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Abstract 

Insertions and deletions (indels) in human genomes are associated with a wide range of phenotypes, 

including various clinical disorders. High-throughput, next generation sequencing (NGS) 

technologies enable detection of short genetic variants, such as single nucleotide variants (SNVs) and 

indels. However, the variant calling accuracy for indels remains considerably lower than for SNVs. 

Here we present a comparative study of the performance of variant calling tools on indel calling, 

evaluated with a wide repertoire of NGS datasets. While there is no single optimal tool to suit all 

circumstances, our results demonstrate that the choice of variant calling tool greatly impacts the 

precision and recall of indel calling. Furthermore, to reliably detect indels, it is essential to choose 

NGS technologies that offer a long read length and high coverage, coupled with specific variant 

calling tools.

Author summary
The development of next generation sequencing (NGS) technologies and computational algorithms 

enabled large scale, simultaneous detection of wide range of genetic variants, such as single 

nucleotide variants as well as insertions and deletions (indels), which may confer potential clinical 

significance. Recently, many studies have been conducted to evaluate variant calling tools on indel 

calling. However, the optimal indel size range for different variant calling tools remain unclear. A 

good benchmarking dataset for indel calling evaluation should contain biologically representative 

high-confident indels with a wide size range and preferably come from various sequencing settings. 

In this article, we created a semi-simulated whole genome sequencing dataset where the sequencing 

data was computationally generated. The indels in the semi-simulated genome were incorporated 

from a real human sample to represent biologically realistic indels and to avoid inclusion of variants 

due to potential technical sequencing errors. Furthermore, we used three real-world NGS datasets 

generated by whole genome or targeted sequencing to further evaluate our candidate tools. Our results 

demonstrated that variant calling tools varies greatly in calling different sizes of indels. Deletion 
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calling and insertion calling also showed differences among the tools. The sequencing settings in 

coverage and read length also had a great impact on indel calling. Our results suggest that the accurate 

indel calling was dependent on the combination of a variant calling tool, indel size range and 

sequencing settings. 
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Introduction 

Next-generation sequencing (NGS) has developed rapidly in recent decades. Compared with 

traditional Sanger capillary electrophoresis sequencing, or other directed polymerase chain reaction-

based screening methods, it provides a more efficient and affordable way to detect genomic variants 

in large scale [1–3]. NGS is widely used in research and in the clinic [4–6] and consists of techniques 

to cover the whole genome, i.e. whole genome sequencing (WGS), or only exome regions, i.e. whole 

exome sequencing (WES), or certain genomic regions, i.e. targeted gene panel sequencing. 

High-throughput NGS enables researchers to simultaneously identify large numbers of single 

nucleotide variants (SNVs) and insertions and deletions (indels), as well as other types of genomic 

aberrations, such as inversions and translocations. Indels are the second most common variant type 

in the human genome, after SNVs. They are also the most common type of structural variants (SVs), 

defined as genomic variants > 50bp [7,8]. Indels have been implicated in many diseases, such as 

Parkinson's disease and cancers, thus their detection in the human genome is significant for clinical 

research [4,9]. 

To date, a number of computational tools for variant calling from NGS data have been published. 

They utilise different information such as concise idiosyncratic gapped alignment report (CIGAR) 

strings from binary alignment map (BAM) files and build their underlying algorithms based on 

paired-end sequencing reads, split-read, de novo sequence assembly, gapped sequence alignment or 

machine learning to detect indels. Paired-end reads methods, based on paired-end sequencing, use 

discordantly mapped paired-end reads to identify indel breakpoints, which are the junctions that 

define structurally variable genomic segments [10]. In essence, paired-end reads that are mapped 

further, or closer than the expected insert size in the library, may indicate that an indel occurred 

between the alignments of the two paired-end reads [10]. However, repeat regions in genomes, or 

SNVs near indel breakpoints, may influence the accuracy of indel calling results [10,11]. Methods 
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based on split-read take reads that span the breakpoint of an indel as evidence, to identify the indel at 

a single nucleotide-level [12]. However, the short read length produced by NGS lead to even shorter 

split reads, which limit the alignment and make it hard to obtain a sufficient read depth around the 

indel breakpoint to confidently call an indel [11]. Sequence assembly methods include de novo 

sequence assembly and local re-assembly.  De novo sequence assembly assembles short reads into 

longer contigs, enabling fine-scale discovery of large indels, especially novel sequence insertions 

[13]. Local re-assembly takes reads around a potential variant site with reference sequence to re-build 

a haplotype and then generates an accurate variant allele and the corresponding genotype [14,15]. 

However, de novo sequence assembly methods require more computational resources and are prone 

to assembly errors [11]. Gapped sequence alignment based methods use the alignment results from a 

gapped aligner, such as Burrows-Wheeler Aligner (BWA) [16], and apply probabilistic models to 

make indel calls [14,17]. The mapping conditions of each base of reads from the input file provide 

evidence of indels. These methods require that the indels are contained within a read with correctly 

mapping conditions from the reads alignment step [18]. These methods are sufficient for detecting 

small indels which are fully covered by a single read length, but unsatisfactory for identifying indels 

longer than the read length [18]. Currently, as each of these methods have their own limitations, many 

variant calling tools use a combination of methods to detect a wider spectrum of indels [15,19]. Lately 

machine learning methods such as the random forest model and the deep convolutional neural 

network have been applied in some of the variant calling tools to detect indels [20,21].

