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Abstract 

Structural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically 
underascertained owing to limitations of existing technology. Recent technological advances such as long-read 
sequencing (LRS) enable more comprehensive detection of SVs, but approaches for clinical prioritization of 
candidate SVs are needed. Existing computational approaches do not specifically target LRS data, thereby 
missing a substantial proportion of candidate SVs, and do not provide a unified computational model for 
assessing all types of SVs. Structural Variant Annotation and Analysis (SvAnna) assesses all classes of SV 
and their intersection with transcripts and regulatory sequences in the context of topologically associating 
domains, relating predicted effects on gene function with clinical phenotype data. We show with a collection of 
182 published case reports with pathogenic SVs that SvAnna places over 90% of pathogenic SVs in the top 
ten ranks. The interpretable prioritizations provided by SvAnna will facilitate the widespread adoption of LRS in 
diagnostic genomics. 
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INTRODUCTION 
Structural variants (SVs) range from 50 base pairs (bp) to megabases in size and can be classified into a wide 
range of events including deletions, tandem and interspersed duplications, insertions, inversions, 
translocations, or complex combinations of these events.1 Limitations of existing sequencing technologies have 
hindered a full assessment of the role of SVs in human health and disease, but recent technological 
innovations are enabling more comprehensive detection of a broader range of SVs.2 
The advent of short-read exome sequencing in 2010 ushered in a decade of novel discoveries in Mendelian 
genetics and led to the introduction of diagnostic exome and subsequently genome sequencing. Over 100 
short read-based mappers and over 40 short-read variant callers have been introduced since 2010; while 
performance has been steadily increasing, SV calling from short reads is reported to have a recall of between 
10 and 70% associated with high false-positive rates.3,4 Long-read sequencing (LRS), including both PacBio 
single-molecule real-time sequencing (SMRT) and Oxford Nanopore sequencing, produces longer reads that 
can be more accurately mapped to the reference genome even in regions that are inaccessible to short-read 
sequencing (SRS).5 
LRS technology is rapidly evolving. A recent study with LRS in conjunction with additional methods such as 
single-cell template strand sequencing (Strand-seq) estimated that while 78% of SVs identified by SRS are 
concordant with LRS SV calls, only 30% of LRS SVs were observed in the short-read WGS callset; on 
average, 24,653 SVs were detected per genome by LRS.6 SRS captures the majority of SVs affecting coding 
sequence in genes with existing evidence for dominant-acting pathogenic mutations from OMIM, and the 
majority of SVs identified only by LRS are located in highly repetitive regions that have been previously 
inaccessible to human disease studies.7 Initial studies have appeared on LRS as a diagnostic tool for the 
diagnosis of Mendelian disease, with reports on the detection of large deletions, insertions, translocations, and 
tandem repeat expansions.5,8–11 LRS can be used to address cases in which SRS and sometimes cytogenetic 
or chromosomal microarray analysis has failed to identify an etiology, and therefore analysis may focus on 
intermediate size SVs (50 bp to 2 kb) difficult to detect with the other methods.12  
In this work, we introduce SvAnna (see URLs), an integrated tool for the annotation and prioritization of SVs 
called in LRS data starting from variant call format (VCF) files produced by LRS SV callers such as pbsv, 
sniffles,13 and SVIM.14 SvAnna prioritizes variants in light of their overlap with structural elements of genes, 
promoters, and enhancers. On a curated set of 182 case reports of 188 SVs underlying Mendelian disease, 
SvAnna placed the correct variant within the top 10 ranks (out of 62,337-107,233 variants per VCF file) in 
90.4% of cases.  

RESULTS 
We developed SvAnna, a tool for phenotype-driven annotation and prioritization of SVs detected in LRS. 
SvAnna was designed to prioritize a broad range of SV classes such as deletions, duplications, inversions, 
copy number variants (CNVs), insertions, and translocations that affect one or more genes. SvAnna filters out 
common SVs and calculates a numeric priority score for the remaining rare SVs by integrating information 
about genes, promoters, and enhancers with phenotype matching to prioritize potential disease-causing 
variants. SvAnna outputs its results as a comprehensive tabular summary and as an HTML file intended for 
human consumption that visualizes each variant in the context of affected transcripts, enhancers, and repeats, 
providing information about the effects of the variant on transcripts, chromosomal locations, and Mendelian 
diseases associated with the affected genes. 
 
