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1 

Abstract 31 

The representation of “what happened when” is central to encoding episodic and 32 

working memories. Recently discovered hippocampal time cells are theorized to provide 33 

the neural substrate for such representations by forming distinct sequences that both 34 

encode time elapsed and sensory content. However, little work has directly addressed 35 

to what extent cognitive demands and temporal structure of experimental tasks affect 36 

the emergence and informativeness of these temporal representations. Here, we trained 37 

deep reinforcement learning (DRL) agents on a simulated trial-unique nonmatch-to-38 

location (TUNL) task, and analyzed the activities of artificial recurrent units using 39 

neuroscience-based methods. We show that, after training, representations resembling 40 

both time cells and ramping cells (whose activity increases or decreases monotonically 41 

over time) simultaneously emerged in the same population of recurrent units. 42 

Furthermore, with simulated variations of the TUNL task that controlled for (1) memory 43 

demands during the delay period and (2) the temporal structure of the episodes, we 44 

show that memory demands are necessary for the time cells to encode information 45 

about the sensory stimuli, while the temporal structure of the task only affected the 46 

encoding of “what” and “when” by time cells minimally. Our findings help to reconcile 47 

current discrepancies regarding the involvement of time cells in memory-encoding by 48 

providing a normative framework. Our modelling results also provide concrete 49 

experimental predictions for future studies. 50 

Keywords 51 

Time cells, ramping cells, memory, hippocampus, deep learning, reinforcement learning  52 
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Introduction 53 

The cognitive ability for biological organisms to remember an episodic event relies on 54 

the encoding of “what happened when” by the brain 1. Since the discovery of “place 55 

cells” 2, which are cells that consistently fire when the animal occupies a certain location 56 

in space, the hippocampus has long been theorized to contribute to memory by 57 

organizing spatial knowledge into a cognitive map. As the temporal analogue of place 58 

cells, several recent studies have identified neurons in hippocampus CA1 3–8 and CA3 8–59 
10 that tile the interval between discontiguous events by firing sequentially at successive 60 

moments in time, suggesting that these “time cells” support the temporal organization of 61 

episodic memory by encoding elapsed time. The subsequent observations of such time 62 

cells throughout the brain in multiple mammalian species 10–18 confirmed that such a 63 

dynamical regime was wide-spread and complementary to the previously reported 64 

ramping-based model for tracking time 19–24, in which neurons can estimate elapsed 65 

time using monotonically increasing or decreasing neuronal firing rates. Interestingly, 66 

multiple studies have demonstrated that the same population of hippocampal time cells 67 

form distinct sequences during the mnemonic delay following the presentation of 68 

different sensory stimuli 4,5,25, suggesting a potential mechanism by which the 69 

hippocampus integrates information about “what” and “when” as part of the process of 70 

encoding episodic memories. 71 

 72 

However, there exists some discrepant evidence that makes it unclear whether these 73 

time cells are involved in storing memories, or if they are an emergent phenomenon 74 

related to non-mnemonic processes. For example, Salz et al.9 showed that these time 75 

cell sequences emerged from not only the mnemonic delayed alternative task but also a 76 

“looping task” that contained no memory load. Sabariego et al.8 reported that 77 

sequences formed by the hippocampal time cells during a spatial working memory task 78 

did not distinguish between different trial types. More recently, Ahmed et al.26 showed 79 

that CA1 activity patterns were neither consistent nor informative during the delay 80 

period in trace fear conditioning. These findings hint at the possibility that the 81 

observations of so-called time cells may merely be an epiphenomenon as a 82 

consequence of assumption-based analyses, rather than a mechanism by which the 83 

brain bridges mnemonic gaps between events. We hypothesize that the discrepancies 84 

in current data are a result of different studies using tasks that involve different cognitive 85 

demands and different temporal structures, making direct, well-controlled comparisons 86 

impossible.  87 

 88 

One way to address this is to use computational models of simulated agents, wherein 89 

we can both fully control the demands of the task and perform rigorous decoding 90 

analyses to investigate the effects of these task-related factors. Thankfully, recent 91 

advances in artificial intelligence have shed light on a new path to understanding 92 
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neuroscience problems 27,28. Specifically, artificial neural networks (ANNs) trained with 93 

appropriate loss functions and architectures provide a means to explore normative and 94 

functional hypotheses about neural computation at the algorithmic-level. Reinforcement 95 

learning (RL), in particular, is well-suited to modelling real neural computation thanks to 96 

the intimate links between core RL theory and neurophysiology 29–32.  97 

 98 

Here, we developed deep RL (DRL) models trained end-to-end, and used simulated 99 

experimental tasks from the neuroscience literature to reconcile different views on how 100 

the brain represents elapsed time. We designed and simulated novel modifications to 101 

traditional working memory tasks to investigate the extent to which task demands and 102 

task structures can affect neural representations in an ANN trained to maximize reward. 103 

We characterized the incidence and nature of these representations using 104 

neuroscience-based analyses to provide direct comparison between in vivo results and 105 

our in silico observations. We found that time-cell-esque sequences naturally emerged 106 

in recurrent DRL networks trained on working memory tasks, but so did ramping-based 107 

temporal representations. Using decoder analysis, we showed that both the time-cell-108 

esque sequential activity and ramping activity patterns were informative about stimulus 109 

and time. Furthermore, through simulated non-mnemonic and varying-delay versions of 110 

the original task, we explored the extent to which memory and temporal dimensions of 111 

the task affected these representations. We found that memory demands are necessary 112 

for the time cells to encode information about the stimuli. In contrast, the temporal 113 

structure of the task affects both time cell encoding minimally. Thus, our models predict 114 

that time cell sequences should be present in many different tasks, even non-mnemonic 115 

tasks or tasks with different temporal structures, but the informativeness of time cell 116 

activity should depend on the memory requirements of the task. Our results provided 117 

concrete predictions for future neuroscientific investigations on how hippocampal 118 

sequences can be incorporated into cognitive map theory in the temporal dimension. 119 