In the past few years, many studies have been conducted to evaluate variant calling tools on indel 

calling, but these studies have only performed evaluations with limited selection of sequencing data 

types or only covered a limited indel size range.  Sandmann et al. evaluated eight variant calling tools 

with both real and simulated non-matched targeted NGS data by evaluating the sensitivities, positive 

predictive values, F1 scores and other metrics of tools for calling SNVs and indels smaller than 50bp 

[22]. Supernat et al. compared three variant calling tools with WGS data of the well-known human 
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individual NA12878, regarding variant calling precision, recall and F1 score in calling SNVs and 

short indels [23]. Zhao et al. evaluated three variant calling tools with real and simulated human 

germline WGS data by comparing precisions, recalls and F1 scores of candidate tools with different 

genome contexts [24]. However, these evaluation studies were only focusing on variant calling tools 

for calling small sized indels with a certain type of NGS data, the performance of tools for calling 

larger sized indels remains unknown. For large indel calling evaluation, Pei et al. used 14 next-

generation and third-generation sequencing datasets to evaluate precision rates, recall rates and 

computation costs of 11 variant calling tools with both germline and somatic variant calling, but the 

effect of the varying indel size was not evaluated [25]. Kosugi et al. comprehensively evaluated 69 

SV detection algorithms for different types of SVs by testing the representative tools with five 

simulated WGS datasets and a real WGS dataset for human individual NA12878 by using multiple 

evaluation metrics [26]. Cameron et al. selected 10 SV calling tools to evaluate their precision-recall 

rates, running times, concordances and quality scores  by using three real WGS datasets and in silico 

datasets with different sequencing settings [27]. In those studies, comprehensive evaluations of 

variant calling tools were performed but focusing exclusively on SVs. The best performance of 

variant calling tools for certain size range of indels, for example, indels around 50bp still remains 

unclear. Each algorithm uses different evidence from sequencing data to detect the breakpoint of an 

indel. Therefore, the best detectable indel size range of algorithms might vary. It is important to 

determine the best detectable indel size range of different tools with different sequencing methods: a 

wrong selection may result in missed or false positive (FP) detections. 

In this study, we performed an indel calling evaluation with variant calling tools that represent 

different types of methods. We tested them with a variety of sequencing data types, to discover the 

best indel calling size range and data type for each tool. This study uses both real sequencing data 

and simulated sequencing data. Simulated sequencing data can produce an accurate indel truth set, 

avoiding, as much as possible, any potential unmarked true positive (TP) indels in truth set which 
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may cause erroneous false positive results from the detections of the tools. However, the production 

of simulated sequencing data, as in silico simulation processes, underestimates the potential technical 

errors in real world sample preparation and sequencing steps [28]. Real world sequencing data comes 

from real experiments and is indisputably the ideal data for tool evaluation. However, to our 

knowledge, there is no real sequencing data coupled with a truth set that covers a wide range of 

variable size indels, without technical bias, for example, tools involving truth set generation, that 

would be suitable for our evaluation. Therefore, this study used a semi-simulated WGS dataset with 

four different sequencing settings to evaluate eight candidate tools with a wide size range of indels 

which are adopted from the HuRef genome data [29]. In addition, we also used three real world 

sequencing datasets which are Genome in a Bottle (GIAB) NA24385 WES data [30], CHM1 cell line 

WGS data [31] and targeted gene panel sequencing data to evaluate the performance of tools on indel 

calling. Together with all the selected datasets, our study aimed to deliver an unbiased and 

comprehensive evaluation of variant calling tools on indel calling. 

Materials and methods

Ethics statement

The targeted gene panel sequencing dataset in this study was obtained from leukaemias patients. The 

dataset was analyzed anonymously. The study involving human participants were reviewed and 

approved by the Ethics Committee of Turku University Hospital (approval no. 30/1802/2019) and 

Turku Clinical Research Centre (approval no. T012/014/19).

Variant calling tools 

For the evaluation, we selected eight widely used variant calling tools: DELLY [19], DeepVariant 

[21], FermiKit [32], GATK Haplotype Caller (GATK HC) [14], Pindel [12], Platypus [15], Strelka2 
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[20], and VarScan [17], which all represent different underlying methods for indel calling (Table 1). 

Below, the main features of each tool are described:

Table 1. Methodological strategies of the tools included in this study. 

Variants Calling tools Paired-end 
reads Split reads Sequence 

assembly
Gapped sequence 

alignment
Machine 
learning

DeepVariant v0.7.0 X X
DELLY v0.7.9 X X
FermiKit v0.13 X

GATK_HC v4.0.1.2a X X
Pindel v0.2.5.b9 X
Platypus v0.8.1.1 X X
Strelka2 v2.9.2 X X
VarScan v2.4.3 X

aGATK_HC: GATK Haplotypecaller

DELLY

DELLY is a variant calling tool that is designed for SV discovery [19]. It uses aligned reads in a 

sorted, indexed, and duplicate-marked BAM file as an input. It outputs a binary variant call file, which 

can easily be converted to commonly used variant call format (VCF) [33,34]. DELLY integrates 

paired-end reads method and split-read method, with data from different insert size libraries to call 

SVs at a single nucleotide resolution. DELLY can detect multiple types of SVs, such as deletions, 

tandem duplications, inversions, translocations and medium-size insertions, thus being able to call 

both large and medium-size indels.

DeepVariant

DeepVariant is a variant calling software that makes use of a deep convolutional neural network 

[21]. It is implemented as an analysis pipeline which takes aligned reads in a BAM file as input with 

three steps: discovery and encoding of the candidate variants, genotyping using the neural network, 

and writing output in the VCF file. DeepVariant stacks so-called inception modules which 

concatenated multiple convolution filters. Upon processing, the output layer returns a probability 
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distribution of genotype (homozygous and heterozygous) for each candidate variant. The non-

reference sites are then assigned the most likely genotype and written into a VCF file. DeepVariant 

supplies two trained models for WGS and WES data predictions. The WGS model was trained on 

NA12878/HG001 and NA24631/HG005 samples, and the WES model was trained on 

NA12878/HG001 and NA24631/HG005 samples in version 0.7, respectively.

FermiKit

FermiKit is a de novo sequence assembly based variant calling pipeline for Illumina whole-

genome germline data [32]. It takes FASTQ files as input, assembles reads into contigs, and then 

maps them against a reference genome. It calls SNVs, short indels, and SVs from the reads alignment, 

with error correction. FermiKit uses several build-in modules to do error correction, de novo 

assembly, mapping and then parse the ‘pileup’ output and extract alignment break points to call 

SNVs, short indels and SVs in VCF format

GATK Haplotype Caller

GATK HC is a variant calling tool that calls germline SNVs and indels via local re-assembly [14]. 