TADwise Assessment  of Deleteriousness of Structural variation (TADSV) 
 
SvAnna assesses each variant in the context of the topological domain in which it is located. SvAnna first 
compares each variant to three sources of common SVs on the basis of reciprocal overlap. In addition to 
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Database of Genomic Variants (DGV), gnomAD-SV, and dbSNP, which are largely based on data from SRS, 
SvAnna includes a recent dataset of SVs called by LRS6 (HGSVC). Common variants are removed according 
to user-defined frequency and overlap constraints (Methods). 
SvAnna uses a set of evolutionary constrained, ubiquitous topologically associating domains15 (TADs) to 
determine the genomic neighborhood for assessing potential deleterious effects of SVs, an approach we term 
TADwise assessment of deleteriousness of structural variation (TADSV). For each SV, SvAnna determines the 
extent of overlap with genomic elements, including enhancers, promoters, and transcripts. For each transcript, 
it determines which exon or exons are affected and whether the transcriptional start site of the coding 
sequence is disrupted. SvAnna then assembles a computational model of the TAD context of the variant. If a 
variant disrupts a TAD boundary, SvAnna defines a neo-TAD based on the non-disrupted TAD boundaries that 
flank the SV.  
For each class of variant, SvAnna defines rules to assess the functional impact score δ(G) for a set of genes G 
located in the TAD (Figure 1A). At the same time, a phenotypic relevance score Φ(Q,D) is calculated based on 
the similarity of patient phenotypes Q encoded using Human Phenotype Ontology16,17 (HPO) terms and the 
~8000 computational disease models D of the HPO project (Figure 1B). The candidates are ranked based on a 
TADSV score that is calculated as a function of the δ(G) and Φ(Q,D) scores. The following sections explain the 
approach to specific classes of SV. 
To demonstrate SvAnna, we curated 182 published case reports with 188 distinct SVs associated with 
Mendelian disease. Phenotypic data in the reports was captured as HPO terms and recorded together with 
genotypic data using the Global Alliance for Genomics and Health (GA4GH) Phenopacket format.18 For each 
case, the causal variant was added to an in-house whole-genome sequencing VCF file (Methods) called by the 
PacBio structural variant caller pbsv (see URLs), and the phenotypic descriptions were encoded using HPO 
terms (Table 1 and URLs). The analysis was repeated using 10 different in-house VCF files and the median 
rank was recorded.  
 

 Deletions Duplications Inversions Insertions Translocations Total 

Multiple 
genes 

7 2 4 N/A 5 18 

Multiple 
exons 

37 19 5 N/A N/A 61 

Single exon 81 16 2 3 N/A 102 

Promoter 5 0 0 0 0 5 

Intronic 2 0 0 0 N/A 2 

Total 132 37 11 3 5 188 

Table 1: Summary of curated collection of deleterious SVs. We curated a collection of 188 published 
deleterious SVs based on 182 cases published in 146 clinical case reports. We considered five classes of SVs 
commonly present in LRS variant calling results: deletions, duplications, inversions, insertions, and 
translocations. We further classified the SVs into five functional categories based on the number of affected 
genes and the relative location of the SV region with respect to transcripts of genes. The case reports are 
available for download (URLs). 
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Figure 1. Overview of SvAnna algorithm. A. Functional impact score δ(G). The score compares 
reference and alternate sequences. For the reference, each gene g in the TAD is assigned a  δref(g) score of 
1. A deletion of a coding exon or an entire gene g is assigned a δalt(g) score of 0. A duplication is assigned a 
score of 0 if it disrupts the coding sequence of a gene, and 2 if it completely encompasses the gene. A 
coding sequence that is disrupted by an inversion is assigned a score of 0, but a gene that is completely 
contained within an inversion is assigned a score of 1. A deletion in a promoter sequence is assigned a 
score based on the length of the deletion. The δ(G) scores for a variant are calculated as the absolute 
difference between wildtype δref(G) and variant δalt(G) scores.  
B. Phenotype similarity score Φ(Q,D). SvAnna calculates the phenotypic similarity for a set of HPO terms 
Q representing the patient’s phenotypic features and HPO terms D for a disease. SvAnna computes the 
information content (IC) of the most informative common ancestor (MICA) for all term pairs �, � for � � �and 
� � �. The mean ICs μQ and μD are calculated for Q and D, and the final similarity score Φ is calculated as 
the mean of μD and μQ. The δ(G) and the Φ(Q,D) scores are combined to obtain the final TADsv score 
(Methods). 

