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Abstract 

      Even when subjects are at rest, it is thought that brain activity is organized into 

distinct brain states during which reproducible patterns are observable. Yet, it is 

unclear how to define or distinguish different brain states. A potential source of brain 

state variation is arousal, which may play a role in modulating functional interactions 

between brain regions. Here, we use simultaneous resting state functional magnetic 

resonance imaging and pupillometry to study the impact of arousal levels indexed by 

pupil area on the integration of large-scale brain networks. We employ a novel sparse 

dictionary learning-based method to identify hub regions participating in between-

network integration stratified by arousal, by measuring k-hubness, the number (k) of 

functionally overlapping networks in each brain region. We show evidence of a brain-

wide decrease in between-network integration and inter-subject variability at low 

relative to high arousal, with differences emerging across regions of the frontoparietal, 

default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-

hubness relate to the actual patterns of network integration within these hubs, 

suggesting a brain state transition from high to low arousal characterized by global 

synchronization and reduced network overlaps. We demonstrate that arousal is not 

limited to specific brain areas known to be directly associated with arousal regulation, 
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1. Introduction 

      Fluctuations of brain and behavioral states during wakefulness are linked with our 

ability to observe and interact with a changing environment(Gonzalez-Castillo et al., 

2021; McGinley et al., 2015; Zagha and McCormick, 2014). In the absence of external 

tasks, arousal, a behavioral state of being alert, awake, and attentive(Joshi and Gold, 

2020; Liu and Falahpour, 2020), is a potential source of brain state variations or time-

varying patterns of brain activity during resting state. Recent neuroimaging studies using 

functional magnetic resonance imaging (fMRI) show that there are neural correlates of 

arousal in the cerebral cortex(Breeden et al., 2017; DiNuzzo et al., 2019; Schneider et al., 

2016; Yellin et al., 2015). In addition to key brain regions of the ascending arousal 

system, thalamo-cortical and cortico-cortical neural pathways are involved in modulation 

of arousal(Lee and Dan, 2012; McCormick et al., 2020; Paasonen et al., 2018), 

suggesting a role of arousal on functional interactions between brain regions. How 

arousal modulates functional brain organization during resting state remains poorly 

understood(Barttfeld et al., 2015; Shine et al., 2016; Yeo et al., 2015). 

      Functional connectivity is widely used to infer a relationship between brain regions 

by measuring the temporal correlation strength of the blood-oxygen-level-dependent 

(BOLD) signal. Integration of distinct brain regions can be described by connecting 

nodes (each representing a brain region) based on the strength of functional connectivity 

between them(Bullmore and Sporns, 2009). Hubs are defined as the nodes with a large 

number of connections to other nodes(Power et al., 2013). Among hubs, connector hubs 

play a key role in communications between networks, each being a set of inter-connected 

but instead has a brain-wide impact that involves high-level between-network 

communications. 

Keywords: arousal; network hubs; resting state; fMRI; pupillometry. 
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nodes. Connector hubs are thought to reconfigure their functional connectivity to adapt to 

changes in brain states such as tasks(Bertolero et al., 2015) or arousal(Boveroux et al., 

2010). Brain-wide decreases in network integration were found in patients in the 

comatose state(Achard et al., 2012), under propofol-induced sedation(Qiu et al., 2017; 

Schrouff et al., 2011; Vatansever et al., 2020) and sleep(Boly et al., 2012). Still, the much 

more subtle question as to whether modulations in arousal during resting state are 

associated with brain-wide connector hub re-organization remains largely unexplored in 

healthy non-pharmacologically altered participants(Shine et al., 2016). 

      In addition, functional connectivity as measured by resting state fMRI involves 

complex information resulting from a variety of neurobiological, hemodynamic, and 

physiological components(Cole et al., 2014; Gonzalez-Castillo et al., 2019; Lurie et al., 

2020). Components of time-varying functional connectivity at rest have been linked to 

consciousness(Barttfeld et al., 2015) and ongoing cognition(Gonzalez-Castillo et al., 

2015). Other studies have observed time-varying resting state functional connectivity 

associated with sampling variability, motion artifacts, sleep states(Haimovici et al., 2017; 

Laumann et al., 2017), physiological noise(Chang et al., 2013), neurovascular 

coupling(Archila-Meléndez et al., 2020), or eye movements(Chang et al., 2016; Koba et 

al., 2021). How changes in arousal are linked to functional connectivity reconfiguration is 

a key question in understanding connectivity dynamics and could contribute to the 

heterogeneity of resting state functional connectivity patterns across subjects(Barttfeld et 

al., 2015; Laumann et al., 2017; Liu and Falahpour, 2020; Shine et al., 2016). However, 

level of arousal is not routinely monitored in most resting state fMRI studies, making it 

challenging to explore its impact on functional connectivity.  