It first defines active regions from input BAM files that show differences with reference sequences, 

these active regions indicate the evidence of variants by using CIGAR information from BAM files 

such as mismatches, insertions or deletions in the mapped reads and the high base-quality soft clip 

reads. Then it splits reads from active regions into k-mers to identify candidate haplotypes by 

reassembling them with de-Bruijn-like graphs. After that, a pair Hidden Markov Model (pair-HMM) 

is built with state transition probabilities from the read base qualities to calculate the likelihood that 

each read was derived from each haplotype. The haplotype likelihood of each read from the pair-

HMM is used to calculate raw genotype likelihoods using a Bayesian model. The genotype 

likelihoods are then used to call raw variants that are output in a VCF format.
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Pindel

Pindel is a split-read based pattern growth algorithm [35] that can detect the breakpoints of large 

deletions and medium-sized insertions from BAM files of paired-end short read sequencing data and 

report variants in VCF format with single nucleotide resolution [12]. Pindel first extracts the paired-

end sequencing reads from the mapping results, keeping the paired reads that only one read can be 

mapped uniquely to the genome with no mismatch and the other read cannot be mapped to the 

reference genome under a certain alignment score. The 3 ′  end of the mapped read determines an 

anchor point. With the anchor point, a sub-region from the direction of the unmapped read will be 

searched with a user-defined maximum detection size. The 3′ and 5′ end fragments of the unmapped 

read will be used by the pattern growth algorithm to search possible unique substrings on reference 

genome within the certain size of a sub-region. The gap between 3 ′  and 5 ′  end fragments of the 

unmapped read is reported as an indel if at least two complete reads can be assembled with possible 

substrings from both 3′ and 5′ end fragments of unmapped reads.

Platypus

Platypus is a haplotype based variant caller with local sequence assembly in a Bayesian statistical 

framework [15]. It uses BAM files as input, and outputs VCF files. First, it constructs candidate 

variants from the CIGAR strings of the BAM files, local re-assembly and external sources (VCF files 

provided by the user). Candidate variants are then assigned with pre-defined priors at the generation 

stage, and candidate haplotypes are generated. The likelihood of each haplotype is calculated with a 

HMM, by aligning a read to the haplotype sequence. Then, an expectation‐maximisation algorithm 

is applied to estimate the haplotype frequency, using a diploid genotype model. With the haplotype 

frequencies, the posterior supports for variants are calculated by comparing the likelihoods between 

all haplotypes, including haplotypes which do not include a particular variant. Variants whose 

posterior support exceeds a threshold and pass a number of pre-defined filters are called. 
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Strelka2

Strelka2 is a variant calling method for small variants [20]. It takes a BAM file as input and output 

a VCF file, and it is designed for both germline and somatic sequencing applications. The germline 

mode workflow defines several parameters from sequencing data and applies an indel error model to 

estimate error rates of indels and SNVs. It defines active regions where likely to have variants and 

uses alignments of reads or local de novo sequence assembly to generate candidate haplotypes and 

alleles which are passed the filtering. After that, candidate variants are phased, and genotyped by read 

re-alignment with a probability model. In the final step, Strelka2 applies pre-trained supervised 

random forest models for SNVs and indels, which are trained on the labelled data of the Platinum 

Genomes project [36] to improve variant calling precision.

VarScan

VarScan takes a single mpileup file (text pileup file from BAM files) as an input, and outputs a 

VCF file [17]. It first scores and sorts the BAM file, discards reads which were mapped ambiguously 

to multiple positions or with a low identity, as well as unmapped reads where the aligner failed to 

map anywhere in the genome. The uniquely mapped reads are used to detect variants and determine 

the total number of reads that support each unique variant. VarScan then filters each predicted variant 

by the overall coverage, number of supporting reads, p-value, variant allele frequency, base quality, 

and the number of strands that are observed in the predicted positions of the variants. 

Datasets

To comprehensively evaluate the variant calling tools, we used both simulated sequencing data 

and real sequencing data (Table 2). We created a semi-simulated dataset with four different 

sequencing settings extracting a wide size range of indels from a real human sample, with known 
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indels available as truth sets. Additionally, we utilized three real datasets that represented different 

sequencing data types. The details of datasets are described below.

The National Center for Biotechnology Information recommends variants larger than 50bp to be 

submitted to dbVar, a database of human genomic structural variation, while variants less than 50bp 

should be submitted to dbSNP, a database containing human SNVs, small indels, and other types of 

small variants [37,38]. Based on this separation, small indel calls (< 50bp) and large indel calls (≥ 

50bp) from the real sequencing data were evaluated separately.

Table 2. The semi-simulated WGS sequencing and real sequencing datasets used in this study. 

Data Read 
length Coverage Data content Usage Sequencing 

platform

100bp 5× WGS data 
(chr1)

All sizes of 
indels

Illumina HiSeq 
2000

100bp 30× WGS data 
(chr1)

All sizes of 
indels

Illumina HiSeq 
2000

100bp 60× WGS data 
(chr1)

All sizes of 
indels

Illumina HiSeq 
2000

Semi-
simulated data

250bp 30× WGS data 
(chr1)

All sizes of 
indels

Illumina MiSeq 
v3

GIAB 
NA24385 data 126bp 135× WES data Small indels 

(<50bp)
Illumina HiSeq 

2500
CHM1 cell 

line data 101bp 41× WGS data Large indels 
(≥50bp)

Illumina HiSeq 
PE-101

Targeted gene 
panel 

sequencing 
data

150bp NextSeq: 2298× 
& MiSeq: 6651×

Targeted 
sequencing 

data

Clinical indels 
(3bp - 52bp)

Miseq v3 or 
NextSeq 500 v2

The Semi-simulated WGS dataset covering a wide size range of indels with 

varying coverages and read lengths

In order to simulate as realistic data as possible with precise and fair indels for benchmarking 

purposes, we utilized HuRef genome data [29]. The original HuRef dataset was generated by Sanger 

sequencing and the variants were detected by Celera Assembler [29]. The use of Sanger sequencing 

may potentially limit mapping issues caused by short sequencing reads and an independent variant 
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calling method for our candidate tools makes this data very suitable here. HuRef data also allowed us 

to reproduce a realistic dataset that would capture the challenges of small indel and large indel calling 

in human genome. If the indels were to be inserted randomly across the genome it would 

underestimate the proportion of indels located in ambiguous regions, where the indels may be 

represented in different positions [39] (S1 and S2 Figs). Here, we reconstructed chromosome 1 of the 

HuRef genome, based on human reference genome hg19, by similar methods to [39,40] and inserted 

indels of a real human individual into the corresponding position in reference genome (S1 File). In 

addition, we reconstructed chromosome 1 with two different haplotypes by randomly selecting 

variants from different size ranges and only inserting them into one of the haplotypes as heterozygous 

variants or into both haplotypes as homozygous variants. In total, 20 692 insertions and 22 478 

deletions, ranging from 1bp to 6053bp were included (S1 Table). 