Results 120 

Deep reinforcement learning agents with recurrent connections can solve a 121 

delayed nonmatch-to-sample working memory task 122 

We simulated the mnemonic Trial-Unique, Nonmatch-to-Location (Mem TUNL) Task 123 

(Figure 1A, Movie S1), an episodic working memory task for which the performance in 124 

rodents has been shown to be dependent on hippocampus and the length of the delay 125 

period 33. We embedded the TUNL task in a 2D simulation environment resembling the 126 

touchscreen chamber commonly used in animal experiments. Agents could move up, 127 

down, left, or right, and could also “nose-poke” to interact with elements of the simulated 128 

chamber. A complete episode of the task consists of five stages: 1) At the beginning of 129 

each episode, the agent (Figure 1A, blue square) encounters an initiation signal 130 
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(Figure 1A, red square), which it must navigate to and poke with in order to proceed to 131 

the sample phase. 2) During the sample phase, the sample (Figure 1A, green 132 

squares) will be displayed in one of two possible locations: either on the left or right 133 

corner of the triangular arena, and the agent must poke the sample. 3) Upon poking the 134 

sample, all signals are turned off, and the delay period of 40 simulation time steps 135 

starts. The end of the delay period is indicated by the onset of the initiation signal again, 136 

with which the agent must poke in order to proceed to the choice phase. 5) During the 137 

choice phase, both left and right sample locations are presented. If the agent pokes the 138 

location not displayed during the sample phase (i.e. “nonmatch”), it will receive a reward 139 

and the episode ends. This task requires the agent to remember the location of the 140 

sample throughout the delay period in order to choose correctly during the choice phase 141 

after the delay. To maximize the reward, the agent must not only remember the sample, 142 

but also navigate to desired locations in the shortest path possible without taking 143 

redundant actions.  144 

 145 

The DRL agent used in this simulation study consisted of a visual module with a 146 

convolutional neural network, a memory module with a long short-term memory (LSTM) 147 

layer plus a linear layer, and an actor-critic RL module (Figure 1B; See Methods). The 148 

network was trained end-to-end with on-policy, policy gradient methods 34. At each 149 

simulation time step, the input provided to the agent is an RGB image of the state of the 150 

environment (i.e. a snapshot from above). The agent computes an estimated state 151 

value, and a policy according to which it will select the action in response to the current 152 

state. As noted, a LSTM was integrated into the architecture of the agent for two 153 

reasons: 1) the recurrent connectivity within LSTM cells ensures that the information 154 

about previous states can be preserved in its hidden states, providing a potential 155 

solution to our TUNL task wherein the correct choice of each trial depends on the state 156 

input received earlier in the trial; 2) the architecture of LSTM cells, which involves a 157 

gating system to direct the flow of information, avoids the vanishing and exploding 158 

gradient problem commonly observed in vanilla recurrent neural networks 35 and makes 159 

them an excellent algorithmic-level model of recurrent computation within the 160 

hippocampus despite the clear differences with the connectivity profile of the 161 

hippocampus 36.  162 

 163 

We found that the DRL agent reliably learned to perform the mnemonic TUNL Task well 164 

(Figure 1C, green curve). In contrast, an agent without the recurrent LSTM component 165 

was unable to learn the task (Figure 1C, grey curve), verifying that the DRL agent was 166 

relying on its recurrent connections for working memory, consistent with how rodents 167 

use their hippocampus. It should be noted, though, that the DRL agent performance 168 

plateaued at a success rate that was much higher than rodents 11,33. This is likely 169 

because this simulated task is ultimately easier than the true task faced by the animals, 170 
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and the simulated agent has no other goals or needs than solving the task. 171 

Nonetheless, the fact that the agent learns to perform this task using its recurrent 172 

connections suggests that DRL systems provide a reasonable abstract, normative 173 

model to understand the activity in biological circuits in animals performing these tasks. 174 

 175 

 176 

 177 

 178 

Figure 1. Deep reinforcement learning agent is capable of learning the simulated 179 

Trial-Unique, Nonmatch-to-Location (TUNL) working memory task. A) Schematic 180 

illustration of the task structure in one trial of mnemonic TUNL task (Mem TUNL). In 181 

each trial, the sample location is randomly assigned to be at either the left or right 182 

corner of the triangular arena. In this example episode, the sample location is on the 183 

right. After a delay period of 40 simulation time steps, the agent must choose the 184 

location that does not correspond to the sample location. In order to proceed in the 185 

task, the agent must navigate to the signal, sample, or choice locations and interact with 186 

them. Dotted white arrows show the ideal series of actions for the agent to maximize the 187 

reward. B) Architecture of the deep reinforcement learning (DRL) agent. At each time 188 

step, the agent receives the visual input of the state of the environment, and outputs the 189 

estimated state value 𝑉̂(𝑆𝑡) and the policy 𝜋(𝑎𝑡| 𝑆𝑡).  C) The agent achieves almost 190 

perfect performance on the Mem TUNL task in approximately 30000 episodes (green). 191 

In contrast, a feedforward agent chooses nonmatch at random (grey). Performance is 192 

measured as the fraction of choices that are nonmatch to sample. Solid line and shaded 193 

area represent the average and standard deviation of performance over 4 seeds, 194 

respectively. 195 
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Coexistence of ramping and sequence regimes for temporal representation in 196 