      In this study, we identify and quantify changes in network integration stratified by 

arousal and examine its contribution to inter-subject functional connectivity variability. 

We hypothesize that resting state networks reorganize with arousal fluctuations. 

Specifically, we expect network integration to be lower at low relative to high arousal. To 

test this hypothesis, we collected resting state fMRI simultaneously with in-scanner 

pupillometry data from 27 healthy participants, in order to use pupillometry as an index 
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of arousal(Larsen and Waters, 2018; Murphy et al., 2014; Schneider et al., 2016). We 

stratify high and low arousal states by ranked pupil area and estimate connector hubs in 

each state, using a recently introduced method; SParse dictionary learning based Analysis 

of Reliable K-hubness (SPARK)(Lee et al., 2018; Lee et al., 2016). SPARK identifies a 

set of individually consistent networks and defines connector hubs by measuring “k-

hubness”, or the number (k) of functionally overlapping networks for each node(Lee et 

al., 2018; Lee et al., 2016). We show evidence of a brain-wide decrease in network 

integration and inter-subject variability of connector hubs in low versus high arousal 

resting states. By studying the hierarchical network organization of connector hubs, we 

observe that arousal is not localized to specific brain areas known to be directly 

associated with arousal regulation, but instead has a more extensive, brain-wide impact 

that involves high-level between-network communications. 

 

2. Materials and Methods 

 

2.1.Participants.  

      This study was approved by the Institutional Review Board at Yale University. We 

recruited 37 healthy young adults (26.68 ± 4.18 years old; 20/17 females/males; 35/2 

right/left-handed. Mean ± standard deviation) from the community of Yale University. 

Participants had to meet the following inclusion criteria: i) no claustrophobia or 

ferromagnetic metal in the body, ii) no clinical diagnosis of cognitive or mental disorders, 

iii) no visual impairments or difficulty in vision without glasses or contact lenses, and iv) 

no auditory impairments. Subjects were instructed to have a normal sleep before the day 

of scan and reported 7 ± 1 hours of sleep during the past 24 hours prior to the scan, with a 

neutral sleep quality scoring 3.4 ± 0.8 out of the five self-rating items: 1 (very bad), 2 

(fairly bad), 3 (neutral), 4 (fairly good), 5(very good). Subjects reported a mild level of 

fatigue scoring 1 ± 0.7 out of the five self-rating items: 4 (worst possible fatigue) 3 

(severe fatigue) 2 (moderate fatigue) 1 (mild fatigue) 0 (energetic, no fatigue). After data 

preprocessing, 10 subjects were excluded based on the following criteria: i) motion, 
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estimated as the mean frame-to-frame displacement (FFD) > 0.15 mm in either of two 

resting state fMRI runs(Horien et al., 2019), ii) more than 35% of missing datapoints in 

the pupillometry data, or iii) missing data due to technical problems. Given these criteria, 

we included 27 subjects (26.52 ± 4.04 years old; 16/11 females/males; 25/2 right/left-

handed) in our analyses. The mean FFD was 0.06 ± 0.02 mm for rest 1 and 0.06 ± 0.02 

mm for rest 2 across the finally selected 27 subjects. Across the 27 subjects, the percent 

of discarded time-points was 6.02 ± 9.48 % for rest 1 and 4.33 ± 8.33 % for rest 2. See 

Table S1 for demographics. 

 

2.2.Data acquisition.  

      Imaging data were acquired using a Siemens 3.0T MAGNETOM Prisma MRI 

scanner at the Yale Magnetic Resonance Research Center. T1-weighted anatomical 

images were acquired using a magnetization prepared rapid gradient echo (MPRAGE) 

pulse sequence with the following parameters: repetition time (TR) = 2,400 ms, echo 

time (TE) = 1.22 ms, flip angle = 8°, slice thickness = 1 mm, in-plane resolution = 1 × 1 

mm. Functional T2*-weighted BOLD images were acquired using a multiband gradient 

echo-planar imaging (EPI) pulse sequence (TR = 1000 ms, TE = 30 ms, flip angle = 55°, 

multiband acceleration factor = 5, slice thickness = 2 mm, 75 contiguous slices). Total 

duration of each functional run was 6:50 min (410 frames). Eye-tracking data were 

recorded using a MR-compatible infrared EyeLink 1000 Plus eye-tracking system (SR 

Research Ltd. Ottawa, ON, Canada) to measure time-varying changes in pupil area with a 

sampling rate of 1,000 Hz. 