We created simulated paired-end sequencing reads using the NGS read simulation tool ART [41], 

with three different coverages: 5, 30 and 60. The read length of simulated paired-end sequencing 

data was 100bp. In addition, we created another simulated paired-end sequencing dataset with 30 

coverage and 250bp read length, to compare how read length would affect indel calling. For each 

dataset, the sequencing coverage was contributed by the two haplotypes with an approximate ratio of 

1:1, making it representative of a naturally diploid sample (S1 File). The semi-simulated paired-end 

sequencing dataset was publicly available at https://github.com/elolab/semi-simulated_indel_dataset.

Genome in a Bottle NA24385 WES dataset for small indels (< 50bp) 

The GIAB NA24385 dataset was used to assess small indel calling of tools from the real 

sequencing data. The GIAB datasets are considered as a gold standard among variant call sets. The 

high confidence in their variants is achieved by integrating and curating several call sets produced 

using competing sequencing platforms and variant calling tools. The variant datasets consist of seven 

individuals, of which one individual from the trio of Ashkenazi Jews (NA24385/HG002) was selected 
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for this study [30]. The corresponding sequencing data was provided in a variety of conditions and 

technologies; the NA24385 WES data from Oslo University Hospital was selected for use in this 

study. Sequencing was performed on the Illumina HiSeq 2500 instrument, with Agilent SureSelect 

Human All Exon V5 capture kit, and yielded 150bp paired-end reads. The raw 135 sequencing data 

for GIAB NA24385 was downloaded using the Sequence Read Archive (SRA) toolkit with accession 

SRX1453593 [42]. In total, 5436 indels were used to evaluate the tools in this study.

CHM1 cell line WGS dataset for large indels (≥ 50 bp) 

The SV dataset of the CHM1 cell line was used to assess large indel calling of tools from real 

sequencing data. The CHM1 cell line is a haploid human hydatidiform mole lacking allelic variation 

[31]. The SV dataset of the CHM1 cell line was produced by a single-molecule, real time sequencing 

technology at a 54 sequencing coverage, which generated 18580 indels (≥ 50bp) that used in our 

study. All the sequence reads were aligned to GRCh37 using a modified version of the PacBio long 

read aligner and generated local assemblies by Celera and Quiver. Next, the SVs of CHM1 cell line 

were characterised systematically by a custom computational pipeline. The NGS short reads 

sequencing data of CHM1 cell line was produced on an Illumina HiSeq 2500, with 41 sequencing 

coverage and 101bp read length of paired-end reads. The raw sequencing data of CHM1 cell line 

from Illumina platform was downloaded by using the SRA toolkit with the accession SRX652547 

[31]. 

Targeted gene panel sequencing dataset 

A total of eight targeted NGS datasets from patients with different leukaemias were collected 

from Turku University Hospital (TYKS), Finland. A targeted amplicon-based panel, TruSight 

Myeloid Sequencing panel (Illumina, US), was used to detect variants in diagnostic samples. The 

myeloid gene panel targets 54 genes with 568 amplicons, ranging from 225bp to 275bp in length.  
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The combined coverage for libraries was 141 kb. For library preparation, 50 ng of DNA per sample 

was used, and the Illumina protocol was followed. The samples were pooled in series of 8 to 24 to 

obtain sufficient sequencing depth and 2 x 150 cycle sequencing runs were performed on the Illumina 

platform (Miseq v3 chemistry or NextSeq 500 v2 mid output chemistry). To analyse the quality of 

the sequencing run, parameters and data output from each run were compared against specifications 

outlined by the manufacturer (Illumina): cluster density (1200 – 1400 K/mm2 and 170 – 220 K/mm2 

for MiSeq and NextSeq, respectively); Q30 greater than 75 % in both systems; and the total number 

of reads passing the filter and the total data yield of the run were evaluated to approve the data of the 

run. The average coverage of the amplicons in the data generated with the NextSeq 500 platform was 

22987, and for the MiSeq 6651. As a truth set we used the somatic indels in genes CALR and 

CEBPA that were determined for diagnostic purposes in the Laboratory of Molecular Hematology 

and Pathology, TYKS Laboratory Division, Turku, Finland. The 52bp deletions in CALR exon 9 were 

analysed with capillary electrophoresis after PCR amplification, as described by [43]. The CEBPA 

indels ranging from 3bp to 36bp were determined as part of the diagnostic testing in Labor für 

Leukämiediagnostik, Munich, as described by [44]. 

Evaluation criteria

We evaluated variant calling tools using their default running parameters, with some exceptions 

(S1 File). For data pre-processing such as sequencing reads alignment, we built a fixed bioinformatics 

pipeline to deal with both semi-simulated and real sequencing data (S1 File).

For the evaluation of indel calling with the semi-simulated WGS dataset, we first filtered out all 

the SNVs from every tool’s output, using vcftools [34], and only kept the indel results for further 

evaluation. We considered a tool-detected indel call as a TP if: 1) the position-match: the indel 

position deviation of a tool-detected indel and a truth-indel was between ±10% of the truth-indel size 
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(the upper limit for position deviation was 50 bp), and 2) the size-match:  the size difference between 

a tool-detected indel and a truth-indel was < 25% of the size of the truth-indel, and 3) the genotype-

match: the genotypes of a tool-detected indel and a truth-indel are consistent. The tool-detected indels 

that failed to give genotype information were considered as FPs. In our truth set, there were no multi 

allele variants; if a tool called an indel as a multi alleles variant, this record was split as multiple 

records for each allele. 