Deletions and duplications. To calculate the priority of a deletion of a genomic region, SvAnna determines 
the relative location of each overlapping gene with respect to the variant. Deletions can be located within a 
transcript region, completely contain a transcript, or partially overlap. SvAnna assigns complete transcript 
deletions a δ(g) score of 0. Deletions of single exons are assigned a score of 0 if they include coding sequence 
or a canonical splice site region. If a deletion is located in an intron it is assigned a score of 1 (not deleterious) 
except if it overlaps with an enhancer sequence (see below). If a deletion affects an untranslated region (UTR), 
it is assigned a score based on the length of the SV and the UTR, with lower (more deleterious) scores being 
assigned to SVs that are large compared to the UTR sequence. In some cases, the effect of an SV is different 
for different transcripts of a gene. SvAnna chooses the most deleterious (lowest) score for any transcript of a 
gene and uses that score to calculate the δ(g) score. If a deletion encompasses multiple genes, the δ(g) score 
is assigned in this way for each transcript of each gene. 
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For example, a ~6.9kb-long deletion that leads to in-frame loss of 48 amino-acid residues encoded by exon 2 
of NF1 (NM_000267.3)19 is considered to abolish the function of the gene (δ(g)=0) as the deletion removes the 
entire exon from the transcript. Together with the phenotype features of the proband consisting of plexiform 
neurofibroma (HP:0009732), spinal neurofibromas (HP:0009735), tibial pseudarthrosis (HP:0009736) and 
multiple cafe-au-lait spots (HP:0007565), the variant attains rank 1 with a final TADSV score of 117.4 (Figure 
2A). SvAnna generates an HTML output of the variant and its position with respect to the affected transcripts, 
repetitive elements, and enhancers (see Supplemental Fig. S1 for this example). The median rank of 81 
cases with single exon deletions was 1. 

A deletion of three exons in BRCA1 received a TADSV score of 7.76 and rank 1 (Supplemental Fig. S2). The 
median rank of multiple-exon deletions was 1. SvAnna uses a slightly different approach to prioritize multigene 
SVs. For instance, a deletion at chr2:109,923,337-110,405,062 (hg38) affects four genes (MTLN, MALL, 
MTLN, and NPHP1). SvAnna calculates the δ(g) score of each gene as 1, weighted by the phenotype score 
according to equation 5 (Methods). Only NPHP1 is associated with a phenotypically relevant disease (Joubert 
syndrome 4) and its contribution to the final TADSV score is highest (Supplemental Fig. S3). The median rank 
of deletions affecting multiple genes was 1.  

Duplications are handled in a similar way except that the gene g that is entirely spanned by a duplication is 
assigned a score of 2 and the δ(g) score is calculated as the absolute value of the difference between the 
wildtype (1) and the variant (2). Similar considerations about duplications that affect individual exons or an 
entire transcript pertain as with deletions. Tandem duplications that do not alter the primary linear sequence of 
a transcript (e.g., a duplication of the final exon of a transcript) are assigned a score of 1 (i.e., are assumed not 
to be deleterious). For example, a pathogenic duplication of 36 bp within one exon of the PIBF1 gene was 
assigned a TADSV score of 2.36 (Supplemental Fig. S4). 

Inversions. An inversion is prioritized using a similar approach to that used for evaluating a deletion, with 
several differences. The δ(g) score for a genomic element spanned by an inversion is defined as 1 (since the 
primary sequence of the element is unchanged). If the sequence of a transcript or enhancer is interrupted by 
inversion breakends a δ(g) score of 0 is assigned. Additionally, inversions that affect one or multiple (but not 
all) exons of a transcript are assigned a score of 0. An inversion located completely within an intron is assigned 
a score of 1 (not deleterious).  

For example, breakpoints of a 12kb copy neutral inversion identified in monozygotic twins suffering from 
intellectual disability disrupt genic regions of BRPF1 and CPNE9.20 Since each breakpoint disrupts the gene 
sequence, the δ(g) score is set to 0 for both genes. Deleterious variants in BRPF1 are associated with 
Intellectual developmental disorder with dysmorphic facies and ptosis (OMIM:617333). The final TADSV score 
of 7.7 aggregates scores of two disrupted genes: phenotypically relevant BRPF1 (6.7) and disrupted, but 
phenotypically not relevant CPNE9 (1.0) (Fig. 2B, Supplemental Fig. S5). 

