table 2. List of HAMs predicted by Fisher’s exact test
(FET). In the last column “+” and “-”” mark
experimentally confirmed or rejected HAMs,
respectively; “?” below the horizontal line indicate
untested bona fide predictions. “post.prob.” are
posterior probabilities for positive associations
computed with HAMdetector.

substitution | allele | p-value (FET) | post. prob. | confirmed

S170N B*15 3-1078 0.99 +
DIOIE B*37 0.0002 0.96 +
R105K B*27 0.0011 0.93 +
R139K B*41 0.0034 0.92 +
E47D B*18 0.0027 0.90 +
D33E B*13 0.0001 0.86 -
T134A A*68 0.0045 0.82

K43R B*13 0.0021 0.77

P89T B*37 0.0011 0.75 +
D47E A*30 0.0010 0.76 -
K113R B*13 0.0043 0.76
A107T B*14 0.0028 0.70

P49L A*30 0.0031 0.63
Q100L B*13 0.0018 0.60

D96E B*13 0.0035 0.51 -
E46D A*02 0.0054 0.97 ?
V811 A*68 0.0073 0.97 ?
K113N B*08 0.0063 0.96 ?
ATIT B*41 0.0065 0.96 ?
L188I A*68 0.0632 0.94 ?
T95S A*01 0.0285 0.93 ?
D33E A*03 0.0226 0.93 ?
P49L B*13 0.0035 0.92 ?
A74S A*68 0.0123 0.91 ?
E29D B*44 0.0559 0.91 ?
D46E B*57 0.0190 0.91 ?
R88K A*68 0.0123 0.91 ?
T149P B*52 0.0281 0.91 ?
K43R A*02 0.2158 0.90 ?
N22S B*08 0.0405 0.90 ?

K43R-B*13; and D33E-B*13 instead of D33E-A*03).
One possible explanation for this observation is HLA
linkage disequilibrium: If a certain HLA allele selects
for a specific HAM and there is another HLA allele
that co-occurs with that HLA allele, any method that
relies on the statistical analysis of pairs of HLA allele
and substitution alone will also detect these associations.
Due to random sampling variation, the HLA allele that
selects for a mutation might not necessarily have the
strongest correlation. Inclusion of additional information
like epitope prediction can help to identify associations
that are otherwise confounded by noise.

Indeed, out of the 12 times P49L is observed in se-
quences annotated with A*30, B*13 is also present in
5 of those cases (Spearman’s rank correlation coeffi-
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Figure 4. Marginal posteriors for the regression
coefficients of A*30 (left column) and B*13 (right
column) for substitution P49L with different model
stages (rows).

cient p = 0.5). A similar observation can be made for
K43R and D33E, although the correlation between the
respective alleles is much weaker. A*30 and B*13 have
been shown to be in strong strong linkage disequilibrium
(Brumme et al., 2007, supplementary table 2).

Figure 4 shows regression coefficients of the HLA al-
leles A*30 and B*13 for substitution P49L. With the
simplest logistic regression model (model 1), both A*30
and B*13 have medium evidence of being associated
with substitution PA9L. However, with phylogeny and
sparsity-promoting prior (model 3) both regression co-
efficients shrink close to 0 — the associations are not
convincingly supported by the data. Using epitope pre-
diction as additional source of information (model 4)
allows to disentangle the association of the correlated
alleles with P49L and identify B*13 as likely associated
with P49L. The association between P49L and A*30
(predicted by Fisher’s exact test) remains shrunk towards
0.
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3.6 HAMs outside epitopes

The epitope and processing predictions that HAMdetec-
tor uses are imperfect, as the underlying tools extrapolate
binding affinities for new epitopes based on necessar-
ily incomplete experimental data. Bayesian statistics
provides a coherent framework to make use of imper-
fect data. In HAMdetector, this is achieved by an ad-
ditional parameter f; that governs how strongly the
model takes an apparent association between a substi-
tution and the corresponding HLA allele into account.
By default, the regression coefficients that quantify the
strength of association between allele and substitution
are shrunk towards 0, and only in the presence of consid-
erable evidence in favor of an association (e.g. because
the substitution often co-occurs with a certain HLA al-
lele), this shrinkage is overcome by the observed data.