For GIAB NA24385 WES datasets, we used hap.py (https://github.com/Illumina/hap.py) to 

assess the evaluation results of each tool (S1 File). Hap.py is a VCF file comparison tool for diploid 

samples, which can benchmark variant calling results made by a variant calling tool against a truth 

set [45].  

For the CHM1 cell line WGS datasets, we defined a TP as a tool-detected, filter-passed indel 

which has at least 20% overlap with a truth-indel via BEDtools [46] (S1 File). Criteria was kept loose 

because previous studies [39,47] have reported that the variant calling methodology for CHM1 cell 

line WGS datasets has its own bias, which leads to a low concordance between tool-detected indels 

and truth-indels (S1 File).

The performance of tools was evaluated by calculating precision rate, recall rate, and F1 score. 

For clinical targeted gene panel sequencing data, due to the limited number of indels validated by 

clinical methods, we manually checked the results of each tool and summarised the results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP                                           (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN                                                 (2)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
Precision ∗ Recall
Precision + Recall                         (3)
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Results

Evaluation of variant calling tools of indel calling with various datasets

Evaluation of small indel (< 50bp) and large indel (≥50bp) calling using the semi-

simulated WGS dataset

We evaluated the tool-detected indels of each tool for different sequencing coverages and read 

lengths with the semi-simulated dataset in five indel size ranges: 1bp – 20bp; 20bp – 50bp; 50bp – 

200bp; 200bp – 500bp; > 500bp (Figs 1-6).

Fig 1. Precision rates of variant calling tools on deletion calling using the semi-simulated 

dataset.

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

Fig 2. Recall rates of variant calling tools on deletion calling using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

Fig 3. F1 scores of variant calling tools on deletion calling using the semi-simulated dataset.

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 
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Fig 4. Precision rates of variant calling tools on insertion calling using the semi-simulated 

dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

Fig 5. Recall rates of variant calling tools on insertion calling using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

Fig 6. F1 scores of variant calling tools on insertion calling using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

Although with good precision rates in general, the majority of tools had relatively low recall rates 

with the 5 coverage sequencing data, especially FermiKit, and Pindel, whose recall rates of all indel 

size ranges were below 0.02 (Fig 1A, Fig 2A, Fig 4A and Fig 5A). With increasing sequencing 

coverage, the recall rates and the F1 scores of tools were improved, and the improvement from 5 to 

30 was more obvious than the improvement from 30 to 60 (Figs 2-3 and Figs 5-6). Some very 

low recall rates made precision rates fluctuate greatly, but overall, the precision rates of tools showed 

less differences than the recall rates between coverages except for Pindel (Fig 1 and Fig 4). FermiKit 

and Pindel benefited the most with increasing coverages, which indicated that these two tools cannot 

work well with low coverage sequencing data. With the 5 coverage sequencing data, the F1 scores 

of DeepVariant, GATK HC, Platypus and Strelka2 for the indels in size range 1bp – 20bp were over 

0.5, which indicated that for gapped sequence alignment based and machine learning based indel 
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calling algorithms, the detections of indels smaller than 20bp might be more effective than indels 

larger than 20bp with low coverage sequencing data (Fig 3A and Fig 6A). DELLY also had F1 scores 

around 0.5 for deletions in size ranges 200bp – 500bp and > 500bp with the 5 coverage sequencing 

data, which showed that DELLY had relatively good abilities to call large deletion with low coverage 

sequencing data. In general, from the F1 scores, the results demonstrated that a higher sequencing 

coverage generates a better indel calling result (Fig 3 and Fig 6).  

For the assessment of how different read lengths affect indel calling, we evaluated the 

performance of tools by using the 100bp read length and the 250bp read length sequencing data with 

30 coverage (Figs 1-6). We observed that the variant calling tools had wider detection ranges, better 

precision rates, recall rates and F1 scores with the 250bp read length sequencing data than with the 

100bp read length sequencing data with the same coverage. The indel callings in size range > 50bp 

were remarkably improved. Both compared with 30 coverage 100bp read length sequencing data, 

the improvement of the precision rates, the recall rates and the F1 scores with 30 coverage 250bp 

read length sequencing data were slightly better than the improvement with 60 coverage, 100bp read 

length sequencing data. The results indicated that above a certain sequencing coverage, indel calling 

may benefit more by the increased the read length than the increased coverage of sequencing data. 

Although with low recall rates, DeepVariant, FermiKit, GATK HC, Platypus and VarScan detected 

larger indels that were not able to detect with 100bp read length sequencing data. 

From our results, we can see that tools with different algorithms showed different best variant 

calling size ranges. Taking the 30 coverage 100bp read length sequencing data as an example. For 

deletion calling with the 30 coverage 100bp read length sequencing data (Figs 1-3), for deletions in 

size range 1bp – 20bp, DeepVariant, FermiKit, GATK HC, Platypus and Strelka2 had both precision 

rates and recall rates over 0.9. The precision rates and recall rates of Pindel and VarScan for deletions 

in size range 1bp – 20bp were around 0.7. DELLY only detected limited number of deletions in size 

range 1bp – 20bp. For deletions in size range 20bp – 50bp, the recall rates decreased remarkably for 
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the majority tools while DELLY started to detect deletions in this size range but with low recall rate. 

FermiKit and Strelka2 were the only two tools that had recall rates over 0.7 in this deletion size range. 

Except for Pindel and VarScan whose precision rates were low, the other tools all had precision rates 

over 0.9 for deletions in this size range. For deletions in size range 50bp – 200bp, a decrease was seen 

on both precision rates and recall rates for all the tools. FermiKit had the best F1 score on this deletion 

size range being little over 0.4. Strelka2 and VarScan failed to detect any deletions longer than 50bp. 