LSTM cells 197 

Currently there are two possible mechanisms by which the brain represents time that 198 

have been supported by neurophysiological recordings: the sequence regime (i.e. time 199 

cells) 3–5,7–9, or the ramping regime 19–24. Given these observations, some studies have 200 

shown the coexistence of ramping neurons and sequence neurons in the same neural 201 

circuits in the brain 18,21,37. However, to our knowledge, existing modelling studies of 202 

temporal representations have only focused on emulating either the ramping pattern or 203 

the sequence pattern within a population of in silico neurons 38–40. To investigate 204 

whether these regimes can emerge in task-oriented DRL agents and whether their 205 

emergence conflicts with one another, we recorded the hidden states of the 512 LSTM 206 

cells in a successfully trained DRL agent during the delay period for 1000 trials. In order 207 

to focus on cells whose activity carried temporal information, we restricted our analyses 208 

to the LSTM cells whose hidden state activities during the delay intervals across all 209 

trials had a peak-to-peak variation bigger than 10-7 (which selected 328/512 units, i.e. 210 

64.06%). A ramping cell was defined as an LSTM cell whose trial-averaged temporal 211 

tuning curve monotonically increased or decreased (86/328, 26.22%; example shown in 212 

Figure 2B, left panel), while the rest of the LSTM cells were defined as sequence cells 213 

(242/328, 73.78%; example shown in Figure 2B, right panel), since they necessarily 214 

had a peak activation somewhere in the delay period. Importantly, these sequence cells 215 

corresponded to the time cells in the brain whose latency to their peak firing rates forms 216 

a sequence during the delay period (Figure 2A). Notably, both ramping cells and 217 

sequence cells carried information about the sample, since their temporal receptive 218 

fields were different under the right versus left sample conditions (Figure 2B). 219 

 220 

To compare the sequence cell and the ramping cell regimes at the ensemble level, we 221 

sorted the trial-averaged temporal tuning curves of cells in each regime by the latency 222 

to their peak average hidden state activity. As we expected, the tuning curves of the 223 

sequence cell population formed a continuous sequence that tiled the delay period of 224 

the TUNL task (Figure 2C, middle panel). Interestingly, the sequence cell ensemble 225 

was characterized by a decrease in its temporal resolution over the delay, as reflected 226 

by the overrepresentation of the beginning of the delay period as well as an increase in 227 

the width of the temporal receptive field towards the end of the delay period, which is a 228 

phenomenon commonly observed in biological time cells across brain regions and 229 

species 3,4,9,13,17,18,41,42. On the other hand, the average hidden state activities of 230 

different ramping cells decrease or increase at different rates (Figure 2C, left panel). 231 

To quantitatively characterize the dynamics observed in LSTM cells and to directly 232 

compare them to those observed in the brain, we calculated the sequentiality index 233 

(SqI) of each ensemble using the procedure described in Zhou et al.43 (see Methods), 234 

which takes into account 1) the entropy of the distribution of peak times (i.e. peak 235 
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entropy, or PE), and 2) the sparsity of cells that peak at each given time (i.e. temporal 236 

sparsity, or TS). PE, TS, and SqI are all bounded between 0 and 1; an SqI of 1 means 237 

the dynamics of the population form a perfect sequence in which the activity of each cell 238 

in the population peaks consecutively, one-by-one at a steady pace, whereas an SqI of 239 

0 means that either the cells did not tile time or all of the cells were active together. The 240 

results are shown at the top of each panel in Figure 2C. As expected, the sequence cell 241 

regime had a higher SqI than the ramping cell regime due to a higher peak entropy. It 242 

should be noted that the SqI of LSTM sequence cells was slightly lower than that of the 243 

sequences observed in dorsolateral striatum and premotor cortex 43, likely due to the 244 

prolonged, sustained activity in a subset of LSTM cells towards the end of the delay 245 

period. However, whether these SqI values are different than those in the hippocampus 246 

is not yet known.  247 

 248 

Next, we asked whether a higher sequentiality entails a better encoding of elapsed time 249 

as shown by Zhou et al.43. We trained a multi-class logistic regression decoder on the 250 

hidden state activities of the population of a single time step during the delay period to 251 

decode the elapsed time. We found that both ramping and sequence regimes are able 252 

to encode elapsed time in their dynamics, with slightly higher accuracies from the 253 

ramping regime (Figure 2D). The decoding accuracies for both ramping cells and 254 

sequence cells decreased as elapsed time progressed, reflecting the decrease in the 255 

temporal resolution observed in the population tuning curves. Altogether, our results 256 

showed that both the sequence regime and the ramping regime for temporal 257 

representation can naturally emerge in the same group of neurons in an ANN trained to 258 

perform a working memory RL task. This suggests that both time cells and ramping 259 

cells are naturally emergent phenomena in recurrent circuits of the brain.  260 
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 261 

 262 

Figure 2. Ramping regime and sequence regime coexist in the LSTM layer during 263 

the Mem TUNL task, and both contribute to estimating the elapsed time. A) Pie 264 

chart showing the number and percentage of LSTM cells classified as ramping cells 265 
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(blue) or sequence cells (red), or excluded from analysis due to an inadequate peak-to-266 

peak variation in their hidden state activities (grey). B) An example ramping cell (left 267 

panel) and an example sequence cell (right panel). Each panel shows, from top to 268 

bottom, a heatmap of z-normalized hidden state activities during the delay period in 100 269 

left-sample trials and 100 right-sample trials (blue and red represent the lowest and 270 

highest hidden state activities during the delay period of each trial, respectively), and 271 

the temporal tuning curves averaged over the 100 left-sample trials (yellow) and 100 272 

right-sample trials (brown). C) Heatmaps showing the hidden state activities during the 273 

delay period, averaged over the 1000 recorded trials, for all ramping cells (left panel), all 274 

sequence cells (middle panel), and all analyzed cells (right panel). Each row shows the 275 

trial-averaged activities of a single cell normalized to its minimum (blue) and maximum 276 