If the epitope prediction happens to be reliable, i.e. when
the presence of a predicted epitope correlates strongly
with the probability observing the substitution in a host
with the respective HLA allele, the parameter Sp; is es-
timated to be large and less evidence by the sequence
data is enough to escape the shrinkage and estimate
a non-zero association between allele and substitution,
compared to associations that do not lie inside a pre-
dicted epitope. Likewise, if the epitope prediction turns
out to be non-reliable, Bp; is estimated to be close to 0
and the presence of a predicted epitope does not strongly
affect the conclusions drawn from the sequence data.

However, it is important to consider that biologically
relevant HAMs do not necessarily have to lie within or
close to the boundary of an epitope. For instance, com-
pensatory mutations can occur far away from the epitope
they are associated with, as they might be the result
of improved physical interactions with another amino
acid in the folded, three-dimensional protein (Ruhl et al.,
2011). Such compensatory mutations (Kelleher et al.,
2001; Ruhl et al., 2011; Neumann-Haefelin et al., 2011;
Schneidewind et al., 2008) can confer a strong selection
advantage, e.g. by partially restoring replicative capac-
ity that would otherwise be impaired by the exclusive
presence of a certain HLA escape mutation.

We therefore also expect HAMs outside epitopes and one
possible concern is that the model focuses too strongly
on associations with substitutions that lie within the
boundary of predicted epitopes.

Figure 5 shows posterior probabilities P(fj;x > 0) for
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model 4
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within predicted epitope no - yes
Figure 5. Integral of the marginal posterior P(fj, > 0)
for the HAMdetector model with epitope prediction
(model 4) and without epitope prediction (model 3) for
all substitutions in the preC/core protein (HBV dataset).

substitution—HLA allele pairs as calculated by HAMde-
tector with (model 4) and without (model 3) epitope
prediction. Each substitution—-HLA allele pair is rep-
resented by a dot and colored according to whether or
not that position lies within a predicted epitope. For
substitutions that do not lie within a predicted epitope,
both models provide similar estimates (points along the
diagonal). However, some substitutions—HLA pairs that
have only weak evidence of association in model 3 have
strong support in model 4, which is explained by the
additional evidence provided by epitope prediction. The
figure shows that the model is still able to identify as-
sociations outside predicted epitopes and that epitope
information augments evidence obtained from sequence
data.

4. Discussion

HAMdetector follows a general paradigm of Bayesian
modelling, namely to map all information that is avail-
able about a system of interest onto a probabilistic model,
and then to apply Bayesian inference to learn about prob-
able parameter values of that model, e.g. about fj, the
association of HLA j with substitution k. The more rele-
vant information we infuse into the model, the sharper
the inference. HAMdetector outperforms other meth-
ods as it includes an unprecedented amount of relevant
information.

We have demonstrated that the logistic regression back-
bone is a platform that can be extended by model compo-
nents that contribute new information. We have selected
such modules guided by widely accepted knowledge,
such as phylogeny or epitope location. However, even
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knowledge that is rarely stated explicitly may be help-
ful in inference, as in the case of sparsity of HLA as-
sociations. Since the included knowledge is generic
for interactions of variable viruses with CTL immunity,
HAMdetector performance does not depend on the virus.

Yet, HAMdetector is far from perfect. For instance, the
outlier in Table 2 could point to missing information in
HAMdetector. Another deficiency is that it currently
works only with two-digit HLA alleles. We are currently
exploring models for 4-digit HLA alleles that exploit
partial pooling so that we can attenuate effects of the
increased data fragmentation.

Another extension of our model would be to better ac-
count for phylogenetic uncertainty by using a Bayesian
method to estimate a posterior distribution over possible
tree topologies. The uncertainty over the tree topologies
and the underlying parameters of the phylogenetic model
would then propagate into uncertainty of the estimated
probabilities P(y; = 1|¥). However, the good perfor-
mance of the current version of HAMdetector makes
it already a valuable tool for the study of interactions
between viruses and T cell immunity.
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