DELLY, Platypus and Pindel were the only three tools that detected deletions in size range 200bp – 

500bp and > 500bp, Pindel had the best precision rate and DELLY had the best recall rate. Platypus 

had relatively good precision rates to detect deletions in this size range but recall rates were relatively 

low. For insertion calling with the 30 coverage 100bp read length sequencing data (Figs 4-6), 

DeepVariant, FermiKit, GATK HC, Platypus and Strelka2 had precision rates and recall rates around 

0.9 for insertions in size range 1bp – 20bp. Pindel and VarScan had relatively low precision rates and 

recall rates while DELLY had very limited abilities to detect insertions in this size range. For 

insertions in size range 20bp – 50bp, notable decrease of recall rates was observed. Only FermiKit, 

GATK HC and Strelka2 had recall rates over 0.5. DELLY and Platypus had high precision rates but 

low recall rates for detecting insertions in this size range while DeepVariant and Pindel had both low 

precision rates and recall rates. VarScan was the only tool that failed to detect any insertion in this 

size range. For insertions in size range 50bp – 200bp, all the tools performed poorly. Only FermiKit 

and GATK HC had recall rates over 0.3 and all the other tools either had very low recall rates or even 

failed to detect insertions in this size range. No tool could detect insertions > 200bp. In general, tools 

performed better on deletion calling than insertion calling.

Previous research [48] has defined 50bp as the limit for SVs and small variants. We observed, 

however, that within the 1bp – 50bp range, the indel calling results were not consistent (Figs 1-6). 

For most of the tools with sequencing data of 100bp read length, there were notable decreases of 

precision rates and recall rates among indels in the size ranges 1bp – 20bp, 20bp – 50bp and 50bp – 
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200bp, especially for Pindel and VarScan. Compared with higher sequencing coverages, the longer 

read length sequencing data provided better precision rates and recall rates for longer indels sizes. 

To further evaluate indel callings without genotypes taken into account, we relaxed our evaluation 

criteria to include indels that passed both position-match and size-match but that may have failed 

genotype-match (S3-S8 Figs). Without considering genotype-match, the precision rates and the recall 

rates of the tools were improved, especially for FermiKit, Pindel and VarScan. Although FermiKit 

still failed with 5 coverage sequencing data, it was able to call indels > 200bp and became the best 

tool to call insertions > 200bp with other semi-simulated sequencing data. The precision rates and the 

recall rates of Pindel were improved with all settings of the semi-simulated dataset and Pindel became 

the tool that had most comprehensive indel calling size ranges with 5 coverage sequencing data, 

which indicated that Pindel detected many indels with correct positions and sizes but failed to detect 

indels with correct genotypes. To further validate this hypothesis, we calculated the homozygous 

precisions, the heterozygous precisions and the proportions of indels with correct position-match and 

size-match but non-valid genotype information of tools with the semi-simulated WGS dataset (Fig 

7). The results showed that Pindel with 5 coverage sequencing data had the largest proportion of 

non-valid genotype indel calls and it decreased dramatically when the sequencing coverage was 

increased. DeepVariant and FermiKit also had some non-valid genotype indel calls. In general, 

among the semi-simulated WGS dataset, the homozygous precision rates were higher than 

heterozygous precision rates. DeepVariant, Delly and VarScan had notable increase of heterozygous 

precision rates with the increased sequencing coverage. Pindel and VarScan also had an increase in 

heterozygous precision rates with the increased sequencing read length. 

Fig 7. Homozygous precisions, heterozygous precisions, and non-valid genotypes proportions 

of variant calling tools using the semi-simulated dataset. 
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(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. 

      To better understand how the complexity of the genome sequence influences FP results, we 

gathered the FP results from the semi-simulated WGS dataset, and annotated FP indel calls based on 

their locations by using the “simple repeat” track from the UCSC genome browser via BEDtools. The 

results showed that indels located in simple repeat (SR) regions contains a large proportion of FP 

results, indicating that the breakpoint ambiguity caused by a SR region is the main challenge for indel 

calling (Fig 8). For 5 coverage sequencing data, the low read depth in indel breakpoints is the main 

reason that caused FPs. SR regions in genome may cause misalignment of reads and lead to further 

inaccurate indel calling, such as wrong positions or sizes due to the breakpoint ambiguity [39]. The 

breakpoint ambiguity of indels in SR regions may also cause incorrect allele frequency counting, thus 

leading to false genotype-level results (S9 Fig). 

Fig 8. The proportions of SR and non-SR regions annotated FP indels of variant calling tools 

with the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length sequencing 

data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp read length 

sequencing data. The numbers on the top of each bar are the total numbers of FP results called by 

each tool with corresponding sequencing data. 

Evaluation of small indel calling using GIAB NA24385 WES data 

From the F1 scores of tools with the semi-simulated WGS dataset, we selected the tools that were 

suitable for small indel calling (DeepVariant, FermiKit, GATK HC, Pindel, Platypus, Strelka2, and 

VarScan) for further evaluation with real sequencing data. The results in the GIAB NA24385 WES 
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data (Fig 9) from hap.py showed that DeepVariant had the best recall rate and, together with Strelka2 

and GATK HC, were the only three tools with recall rates > 0.9. Platypus had the best precision rate, 

followed by DeepVariant, both of which had precision rates > 0.95. DeepVariant also had the best F1 

score, and along with Strelka2 and GATK HC, each had an F1 score > 0.9. At the genotype-level 

prediction (S2 Table), VarScan performed more poorly than the other tools. Pindel performed better 

genotyping with exome data than the semi-simulated WGS dataset, indicating that Pindel may 

perform better at genotype-level indel prediction with high coverage data. DeepVariant and Strelka2 

had higher F1 scores than the other tools with the GIAB NA24385 WES data, which may indicate 

that machine learning tools have advantages of indel calling abilities over other indel callers.

Fig 9. Indel calling evaluation results for variant calling tools with GIAB NA24385 WES data. 

The evaluation results were calculated using hap.py. The table below is the values of precision rates, 

recall rates and F1 scores of each tool.

Evaluation of large indel calling using CHM1 cell line WGS data 

From the results of the semi-simulated WGS dataset, we chose the tools that were suitable for 

large indel calling (DELLY, FermiKit, Platypus, and Pindel), and further evaluated them with real 

sequencing data. We used our pre-defined criteria to evaluate the performance of tools on large indels 

of size ranges 50bp-500bp, and >500bp in the CHM1 cell line WGS data (Fig 10). FermiKit had the 

best precision rates and Pindel had the best recall rates for indels of all size ranges. DELLY had 

comparable precision rates and recall rates for indels of all size ranges while Platypus had the worst 

performance and failed to call any insertion larger than 50bp. Although the overall variant calling of 

tools only called limited numbers of indels, the performance of tools on deletion calling was generally 

better than insertion calling and results with indels in size range 50bp-500bp were generally better 

than results with indels in size range >500bp Even though the criteria were loose, the concordance of 

the predicted results from the tools and the CHM1 truth set was still remarkably low. A possible 
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reason for this is that variants in repeat regions can be called by CHM1 cell line PacBio calls, but 

cannot be detected efficiently by Illumina short-read sequencing [47]. A previous study which used 

CHM1 cell line dataset as a truth set, also suggested that the truth set might be missing variants [39]. 