(red). Rows in each panel are sorted by the latency to the peak hidden state activity. 277 

Peak entropy (PE), temporal sparsity (TS), and sequentiality index (SqI) for each 278 

ensemble are labeled at the top of each panel. D) Multi-class logistic regression 279 

decoding of elapsed time since delay onset from population hidden state activities at 280 

each time step for ramping cells (left panel), sequence cells (middle panel), and all 281 

analyzed cells (right panel). Heatmaps show probability estimates of decoded time 282 

plotted against actual elapsed time, with superimposed blue lines representing the 283 

decoded time with the highest probability estimate. Accuracy of the decoded time with 284 

the highest probability estimate is labeled at the top of each panel.  285 
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The emergence of stimulus-encoding sequences depends on cognitive demands 286 

Previous research on rodent hippocampal time cells has led to disputes on whether 287 

these sequential activity patterns indeed contribute to stimulus-encoding in memory, or 288 

are merely an artifact 8,9,26. Here, we addressed these discrepancies and investigated 289 

the effect of task demand on temporal representations by developing a non-mnemonic 290 

version of the TUNL task (NoMem TUNL) wherein, during the choice phase, the agent 291 

may choose either the match or the nonmatch location to receive a reward, thus 292 

eliminating the demand for the agent to remember the sample location across the delay 293 

period (Figure 3A). The agents trained on the NoMem TUNL task had the same 294 

architectures as those trained on the Mem TUNL task (Figure 1B). As expected, the 295 

agents trained in the NoMem TUNL task only chose the nonmatch location half of the 296 

time (Sup. Figure 1A). Parallel to the Mem TUNL experiment, after training on the 297 

NoMem task, we recorded the hidden state activities from the 512 LSTM cells in the 298 

DRL agent during the delay period of 1000 trials, and selected the LSTM cells whose 299 

hidden state activities carried temporal information (264/512 units, 51.56%). We defined 300 

ramping cells and sequence cells as described previously (Sup. Figure 1B).  301 

 302 

To characterize the effect of memory demand, we first examined the temporal 303 

organization of sequence cells during different trial types under mnemonic or non-304 

mnemonic conditions (Figure 3B). We found that, regardless of the presence of 305 

memory demand, left and right samples elicited different patterns of hidden state 306 

activities in the same population; in other words, the same LSTM cell would have 307 

different temporal tuning curves during the delay period after the display of different 308 

samples, as reflected in Figure 2B.  To quantify how informative these patterns were, 309 

we trained support vector machine (SVM) decoders to decode the identity of the sample 310 

from the hidden state activities of the sequence cell population at each single time step 311 

during the delay period on a trial-by-trial basis (we used SVMs as opposed to logistic 312 

regression here as they produced better decoding on sample states). We found that, 313 

when the agent is required to remember the identity of the sample (i.e. Mem TUNL), the 314 

sequence cell population successfully preserved the information about the sample in 315 

their hidden state activities across the entire delay (Figure 3C, left panel, green 316 

curve). To confirm the significance of this, we also conducted the decoding using 317 

shuffled activities (i.e. the cell identities were shuffled), which led to chance decoding 318 

performance (Figure 3C, left panel, grey curve). In contrast, in the absence of working 319 

memory demand (i.e. NoMem TUNL), the hidden state activities in the sequence cell 320 

population gradually lost information about the sample over the course of the delay 321 

period eventually settling at chance level (Figure 3C, right panel). Thus, our results 322 

lead to a specific experimental prediction: the sequential time cell regime will emerge 323 

naturally in the brain as a consequence of a delay in the task and the recurrent 324 

connections in the neural circuits regardless of the mnemonic demands; but, these time 325 
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cell representations will only contribute a lasting record of sensory data from before the 326 

delay in the presence of mnemonic demands. Interestingly, we found that the ramping 327 

regime was able to decode the stimulus at any time during the delay, with or without 328 

memory demands (Sup. Figure 1C) 329 

 330 

 331 

 332 
 333 

Figure 3. Without a demand for working memory, sequence cells progressively 334 

lose information about the sample identity over the delay period between 335 

discontiguous events. A) Schematic illustration of the actions (dotted white arrows) 336 

leading to a reward during the choice phase in mnemonic TUNL task (Mem TUNL, top 337 

panel) and non-mnemonic TUNL task (NoMem TUNL, bottom panel). Instead of having 338 

to select the nonmatch location, the agent may select either the nonmatch or match 339 

location in NoMem TUNL, thus eliminating the need to remember the identity of the trial-340 

unique sample during the delay period. B) Sequence cell ensembles during the delay 341 

period for left- or right-sample trials under the mnemonic (left panel) or non-mnemonic 342 

(right panel) condition. Each heatmap shows the trial-averaged hidden state activities of 343 

all sequence cells, normalized to each cell’s minimum (blue) and maximum (red) 344 

activity. In all heatmaps, cells are sorted by the latency to peak hidden state activity 345 

during the left-sample trials under the corresponding task condition. C) SVM decoding 346 

of the sample displayed prior to the delay period from population activities at each time 347 
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step during the delay period of Mem TUNL (left panel, green) and NoMem TUNL (right 348 

panel, purple). Decoding accuracy is measured by the fraction of trials decoded 349 

correctly. Decoding accuracies from unit-shuffled population activities are plotted in grey 350 

and serve as chance baseline. Solid lines and shaded areas represent mean and 351 

standard deviation of accuracies across 5 cross-validation folds.  352 
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Unscalable but informative representations of time during altered task structure 353 