5’UTR and transcriptional start site variants. SvAnna has specific rules for prioritizing SVs in non-coding 
sequences. SvAnna assumes that variants affecting UTR regions, especially SVs, are less likely to have a 
functional impact on gene expression or translation. SvAnna calculates the δ(g) score for a UTR variant as a 
function of the variant length and UTR length (Methods). However, the variants that disrupt transcription start 
sites (TSS) are considered just as deleterious as variants that affect coding sequences. As an example, we 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.452267doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452267
http://creativecommons.org/licenses/by/4.0/


 

6 

evaluated de novo deletion of 1,571 bp affecting the first non-coding exon of AMER1.21 The deletion was 
processed as a loss of TSS, leading to a TADSV score of 8.99 (Supplemental Fig. S6). 

Promoter variants. SvAnna extends the prioritization rules to variants in gene promoters with a potential to 
change the gene expression. The promoter regions are assumed to encompass 2kb upstream of the TSS. To 
calculate the δ(g) score, SvAnna assigns SVs in promoter regions a score that is 40% of that of an SV in a 
coding sequence. Effectively, this means that only promoter variants in genes with a good phenotype match 
get high priority scores. This is a limitation of the approach that could be overcome as our ability to build 
computational models of promoter variants improves. If the variant affects a promoter and another genic region 
(e.g. TSS, UTR), the most deleterious  δ(g) score for any of the regions is used to calculate the TADSV score. 
For example, a 13-bp deletion in the promoter of the von Willebrand factor (VWF) gene in a patient with type 1 
von Willebrand disease22 was assigned a TADSV score of 25.6 (Supplemental Fig. S7). 

Translocations. SvAnna applies a series of rules to assess the pathogenicity of translocations. A translocation 
that disrupts the coding sequence of a gene g or separates the transcription start site of g from its coding 
sequence is assigned a δ(g) score of 0. The TADSV score is calculated based on the predicted effects of the 
translocation at both breakpoints. For example, a translocation that disrupts the coding sequence of SLC6A1 in 
a case of myoclonic-atonic epilepsy was assigned a TADSV score of 4.63 (Supplemental Fig. S8).  

 

 

Figure 2. Prioritization of variants. A. A case of proband with a single-exon deletion in the NF1 gene.19 
SvAnna calculates δ(G) scores for all 17 genes � located in the TAD region. The deletion results in δ(g)=1 
for NF1. To calculate semantic similarity Φ(Q,D) for NF1, SvAnna evaluates five computational disease 
models associated with variants in NF1. In case of this proband, Neurofibromatosis, Type I (OMIM:193520) 
is the disease model that matches the proband’s clinical condition the best (Φ(Q,D) = 4.76). As NF1 is the 
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only affected gene in the TAD, δ(g) and Φ(Q,D) of NF1 are the only determinants of the final TADSV score. B. 
A case of proband with an inversion involving 3’ end of CPNE9 and 5’ end of BRPF1.20 SvAnna assigns δ(g) 
score of 1 to both CPNE9 and BRPF1 that are disrupted by the inversion. Unlike in the case of NF1 variant, 
more genes are potentially phenotypically relevant to proband’s clinical description. The final TADSV 
integrates the scores of phenotypically relevant BRPF1 (6.7) and disrupted, but phenotypically non-relevant 
CPNE9 (1). 

 

SvAnna achieves clinically relevant sensitivity. To demonstrate the practical utility of the SvAnna algorithm, 
we curated a collection of 182 case reports with 188 known disease-causing SVs associated with Mendelian 
diseases (see URLs). In addition to genomic coordinates and genotypes of the causal variants, we recorded 
NCBI Gene and OMIM identifiers for the causal gene and the associated disease, and we encoded the clinical 
features of the proband into Human Phenotype Ontology terms.16,17 We stored the cases in Phenopacket 
format. The curated SVs included deletions, duplications, inversions, insertions, and translocations affecting a 
differing number of genomic elements.  

We are not aware of any other tool that specifically targets VCF data as produced by modern LRS SV callers. 
We ran SvAnna on 10 in house VCF files called with pbsv, sniffles,13 and SVIM,14 and were able to annotate 
~99.9% of variants (i.e., identify nature and position of overlaps with transcripts). We are aware of only one 
other published tool for phenotype-driven variant prioritization: AnnotSV,23 a standalone command-line script 
that annotates SVs with functional, regulatory, and clinical information to filter out neutral variants and rank the 
candidate pathogenic variants, while the phenotype matching is delegated to a separate tool, Exomiser.24 
AnnotSV is able to annotate only DEL and DUP calls and missed INS, BND, CNV, and INV calls that were 
processed by SvAnna. For instance, on a VCF file called by pbsv, AnnotSV missed 25,198 (39.9%) or 63,084 
variants. 