Fig 10. Indel calling results for variant calling tools with CHM1 cell line sequencing data. 

The results were separated into deletions (50bp – 500bp and > 500bp) and insertions (50bp – 500bp 

and > 500bp). The detailed precision rates and recall rates were shown on the top of each bar.

Evaluation of indel calling using targeted gene panel sequencing data 

We used amplicon-based clinical targeted gene panel sequencing data to further evaluate indels 

that ranged from 3bp to 52bp (Table 3). We only used the germline mode of variant calling tools and 

did indel calling in a non-matched variant calling manner due to the fact that we lacked the normal 

tissue sequencing data from the patients [49]. FermiKit is not designed for targeted sequencing data 

analysis, so it was not included in this evaluation. The results show that despite no tool detected the 

22bp deletion of CEBPA gene from sample 1, DeepVariant, GATK HC, Pindel and Platypus 

successfully detected all the rest of the variants. DELLY and VarScan failed to detect two 3bp 

deletions of CEBPA gene and VarScan was the only tool that failed to detect one 36bp deletion of 

CEBPA gene. Strelka2 was the only tool failed to detect all four 52bp deletions of CALR gene.  
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Table 3. Indel calling results for the selected tools with targeted sequencing data of leukaemia patients.

Samples Genes Variants DeepVariant DELLY GATK_HC Pindel Platypus Strelka2 VarScan
CEBPA 3bp insertion Y N Y Y Y Y NSample 1
CEBPA 22bp deletion N N N N N N N

Sample 2 CALR 52bp deletion Y Y Y Y Y N Y
Sample 3 CALR 52bp deletion Y Y Y Y Y N Y
Sample 4 CALR 52bp deletion Y Y Y Y Y N Y
Sample 5 CALR 52bp deletion Y Y Y Y Y N Y
Sample 6 CEBPA 24bp insertion Y Y Y Y Y Y Y
Sample 7 CEBPA 36bp deletion Y Y Y Y Y Y N

CEBPA 25bp deletion Y Y Y Y Y Y Y
Sample 8 CEBPA 3bp insertion Y N Y Y Y Y N

For each sample there are one or more indel varying from 3bp to 52bp either in CEBPA or CALR. We manually evaluated the variant calling tools' 

results with our truth set. A successful call is marked with "Y", a failed call is marked with "N".
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Computational costs

We measured the running times and maximum memory usages of tools, based on one of the semi-

simulated WGS data with 30 coverage and 250bp read length (Fig 11). All the indel calling 

processes, including read alignment and variant calling, were performed on a computer cluster 

managed by the free, open-source Simple Linux Utility for Resource Management. For each job we 

assigned 24 CPUs (Intel Xeon Processor, CPU MHz: 2095.078) per task, with 32G memory on the 

computer cluster. 

To save time and fully use high performance computational resources, parallelization is an 

important option for variant calling tools. Tools that are designed with a parallelization option are 

able to assign multiple CPUs to some steps of the data processing (DeepVariant, FermiKit, Pindel, 

Platypus and Strelka2). Tools without a parallelization option may only utilize one CPU to process 

the data (DELLY, GATK HC, and VarScan). From the results (Fig 11), Platypus was the fastest tool, 

while Pindel was the slowest. Platypus used the least memory, while FermiKit required the most. The 

high memory consumption of FermiKit is explained by reads alignment step that is included in the 

tool execution. The total utilized memory of FermiKit was lower than the memory consumption of 

the data pre-processes which was producing the sorted and indexed BAM files as the input for the 

other tools. 

Fig 11. The running times and the maximum memory usages of variant calling tools.  

A) Total CPU times of each variant calling tool with 30 coverage, 250bp read length semi-simulated 

sequencing data. Pre-processes total CPU time included aligning the sequencing reads into the BAM 

file. Tool total CPU time included analysing the input BAM file into the output VCF format result. 

(B) Maximum memory usage of each variant calling tool with 30 coverage, 250bp read length semi-

simulated sequencing data. Pre-processes maximum memory included aligning the sequencing reads 

into the BAM file. Tool maximum memory usage included analysing the input BAM file into the 
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output VCF format result. Due to FermiKit is a de novo assembly algorithm based variant calling 

tool, which took sequencing reads as input and did not require pre-processes.

Discussion

In this study, we evaluated eight variant calling tools for indel calling of different indel size ranges 

from different types NGS data. The tools represented different underlying algorithms including 

paired-end reads, split-read, de novo sequence assembly, gapped sequence alignment and/or machine 

learning based methods. The tools were tested using four different datasets with varying read 

coverage, read length and indel size ranges and that were produced with either Illumina HiSeq 2000, 

MiSeq v3, HiSeq PE-101 or NextSeq 500 v2 sequencing platforms. The semi-simulated WGS dataset 

with three different coverages (5, 30 and 60) and two different read lengths (100bp and 250bp) 

included small indels and large indels from 1bp to 6053bp. Since to our knowledge there is no single 

unbiased real world benchmarking dataset that would cover both small and large indels, we chose to 

use three real world datasets that represented WGS, WES and targeted gene panel sequencing data 

that together covers small and large insertions and deletions.