Having established that temporal representations spontaneously emerge in recurrent 354 

networks as a result of a delay period, we next asked whether changes in the temporal 355 

structure of an episode would affect the scale of temporal receptive fields and the 356 

information contained in these temporal representations. To test this, we randomly 357 

interleaved episodes with delay period durations of 20, 40, or 60 simulation time steps 358 

for both the Mem and NoMem TUNL tasks, and trained agents with the same 359 

architecture as previously described (Figure 1B) on these varying-delay tasks. We 360 

found that randomly changing the delay duration did not affect the learning rate of the 361 

agents (Figure 4A). For each task condition, after training, we again recorded the 362 

hidden state activities from the 512 LSTM cells for 1000 episodes for each delay 363 

duration, selected the LSTM cells that carried temporal information (Varying-delay Mem 364 

TUNL: 316/512 units, 61.72%; Varying-delay NoMem TUNL: 341/512 units, 66.60%), 365 

and defined ramping cells and sequence cells as described previously (Sup. Figure 2).  366 

 367 

To assess how temporal representations in the LSTM cells change when the interval 368 

duration is randomly lengthened or shortened, we examined the trial-averaged temporal 369 

tuning curves of each cell in relation to the ensemble during different delay durations in 370 

Mem TUNL. We found that the temporal representations in the LSTM cells did not 371 

rescale according to the delay duration as previously reported in hippocampal time 372 

cells44, nor did they completely “retime” by changing their global activity patterns 4. 373 

Instead, LSTM cells maintained their preferences in absolute time: when the delay 374 

duration was shortened, the temporal tuning curves of LSTM cells were interrupted 375 

abruptly by the premature end of the delay; when the delay duration was lengthened, 376 

LSTM cells sustained their activities for the lengthened portion of the delay (Figure 4B). 377 

To investigate whether such absolute temporal representations are still informative 378 

about elapsed time, we trained a multi-class logistic regression decoder on the hidden 379 

state activities of the population of a single time step during the delay period to decode 380 

the elapsed time since delay onset. We found that the activities of LSTM cells were able 381 

to decode elapsed time with high accuracy regardless of the delay duration (Figure 4C). 382 

Our finding that rescaling and retiming did not occur, without impacting decodability of 383 

time, suggests that the scalability of temporal representations is not itself a prerequisite 384 

for time-encoding. It also suggests that the real brain contains additional mechanisms to 385 

support temporal calculations beyond those used in the DRL agents. 386 

 387 

Next, to assess the effect of changes in the task structure on stimulus-encoding in the 388 

sequential “time cell” regime, we used SVM decoders to decode the identity of the 389 

sample in each trial from hidden state activities of LSTM sequence cells at each single 390 

time step during the delay period from that trial. We grouped the results based on the 391 

delay duration. We found that, in the presence of memory load (i.e. Mem TUNL), the 392 
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neural activities carried information about the stimulus against the passage of time 393 

throughout the delay period regardless of the delay duration (Figure 4D). On the other 394 

hand, without memory demand (i.e. NoMem TUNL), stimulus-decoding accuracy of 395 

LSTM hidden state activities gradually decreased from the onset of the delay period, 396 

and continued to decrease unless interrupted by the end of the delay period (Figure 397 

4E). Interestingly, comparing the stimulus-decoding accuracies for the same delay 398 

duration with or without interleaving other delay durations (Figure 4E, middle panel; 399 

Figure 3C, right panel), we noticed that randomly altering the delay duration slowed 400 

down the rate of information loss in the absence of memory load, possibly due to the 401 

unpredictability of the offset of the delay.   402 
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Figure 4. When the length of the delay abruptly changed, LSTM cells neither 404 

“retime” nor rescale, and are still able to encode time and stimulus. A) When the 405 

duration of the delay for each trial is randomly assigned to be either 20, 40, or 60 406 

simulation time steps, the agent still successfully learns the Mem TUNL (green) or 407 

chooses nonmatch at random in NoMem TUNL (purple). Solid line and shaded area 408 

represent the average and standard deviation of performance over 4 seeds, 409 

respectively. B) LSTM cell ensembles during the delay period of 20 (left), 40 (centre), or 410 

60 (right) time steps. Each row represents the temporal tuning curves of one LSTM cell, 411 

normalized to its minimum (blue) and maximum (red) activity in each delay duration. In 412 

all heatmaps, cells are sorted by the latency to peak hidden state activity during the 20-413 

time step delay. C) Logistic regression decoding of elapsed time since delay onset from 414 

LSTM population hidden state activities at each time step for delays of length 20 (left), 415 

40 (right) and 60 (right) time steps. Heatmaps show probability estimates of decoded 416 

time plotted against actual elapsed time, with superimposed blue lines representing the 417 

decoded time with the highest probability estimate. Accuracy of the decoded time is 418 

labeled at the top of each panel. D) SVM decoding of the sample from population 419 

activities at each time step during delay periods of different lengths (from left to right: 420 

20, 40, and 60 simulation time steps) in the Mem TUNL task. Decoding accuracies from 421 

unit-shuffled population activities are plotted in grey and serve as chance baseline. 422 

Solid lines and shaded areas represent mean and standard deviation of accuracies 423 

across 5 cross-validation folds. E) Same as D), but for the NoMem TUNL task.   424 
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Discussion 425 