To assess the practical utility of SvAnna and to compare performance with AnnotSV, we developed a 
simulation strategy based on 182 curated case reports. We used 10 VCF (62,337-107,233 variants) generated 
by the LRS pipeline and added the causal variant(s) to simulate 10 runs per curated case, for a total of 1,820 
data sets. Then, we prioritized the simulated variant dataset and calculated the median rank for the causal 
variant across 10 runs. Overall, SvAnna placed the causal variant on the top of all variants in 61.2% of cases, 
the causal variant was at rank 10 or better in 90.4% of cases, and 93.6% of variants were placed at a rank of 
20 or better (Fig. 3A, B).  

We further evaluated the performance on different variant types. SvAnna showed consistent performance for 
all variant types from our benchmark set. SvAnna was confident in prioritization of deletions and duplications, 
assigning median variant rank of 1. The inversions and breakend variants had median rank 2 and 3.5 
respectively. Insertions were the hardest to prioritize with a median rank of 5. SvAnna supports prioritization of 
all variant types (Fig. 3C, D).  
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Figure 3. Comparison of prioritization performance of different methods for prioritization of SVs. A. 
Median ranks of 188 deleterious SVs obtained from simulated analysis runs. Top 5 means that the rank 
assigned by the tool was between 1 and 5, and so on. B. Plot showing the cumulative rank for prioritizations 
by SvAnna and AnnotSV. C. SvAnna assigns the best rankings to all 5 evaluated SV classes. D. SvAnna 
attains the best median ranks for SVs of all sizes, performing notably well in prioritization of variants 
involving multiple genes. In panels C and D, each box plot is defined so the center line is at the median 
variant rank, the box borders mark the 25th and 75th percentiles, and the whiskers stretch to denote 1.5 
times the interquartile range.  

SvAnna software 

SvAnna presents its results both as tabular and VCF files suitable for bioinformatics analysis as well as a 
visually appealing HTML report to support clinical interpretation. The HTML report is a single page with a 
tabular and graphical summary of the top 100 variants, with information about the variant (read counts, VCF id, 
position and length, and genotype if available), genes that overlap the variant and Mendelian diseases 
associated with the genes,25 and a list of all overlapping transcripts as well as the position and effect on the 
transcript. A graphical display is generated for each variant (such as those shown in Supplemental Figs. S1-
S8) as a scalar vector graphics (SVG) file that is embedded directly in the HTML code. The SVG shows the SV 
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and its position compared to that of overlapping transcripts, whose coding exons are shown in green and non-
coding exons in yellow. If applicable, overlapping repeats26 and VISTA enhancers27 are shown as tracks 
beneath the variant (Screenshot in Supplemental Fig. S9). SvAnna is made freely available for academic use 
as a Java command-line application. The GitHub repository contains source code, a pre-built executable, and 
links to detailed instructions for use, as well as a VCF file with the eight examples presented here and a 
tutorial. 