Our results demonstrated that the indel calling results varies greatly between insertions and 

deletions depending on size of indels and properties of sequencing data. Deep convolutional neural 

network and random forest model based tools, DeepVariant and Strelka2, demonstrated superior 

performance with small indel calling. However, their optimum indel call size range was limited to < 

50bp. Split-read and paired-end reads based algorithms (DELLY and Pindel) could detect the 

breakpoints of deletions efficiently from the mapping information of sequencing reads. Although the 

precision rates and recall rates of large deletion callings were relatively lower than small deletion 

callings, these tools were best for deletion calling with various types of sequencing data. The de novo 

sequence assembly-based tool, FermiKit, had the best performance for large insertion calling. Due to 

the read length limitation of NGS, de novo sequence assembly algorithm could still be the best 
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algorithm to detect large novel insertions in human genomes with WGS data, even though the 

performance of large insertion calling was not as good as small insertion calling. The local re-

assembly methods (GATK HC and Platypus) were good for genotype-level indel calling. With the 

re-assembling of reads around indels, the context of variants could be better discovered, thus 

achieving greater genotype-level accuracies. 

We evaluated the indel calling abilities and running times of our candidate tools. In addition, we 

also dissected the source of the FP indel calls. From our results, it can be seen that the majority of the 

FP calls came from SR regions that may be due to ambiguous sequence patterns around SR regions. 

Putative problems include misalignment and inconsistent representation of variants in mapping and 

variant calling steps, respectively. Nonetheless, we still may have underestimated the influence of SR 

regions because the difficulties of sequencing SR regions for sequencing platforms are not easily to 

be reproduced in our semi-simulated WGS dataset. In real sequencing data, even though the 

difficulties of sequencing error-prone regions can be reproduced, it is still difficult for different callers 

to reach a consensus with short reads, thus these regions are generally excluded from the confident 

regions of high-confident variant calls, e.g. [50]. Furthermore, in our semi-simulated WGS dataset, 

we shifted all the indels in the truth set to the left-most positions before the indel calling processes, 

because we considered any post normalization step with tool-detected indels such as left-aligning 

were extra burden for users, in addition some tools may gain extra advantage thus make evaluation 

unfair for the other tools. Even though we tried to avoid any inconsistent representation of indels by 

left-aligning all the indels in our truth set, it still might be that we underestimated the complexity of 

human genome sequences, which would require further efforts to investigate the ambiguity of indel 

calling.

In our evaluation, the majority of the tools were implemented with default parameters and only 

minor changes were introduced, when necessary. It is possible that the tools would benefit from 

optimised parameters to obtain more accurate results [51], but default parameters are the general 
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starting point for tool usage, and allow an equivalent assessment of the performance of the tools. 

Moreover, optimisation requires modification of all possible combinations of the parameters, which 

is time-consuming and impractical [52]. Datasets may require different combinations of parameters, 

which makes it even more of a challenge to attain the universal best combination. Experienced users 

may have prior knowledge of how to optimise the tools, based on their data properties to obtain the 

best performance. In this study, we considered a user would use a given tool with its default 

parameters.    

In general, higher coverage led to better results. The recall rates improved from 5 to 30, then 

to 60, especially for large indels. Fang et al. [53] suggested that 60 is the suitable sequencing 

coverage for WGS data from the HiSeq platform, however, in our study, we discovered that with the 

improved algorithms of indel calling methods in recent years, 30 sequencing coverage is also 

suitable in indel calling based on the performance of the tools. Our study showed no large differences 

in indel calling between 30 and 60 sequencing coverage data. Longer read length sequencing data 

was shown to help to call larger indels more accurately. In addition, longer read length may also 

contribute to alignment quality enabling more precise indel breakpoint detections. In our evaluation 

it was shown that indel calling for small size indels < 50bp were improved when machine learning 

based methods were applied. Although the precision and recall were still not quite on the same level 

as for the SNVs, the indel calling concerning small indels < 50bp were assuring. Future 

methodological development may benefit from improved machine learning models and de novo 

assembly methods to call also large, ≥50bp, insertions and deletions  with good performance. 
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Supporting information

S1 Fig. An example of ambiguous variant. 

A deletion of “CA” was mutated in a simple repeat region with repeated pattern “CA”. In the truth 

set, the deletion was represented with left-align manner, but in tool prediction, the deletion was 

represented with right-align manner. These inconsistent representations caused a same single 

variant reported with different positions, reference alleles and alternative alleles, further causing 

trouble for evaluation. 

S2 Fig. Distribution of 10bp deletions by their positional ambiguities. 

The red bars represent Venter deletions and the blue bars represent deletions that were inserted at 

random sites.
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S3 Fig. Precision rates of variant calling tools on deletions callings evaluated without 

genotype-match by using the semi-simulated dataset.

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data. 

S4 Fig. Recall rates of variant calling tools on deletions callings evaluated without genotype-

match by using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data. 

S5 Fig. F1 scores of variant calling tools on deletions callings evaluated without genotype-

match by using the semi-simulated dataset.

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data. 

S6 Fig. Precision rates of variant tools on insertions callings evaluated without genotype-

match by using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data. 
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S7 Fig. Recall rates of variant calling tools on insertions callings evaluated without genotype-

match by using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data.

S8 Fig. F1 scores of variant calling tools on insertions callings evaluated without genotype-

match by using the semi-simulated dataset. 

(A) 5 coverage, 100bp read length sequencing data. (B) 30 coverage, 100bp read length 

sequencing data. (C) 30 coverage, 250bp read length sequencing data. (D) 60 coverage, 100bp 

read length sequencing data. 

S9 Fig. Example of false genotyping caused by ambiguous regions. 

A homozygous deletion “chr1:878906 CTTT –→ C” was overlapped with 22 repeated “T” from 

chr1:878907 –- chr1:878928. The read that fully covered the repeat region had a 3bp gap in the 

CIGAR section of the BAM file. The read in which only the head or tail overlapped with the repeat 

region preferred to shorten its head or tail to omit the gap, based on the alignment algorithm. 

Simply counting the numbers of alleles at this site may lead to a low allele frequency, which then 

causes the tool to make a mistake and call a homozygous deletion a heterozygous one. 

S1 Table. Indel size distribution of the semi-simulated WGS dataset. 

Deletions and insertions are shown separately with different size ranges. The values are total number 

of variants with the number of heterozygous variants in brackets.
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S2 Table. Evaluation results of variant calling tools with GIAB NA24385 WES data. 

Summary evaluation results of variant calling tools with GIAB NA24358 WES data. Evaluation 

results were generated by hap.py. 

S1 File. Supplementary methods descriptions. 
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