Inspired by the neuroscience literature on time cells and ramping cells, We trained DRL 426 

networks on simulated TUNL tasks 33 and examined the representations of “what 427 

happened when” in the LSTM cells 35. We found that the ramping regime 19–24 and the 428 

sequence regime3–5,7–9 of temporal representation emerged naturally and 429 

simultaneously in the same layer of LSTM cells (Figure 2A-C), and that both regimes 430 

were able to decode elapsed time and sensory stimuli (Figure 2D, 3C, Sup. Figure 431 

1C). Furthermore, we simulated variations of the original TUNL task that controlled for 432 

(1) the memory demands during the delay period and (2) the temporal structure of the 433 

episodes in order to investigate the effects of task demand and task structure on the 434 

emergence and informativeness of sequence cells, which had been the subject of 435 

discrepancies in rodent studies 8,9,26. We found that sequence cells emerged across 436 

task demands and task structures (Figure 3B, 4B). However, their ability to encode 437 

sensory stimuli depended on the task demands: in the absence of memory 438 

requirements, sequence cells progressively lost information about the stimuli during the 439 

delay period (Figure 3C, 4E). Moreover, when we randomly altered the temporal 440 

structure of the task by lengthening or shortening the delay duration, sequence cells did 441 

not rescale or retime (Figure 4B), but their encoding of time and stimuli remained intact 442 

(Figure 4C, 4D). 443 

 444 

Our results provide a normative framework that reconciles previous discrepancies on 445 

the consistency and informativeness of the emergence of hippocampal time cells. 446 

Consistent with Salz et al.9, the LSTM cells in our DRL models exhibited sequential 447 

firing activities that tiled the delay duration with or without a memory demand. We note 448 

that the non-mnemonic control task used in Salz et al. was a looping maze in which the 449 

sensory stimulus prior to the delay period did not differentiate across trials, thus was not 450 

sufficient to determine the effect of memory demand on hippocampal time cells. The 451 

fact that both Sabariego et al. 8 and Ahmed et al. 26 immobilized their rodents during the 452 

delay period forced them to conduct their analyses on cells with less stability and lower 453 

peak firing rates than previously identified hippocampal time cells in mobilized animals 454 
4,7,45,46, which possibly contributed to their observations of inconsistent or uninformative 455 

sequences. The model cells used in our study differ from biological neurons in a number 456 

of ways, most notably that their activities are not measured in non-negative firing rates. 457 

To take into account this constraint, we focused on cells whose activity had large 458 

enough variations to carry temporal information, as an effort to parallel the criterion on 459 

firing rates during the selection of time cells. Nonetheless, future investigations on the 460 

interplay between hippocampal representations and memory should agree on and adopt 461 

standardized criteria for time cell identification in order to produce meaningful, 462 

comparable results.  463 

 464 
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A potential limitation of our DRL model was that, although LSTM networks have 465 

reached state-of-the-art performances on a variety of tasks that canonically require 466 

hippocampus or prefrontal cortex 27,47,48, it could not possibly mechanistically unify the 467 

plethora of brain regions and circuits in which time cells have been observed. For 468 

example, the temporal association memory of discontiguous events may also manifest 469 

as trace conditioning 26,49, for which the animal’s performance and hippocampal CA1 470 

activities heavily rely on the input of medial entorhinal cortex layer III 50. On the other 471 

hand, spatiotemporal representations in hippocampus CA1 and CA3 during spatial 472 

working memory tasks 3,7,9 are more likely to be generated by theta sequences in 473 

medial septum 46. Tasks that require the animal to actively attend to the elapsed time, 474 

such as interval discrimination task or duration judgement task, often involve striatum, 475 

prefrontal and motor cortex 14,17,21,43,51 . This may also explain lower sequentiality in 476 

LSTM cells in our models than in dorsolateral striatum and premotor cortex 43, as LSTM 477 

cells may not be the most suitable model for the neural dynamics of these regions.  478 

 479 

Our results make some concrete predictions for future neurophysiological studies on 480 

hippocampal time cells. First, we predict that, without memory demands, the ability for 481 

time cells to encode sensory stimuli should gradually decrease to chance level over the 482 

delay period. Interestingly, Taxidis et al.25 have already observed such a progressive 483 

drop in odor-decoding accuracy in mnemonic delayed-nonmatch-to-sample task over 484 

the 7-second delay, albeit the odor-decoding accuracy remained above chance-level 485 

throughout the delay. Therefore, it would be useful for future rodent studies to measure 486 

such a “rate of forgetting” as a metric of cognitive capacity, which we predicted would 487 

benefit from randomly interleaving different delay durations. Moreover, our results 488 

predicted that, when the temporal structure of the task was altered, time cells preserved 489 

their preferences in absolute time, rather than rescaling 44 or retiming 4. The scalability 490 

of spatiotemporal representations has been theorized to contribute to the organization 491 

of cognitive maps 52, thus may be explained by a common circuit mechanism involving 492 

theta oscillations 53. Therefore, future studies on the scalability of hippocampal 493 

representations will benefit from lesion experiments to elucidate the circuitry that gives 494 

rise to scalable representations. 495 

 496 

In summary, the results from our modelling study demonstrate that, although the 497 

emergence of temporal representations only requires the presence of a delay interval, 498 

they only meaningfully contribute to the encoding of memory under a demand for doing 499 

such. Our results link cognitive models in AI with normative models of temporal 500 

processing in neuroscience to provide concrete predictions for future experiments, and 501 

emphasize the importance of interpreting neural data under the context of the specific 502 

structure in a task.  503 
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Methods 504 