Discussion 
Our ability to analyze the role of SVs in Mendelian disease has lagged significantly behind that of single 
nucleotide variants and other small variants for a myriad of reasons including technical difficulties in calling 
SVs, the relative lack of functional data on the effects of SVs on gene regulation, the paucity of genome-wide 
association studies for SVs.1 The advent of LRS promises to greatly improve the detection of SVs in patient 
samples. PacBio LRS was shown to be about three time more sensitive than a SRS ensemble calling 
approach, with the improvement was predominantly derived from improved detection of repeat-associated SV 
classes, particularly of intermediate-sized SVs (50�bp to 2�kb), and insertions across the SV size spectrum.28 
However, progress on many fronts will be required to fully realize the promise of LRS for genetic medicine, 
including continued technical improvements, cost reductions, better SV calling algorithms, and more 
comprehensive knowledge of the medical relevance of classes of SVs that were difficult or impossible to 
ascertain with previous technologies.  
Compared to the large variety of approaches available for SRS, there are very few computational methods for 
assessing the relevance of SVs for rare disease.2 Numerous algorithms, databases, and tools have been 
developed to support the medical interpretation of diagnostic SRS. Although details vary from tool to tool, in 
general, variant pathogenicity is assessed on the basis of variant allele population frequencies, evolutionary 
conservation, and functional impact prediction for missense, splice, and regulatory variants.29–31 Disease genes 
can be prioritized based on functional and genomic data,32 or on the basis of phenotypic similarity of patient 
phenotype definitions with computational disease models of the HPO project.16,33  
There is a need to extend these algorithms for LRS. SvAnna includes a number of innovations to this end. VCF 
files represent SVs in multiple ways including the default (sequence) representation and symbolic notation. 
Translocations are represented as breakend calls on two lines. SvAnna uses a harmonized computational 
model of variants to represent each category of variant, which enables it to apply a single prioritization 
approach to all categories of SV. We are aware of only one previously published tool for phenotype-driven 
prioritization of SVs, AnnotSV.23 In contrast to SvAnna, AnnotSV was primarily designed to analyze SV events 
identified in SRS and array-based experiments, and only supports the analysis of deletions and duplications. 
SvAnna demonstrated a substantially better overall performance than AnnotSV in the ranking of all classes of 
the causal SVs. 
In our study, SvAnna prioritized over 90% of SVs in the first 10 ranks. The case reports were chosen from 182 
publications, seven of which reported diagnostic results from LRS.5,10,12,20,34–36 Current published experience 
with LRS in a human genetic diagnostic setting is limited, and it is too early to assess the potential advantage 
of LRS over SRS in diagnostic settings. Given that LRS detects SVs in genomic regions that were difficult or 
impossible to characterize by SRS, the medical relevance of variation in these regions will need to be 
assessed. SvAnna will benefit from future updates to the HPO resource in this area.  
 
SvAnna runs in about 15-20 minutes for a typical genome on a consumer laptop (faster if computations are 
performed on more threads). All required data for running SvAnna are provided as a compressed archive for 
download. SvAnna is implemented as a standalone application with no external dependencies. SvAnna is 
currently the only tool for phenotype-based prioritization of SVs that is specifically designed to work with VCF 
files produced by typical LRS SV callers. We are likely to be at the beginning of a period of rapid expansion of 
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LRS in diagnostic settings. SvAnna will play an important role in this process by promoting improved clinical 
interpretation of a range of SVs. The interpretable prioritizations provided by SvAnna will facilitate the 
widespread adoption of LRS in diagnostic genomics. 
 
 
 

Methods: 

Data sources. The input variants are filtered to remove the common SVs before the prioritization SvAnna uses 
several sources of common SVs and their frequencies: Database of Genomic Variants,37 GnomAD SV,38 
Human Genome Structural Variation Consortium (HGSVC) SVs freeze 3,6 and dbSNP v151 databases (all 
accessed in April 2021). Transcript definitions were generated for UCSC, RefSeq and Ensembl using 
Jannovar.39 Enhancer definitions were extracted from the VISTA database.27 Topologically associating domain 
(TADs) boundary definitions were taken from a set of evolutionarily conserved TADs that are stable in multiple 
cell types.23 Locations of repetitive elements were taken from the UCSC Genome Database.26 Computational 
disease definitions were extracted from the Human Phenotype Ontology16 (HPO) resource (06/2021 release). 

 
Comprehensive and harmonized representation of variants in VCF files  
SvAnna was designed to capture all classes of structural variation represented in VCF files. It transforms 
default (sequence) and symbolic representations of variants including BND calls into a standardizing 
computational model of location and consequences. For this purpose, we developed a Java library for 
representing genomic variants and regions that provides a standardized approach to representing genomic 
coordinate systems, VCF trimming strategies, and represents small, structural and breakend variants with a 
consistent API (https://github.com/exomiser/svart). 

Variant prioritization 
To prioritize a variant, SvAnna first determines the evaluation region by looking up- and downstream of the 
variant to find the nearest TAD boundaries. SvAnna uses a threshold of 0.9 for TAD tissue stability15 to create 
a TAD region that is stable across multiple cell types (this parameter can be adjusted if desired). It then 
analyzes each genomic element contained in the TAD separately. If no boundary is located between an SV 
and start or end of the chromosome, the start or end position is taken. SvAnna applies different rules for the 
various categories of SV. For each gene in the TAD, a functional score is calculated to reflect the predicted 
difference in functionality and gene dosage between the reference and alternate sequence, ����  �
 ��������  �  ��������. The rules for calculating �differ according to the SV type and are described in the 

following sections. 
 
Deletions, duplications, and inversions 
SvAnna evaluates impact of a SV on all genes � 	 
 present in the TAD region. Scoring ��
� for deletions and 
duplications depends on the type of sequence affected. The maximal deleteriousness is scored for coding 
sequences. A deletion that disrupts the coding sequence of a transcript, either because it removes the entire 
transcript or because it removes part of the coding sequence by deletion of one or more exons, receives a 
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��
� score of 0. For UTRs, the score ����for gene � is determined as a function of SV and UTR length, with 
the difference between wildtype (1) and variant sequence calculated as follows: 
 

���� �  1 � ���1 � ����	��

��	���

, 0�          (1) 

A deletion that encompasses 50% or more of the UTR will be assigned a score of 0 (maximal deleteriousness). 
Smaller deletions will receive proportionally less deleterious scores. Analogously, a duplication that adds an 
entire copy of a transcript without disrupting the coding sequence is assigned a δ(g) score of 2 (a triplication 
would be assigned a score of 3, and so on).  
If a breakpoint of an inversion disrupts the coding sequence of a transcript, it is assigned a score of 0. If a 
transcript is completely contained within an inversion, its score is unchanged (1).  
 
Insertions 
 
To score insertions, SvAnna considers several special cases. For an insertion located within the coding 
sequence of a transcript, SvAnna checks if the insertion disrupts the reading frame. The insertion that fits into 
the reading frame is assigned a δ(g) score of 0.8 if the number of inserted bases is a multiple of three, or 0.5 if 
the number of bases is not a multiple of three. Out of frame insertions within the coding sequence are assigned 
a δ(g) score of 0.1. If the insertion is located in UTR, the δ(g) score is determined as a function of insertion and 
UTR length: 

����  � 1 � ������	���

��	���

, 1�            (2)  

An insertion that adds the number of bases corresponding to 100% of the UTR will be assigned a score of 0 
(maximal deleteriousness). The shorter insertions will receive proportionally less deleterious scores. An 
insertion located outside of the coding sequence, splice site regions, promoter, and UTRs is assigned a score 
of 1 (no deleteriousness). 
 
 
Translocations 
If a breakpoint of a translocation disrupts the coding sequence of a transcript, it is assigned a score of 0 (1). 
The scoring process applies to both breakends of a translocation. 
 

Phenotype matching 

SvAnna takes a list of HPO terms describing the clinical manifestations of the proband as input. It matches 
them to the 7,981 computational disease models of the HPO using symmetric Resnik matching.40 Briefly, to 
calculate the Resnik symmetric matching score �(Q, D) for disease D annotated with {d1, …, dm} HPO terms 
and query Q consisting of {q1, …, qn} HPO terms describing the clinical manifestations of the proband, SvAnna 
uses: 

���, ��= 

������ � 
������

�
                                       (3) 

where ����� � �� is a method for obtaining one-sided semantic similarity between �and �. The one-sided 
semantic similarity is obtained as: 
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����� � ��  � �

�
 ∑�

��� ��������������� , ���               (4) 

To save computational time, SvAnna pre-calculates the information content of the most informative common 
ancestor IC(MICA(t1, t2)) for all terms t used to annotate computational disease models. 

 

The TADSV score  
The TADwise Assessment of Deleteriousness of Structural variation (TADSV) score is calculated based on the 
sequence scores δ(G) and phenotype similarity scores �(Q, D) for all genes G contained within the TAD that 
contains the SV. The sequence score δ(G), which represents alterations between wildtype and variant 
sequences for all genes affected by the SV, is weighted by the phenotypic similarity score �(Q, D). 
 

���
���, 
, �� � ∑��� ����  !��,��                                             (5) 

Here, the TADsv score is calculated as a function of the query HPO terms (�), the genes 
 and the Mendelian 
diseases � associated with the genes in 
. The function ����calculates the difference between wildtype and 
variant sequences for the variant of interest. δ(g) is then weighted by the exponentiated phenotypic similarity 
�(Q, D) of the query terms Q to a computational model of a disease D that is associated with variants in �. 
SvAnna uses the highest �(Q, D) if more than one disease is associated with variants in g. 

Variant filtering: 

In our analyses, we considered the variants occurring in more than 1% of the population as common. SVs 
called in the VCF file are removed from the analysis if they show greater than 80% reciprocal overlap with a 
common variant in any of the source databases (DGV, gnomAD-SV, dbSNP, and HGSVC SVs). The frequency 
and reciprocal overlap thresholds may be adjusted via the command line interface. 