Simulated TUNL task environments 505 

 506 

The simulation environments for the mnemonic (Mem) and non-mnemonic (NoMem) 507 

TUNL tasks were designed to be compatible with the OpenAI gym framework 54, a suite 508 

of environments with which reinforcement learning agents interact in discrete time 509 

steps. Our environment consisted of a 4x7 inverted-triangular grid arena in which the 510 

agent freely moves, surrounded by walls of at least 1 grid thick to make up for a 511 

rectangular visual field input. The state of the environment is rendered as a coloured 512 

image, with the initiation signal in red, the left and right sample signals in green, the 513 

agent in blue, available grids in black, and the walls in white, spatially arranged 514 

according to the rodent experimental paradigm. The agent had six possible actions: 515 

move up, move down, move left, move right, interact with the signal at its current 516 

location, or stay at the same location without doing anything meaningful. When 517 

encountered with a signal, the agent not only had to move to the signal location but also 518 

interact in order to proceed in the trial. To teach the agent to move to the goal location 519 

in the shortest path possible, all actions (except for interacting with the signal when 520 

appropriate) were punished slightly.  521 

 522 

Each trial of the Mem TUNL task consisted of five stages (Figure 1A; Movie S1), 523 

consistent with the rodent experimental paradigm 33: 1) the agent initiated the trial by 524 

interacting with the initiation signal located at the bottom of the arena; 2) during the 525 

sample phase, either the left or right signal in the top corners of the arena would be 526 

randomly displayed; 3) after interacting with the sample location, the agent experienced 527 

a signal-less delay of 40 simulation time steps, during which the agent was free to move 528 

within the arena; 4) after the delay, the agent must interact with the initiation signal 529 

again to initiate the choice phase; 5) during the choice phase, both left and right sample 530 

signals were on, and the agent must choose the one not presented during the sample 531 

phase (i.e. the nonmatch-to-sample location) to receive a reward and finish the trial. If 532 

the agent incorrectly chooses the match-to-sample location, it would receive a 533 

punishment and experience the same sample location again in the next trial as a 534 

chance to correct and learn.  535 

 536 

The task structure of NoMem TUNL task was the same as Mem TUNL, except that, 537 

during the choice phase, the agents were allowed to select either match or nonmatch 538 

location to receive a reward and finish the trial. In the varying-delay version of the Mem 539 

and NoMem TUNL tasks, the duration of delay period for each trial was randomly 540 

selected from 20, 40, or 60 simulation time steps.  541 

 542 

DRL agent architectures and training details 543 

 544 

The deep reinforcement learning (DRL) agents used in all tasks in our study (Figure 545 

1B) were composed of a visual module, a memory module, and an actor-critic module. 546 
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We used a deep convolutional neural network as the visual module to generate a latent 547 

representation of the visual input, a three-channel RGB image of the environment state 548 

as described in the previous section. The convolutional neural network consisted of two 549 

convolutional blocks with feature map counts of 16 and 32, respectively. Each block had 550 

a convolutional layer with kernel size 2x2 followed by max pooling with kernel size 2x2 551 

and stride 1x1. The output of the visual module was passed to the memory module, 552 

which consisted of an LSTM layer with 512 hidden units and a linear layer with 512 553 

hidden units. The output of the linear layer was then fed forward to a value network and 554 

a policy network 34, which generated an estimate of state value 𝑉̂(𝑆𝑡 , 𝜃) and a stochastic 555 

policy 𝜋 (𝑎𝑡 | 𝑠𝑡, 𝜃) from which the action will be sampled, respectively. We used an 556 

actor-critic algorithm, in which the network parameters were adjusted to minimize the 557 

loss 𝐿 =  L𝜋  +  𝐿𝑉, where  558 

𝐿𝜋 = ∑ −𝑙𝑜𝑔[𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝜃)] ∗ [𝑅𝑡 − 𝑉̂(𝑆𝑡 , 𝜃)]𝑇−1
𝑡=0 ,  559 

𝐿𝑉 =  ∑ 𝑙1[(𝑉̂(𝑆𝑡 , 𝜃), 𝑅𝑡]𝑇−1
𝑡=0 ,  560 

where 𝑡 = 0,1, . . . , 𝑇 − 1index the time steps in an episode with 𝑇 experiment steps, 561 

𝑅𝑡 =∑ 𝛾𝑖𝑟𝑡−𝑖
𝑡
𝑖=0  denotes the discounted return at 𝑡, and 𝑙1 is the smooth L1 loss 562 

implemented in PyTorch 55. 563 

 564 

 565 

For all tasks, we used a discount factor 𝛾 =0.99. The model parameters were adjusted 566 

down the gradient using Adam with 𝛽1=0.9, 𝛽2=0.999, 𝜖=1e-8, batch size=1, and a 567 

learning rate of 1e-5.  568 

 569 

Neuroscience-based analysis of LSTM hidden state activities 570 

Identification of ramping cells and sequence cells 571 

We started collecting the hidden state activities from all cells in the LSTM layer after 572 

50000 episodes of training, which was long after the performance (measured by fraction 573 

of nonmatch choices) had plateaued (Figure 1C; Figure 4A). For each duration of 574 

delay in each task condition, we collected the LSTM cell activities for 1000 episodes, 575 

and only kept LSTM cells whose hidden state activities during the delay interval across 576 

all recorded trials had a peak-to-peak variation larger than 10-7 for subsequent analysis. 577 