SvAnna performance benchmarks and comparison of with other algorithms for ranking pathogenic 
SVs 

We compared SvAnna with AnnotSV.23 Since all the tools evaluate each variant independently, we used a 
simple strategy to simulate a variant dataset, by adding in variants from published cases of disease-associated 
SVs (Table 1) to VCF files derived from PacBio whole-genome sequencing and called with pbsv (see below). 
Each published variant was added in turn to one of ten in-house VCF files produced in this way. Each of the 
two algorithms was applied to the cases and the median rank from the ten VCF files was recorded. Then the 
benchmarking study was performed using the pipeline engine Nextflow.41 

AnnotSV: AnnotSV is an open source tool that annotates structural variants stored in VCF and BED format 
with functional, regulatory, and clinical information and classifies SVs into five pathogenicity classes: benign 
(1), likely benign (2), variant of uncertain significance (3), likely pathogenic (4) and pathogenic (5). AnnotSV 
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reports results in the tabular format. We performed a local installation of AnnotSV v3.0.9 (accessed on June 25 
2021). We used full annotation mode when running AnnotSV to produce a single row per SV in the result file, 
and we set the -SVminSize to 1 to ensure SVs shorter than 50bp (including causal SVs) are analyzed. The 
tabular output reports the annotated SVs as one SV per row, and the rows are ordered by decreasing priority.  
We used the row number to determine the variant rank. If the causal variant was assigned pathogenicity 
class=NA instead of one of the five pathogenicity classes, and therefore missed, we assigned the variant the 
rank 40,000. 

Long read sequencing 

We used VCF files from ten in-house whole genome sequencing experiments as background files for the 
simulations. We do not have consent for sharing the files. 

High molecular weight (HMW) DNA extraction 
The HMW gDNA was extracted using the Gentra Puregene (Qiagen) kit. Frozen cells or tissues were first 
pulverized using a mortar and pestle and transferred to a 15mL tube that contained Qiagen Cell Lysis Solution. 
The lysate was then incubated with Proteinase K for 3 hours at 55°C, followed by RNase A for another 40 
minutes at 37°C. Samples were cooled on ice and Protein Precipitation Solution was added. Samples were 
then vortexed and centrifuged. The supernatant was transferred to a new tube containing isopropanol for 
precipitation. Pellet was washed with 70% ethanol, air dried, rehydrated in PacBio Elution Buffer until 
dissolved.  
 
PacBio HiFi whole genome sequencing 
This protocol was carried out using the PacBio SMRTbell Express Template Prep Kit 2.0 and the SMRTbell 
Enzyme Cleanup Kit. 15 µg of DNA was sheared to 20kb using g-TUBE (Covaris). The sheared DNA was 
purified using Ampure PB beads (PacBio). 10 µg of sheared DNA was used in removing single strand 
overhangs, followed by DNA damage repair and End repair/ A-tailing. The repaired/ modified DNA was used 
for V3 adapter Ligation. The adapter ligated library was treated with Enzyme mix for Nuclease treatment to 
remove damaged or non-intact SMRTbell templates. The purified library was then size selected using two-step 
size selection with Blue Pippin (Sage Science) generating 9-13kb and >15kb fractions. The size selected and 
purified >15kb fraction of the library was used for sequencing on Sequel II.  
 
Alignment and variant calling 
We aligned long-read PacBio HiFi WGS data to the GRCh38 (hg38) reference using pbmm2 (v1.3.0) with --
preset CCS option enabled. We identified SVs on the indexed bam files using pbsv(v2.4.0).  

 

URLs 

● SvAnna source code - https://github.com/TheJacksonLaboratory/SvAnna 
● SvAnna tutorial and documentation - https://svanna.readthedocs.io 
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● Global Alliance for Genomics and Health (GA4GH) Phenopackets (v1) representing the published case 
reports of deleterious SVs - https://zenodo.org/record/5071267 

● Database of Genomic variants (DGV) - http://dgv.tcag.ca 
● GnomAD SV - 

https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_study/genotype/nstd166/gnomad_v2.1_s
v.sites.vcf.gz 

● HGSVC SV - 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/integrated_callset/free
ze3.sv.alt.vcf.gz 

● dbSNP - https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/VCF/00-
common_all.vcf.gz 

● TAD boundary definitions - https://zenodo.org/record/4156731/files/emcarthur/TAD-stability-heritability-
v1.0.1.zip 

● PacBio structural variant (SV) calling and analysis tools. https://github.com/PacificBiosciences/pbsv 
● PacBio pbmm2 aligner: https://github.com/PacificBiosciences/pbmm2 
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