The remaining cells were excluded because they did not contribute significantly to 578 

meaningful representations of time, and caused numerical instability in the decoding 579 

analysis. 580 

 581 

To determine whether the activity pattern of each LSTM cell can be characterized by the 582 

ramping regime or the sequence regime, we computed the temporal tuning curve for 583 

each cell by averaging its hidden state activity at each time during the delay across all 584 

recorded trials (Figure 2C). An LSTM cell was defined as a ramping cell if its trial-585 

averaged temporal tuning curve strictly increased or strictly decreased over the duration 586 

of delay. An LSTM cell was defined as a sequence cell if it had a sufficiently large peak-587 

to-peak variation and was not a ramping cell. We used this procedure to identify 588 

ramping cells and sequence cells in all tasks. 589 
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Sequentiality index 590 

To quantitatively evaluate the extent to which the dynamics of a given ensemble of 591 

LSTM cells could be characterized by a sequence, and to provide a concrete metric for 592 

the comparison between the representations in the brain and in the DRL agents, we 593 

calculated the sequentiality index (SqI) of the sorted trial-averaged temporal tuning 594 

curves of the population as described in Zhou et al.43: 595 

𝑃𝐸 =  ∑ −𝑝𝑗𝑙𝑜𝑔(𝑝𝑗)/𝑙𝑜𝑔(𝑀)

𝑀

𝑗=1

 596 

𝑇𝑆 =  1−< ∑ −𝑟𝑖
𝑡𝑙𝑜𝑔(𝑟𝑖

𝑡) / 𝑙𝑜𝑔(𝑁)

𝑁

𝑖=1

>𝑡  597 

𝑆𝑞𝐼 =  √𝑃𝐸 ∗  𝑇𝑆 598 

Where peak entropy (PE) measures the degree to which the peaks of the trial-averaged 599 

response of each unit in the population are evenly distributed over the delay (0<PE<1).  600 

𝑀is the number of simulation time steps in the delay interval. 𝑝𝑗is the number of cells 601 

that peak at time step 𝑗divided by the total number of cells in the ensemble. Temporal 602 

sparsity (TS) measures the degree to which, at each given time step, the trial-averaged 603 

responses of units are evenly distributed (0<TS<1). 𝑁is the number of cells in the 604 

ensemble. 𝑟𝑖
𝑡is the activity of cell 𝑖at time 𝑡divided by the sum of activities of all cells at 605 

time 𝑡. <>𝑡denotes the time average. Note that, although SqI provides a characteristic 606 

metric applicable to both biological and artificial representations of time, it does not 607 

directly measure the similarity between the two.  608 

 609 

Decoding of stimulus and time from single-time population activities 610 

We used binary support vector machine (SVM) decoders to quantitatively assess how 611 

well the activities of a given population of cells at a given time during the delay period 612 

could predict the sample displayed prior to the delay (Figure 3C; Figure 4D, 4E). For a 613 

given population, a separate SVM decoder is constructed at each time step. We used 5-614 

fold cross-validation to calculate the average and standard deviation of decoder 615 

accuracy. which is measured by the fraction of test trials for which the sample was 616 

decoded correctly. For each split, we held out 1 fold as testing data, and used the 617 

remaining 4 folds as training data. The hidden state activities from the given population 618 

at the given time step are z-normalized before input to the decoder to ensure that the 619 

predictions are not affected by the differences between the collective activities of a 620 

population over time or stimuli. To confirm that information about the stimulus is indeed 621 

carried by the order of cells in the population, we shuffled the order of cells in each trial 622 

at each time point, and constructed separate decoders to decode the sample from 623 

shuffled data with the same procedure above as the chance-level baseline. 624 

 625 

We used multi-class logistic regression decoders to assess how well the collective 626 

hidden state activities of a given population at a given time point during the delay period 627 

of a given duration can decode the elapsed time since the beginning of the delay period 628 

(Figure 2D, Figure 4C). For each task condition and delay duration, we pooled the 629 

single-time population activities across all recorded delay periods under that task 630 
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condition and delay duration, and labeled each population activity vector with the 631 

elapsed time it corresponded to. We constructed one multi-class logistic regression 632 

decoder for each pool of labeled population activity vectors, and trained it on 60% of 633 

population activity vectors selected at random. The remaining 40% of population activity 634 

vectors were used as the testing dataset: for each testing population activity vector, we 635 

calculated the probability estimates of this vector belonging to each elapsed time. We 636 

then averaged the probability estimates from testing vectors that share the same actual-637 

time label to construct the probability heatmaps. For each actual time step, the decoded 638 

time was defined as the time giving the highest average probability estimate using 639 

population activity vectors from that actual time step as input. The accuracy of the 640 

logistic regression decoder was calculated as: 641 

1−< | 𝐷(𝑡) − 𝑡 | / 𝑀 >𝑡 642 

Where <>𝑡denotes time average, 𝑀is the delay duration, 𝑡is the actual elapsed time, 643 

𝐷(𝑡) is decoded time. This ensured that calculation the accuracy of the decoded time 644 

was corrected according to the delay duration. 645 

 646 

 647 

The simulation experiments were performed using PyTorch 55. All data were analyzed in 648 

Python. Decoding analyses were performed using scikit-learn packages 56. Additional 649 

analyses were performed using custom Python scripts, all of which are available on the 650 

author’s GitHub account1. 651 

 652 
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 775 
 776 

Sup. Figure 1. A) Performance of the LSTM agent on the NoMem TUNL task. B) 777 

Counts for sequence cells, ramping cells, or cells not included in the analysis during the  778 

NoMem TUNL task. C) Stimulus-decoding accuracy of the hidden state activities of 779 

ramping cells during the delay period of Mem (left) and NoMem (right) TUNL tasks.   780 

 781 

 782 
Sup. Figure 2. Counts for sequence cells, ramping cells, or cells not included in the 783 

analysis during varying-delay Mem (left) and NoMem (right) TUNL tasks. 784 
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