 

2.3.Pupillometry data preprocessing.  

      Eye-tracking data were preprocessed using custom code in MATLAB R2018a. Eye 

blinks were automatically identified by EyeLink tracker’s online parser. Blink-induced 

artifacts were corrected using 4-point spline interpolation(Mathôt et al., 2013). Blinks 

that occurred shortly after each other (< 100 ms) were combined and treated as a single 

blink(Schneider et al., 2016). The signals were low-pass filtered using a first-order 

Butterworth filter at cut-off 0.5 Hz, after which the first 10,000 data points (i.e., 10 s) 
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were removed to synch with the fMRI data. The time-course was down-sampled by 

averaging 1,000 consecutive frames for each 1 s bin, to match the fMRI sampling 

frequency (1 Hz). Pupil area was z-transformed using the mean and standard deviation 

over the rest 1 and 2, to control for variability in average pupil area across subjects. To 

account for the slow response time of the pupil to neuronal activity(Schneider et al., 

2016), each time-course was convolved with the canonical hemodynamic response 

function (HRF) generated based on the mixture of two Gamma functions using 

SPM8(Friston et al., 1998). Finally, the normalized pupil area time-courses from rest 1 

and 2 were temporally concatenated for each subject, to match the concatenated rest 

fMRI scans. We quantified eye-closure related missing pupillometry data by the 

proportion of missing (zero-valued) time-points with respect to the total number of time-

points.  

 

2.4.fMRI data preprocessing.  

      T1-weighted anatomical images were skull-stripped using FSL optiBET(Lutkenhoff 

et al., 2014). All further analyses were performed using BioImage Suite unless otherwise 

specified(Joshi et al., 2011). Skull-stripped anatomical images were non-linearly 

registered to the standard Montreal Neurological Institute (MNI) space(Scheinost et al., 

2017). Functional images were first motion-corrected and realigned using twenty-four 

motion parameters(Satterthwaite et al., 2013), including six rigid-body parameters, their 

temporal derivatives, and their quadratic terms, using SPM8. Subject within scan head 

motion was quantified by computing the mean FFD across each functional run. The first 

10 s volumes were discarded to exclude frames when eye-tracking system was initialized 

and stabilized. Functional images were linearly registered to skull-stripped anatomical 

images using the rigid transformation of the mean functional image from the first run 

(rest 1). 3D spatial smoothing was performed using an isotropic Gaussian kernel with a 4 

mm full-width-half-maximum(Scheinost et al., 2014). Nuisance covariates, including 1) 

24 motion parameters, 2) slow temporal drifts as modeled by the linear, quadratic, and 

cubic Legendre polynomials, 3) the mean signals in the cerebrospinal fluid and white 

matter, and 4) the whole-brain global signal, were regressed. Data were low-pass filtered 
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using a zero-mean unit-variance Gaussian filter with a cut-off frequency of 0.12 Hz. For 

each run, using a 268-parcel functional atlas that covered the whole brain excluding 

ventricles and white matter(Finn et al., 2015; Shen et al., 2013), we generated a time-by-

node data matrix for each individual by averaging the fMRI signals across voxels within 

each node. Finally, two data matrices from rest 1 and 2 were temporally concatenated for 

each subject.  

 

 
 
Figure 1. Analysis pipeline overview. (a) Pupillometry-based fMRI state stratification 
for arousal level-dependent connector hub analysis. For each subject, pupillometry data 
were used to stratify the simultaneously acquired fMRI data into two states (high and low 
arousal). Specifically, time-points where pupil area was within the top or bottom 20% 
rank were assigned to a high- (orange) or low-arousal state (blue), respectively. A 
sparsity-based analysis of reliable k-hubness (SPARK) was used to identify connector 
hubs from state-stratified fMRI data, by measuring k-hubness for each node at the 
individual level. (b) k-hubness is defined as the number of overlapping networks in each 
node. (c) Null data generation by randomizing the assignment of pupillometry to fMRI 
across the 27 subjects. (d) The distribution of Pearson’s correlation coefficients measured 
between individual pupillometry time-courses.  
 

2.5.Hub analysis.  

      An overview of our analysis pipeline is shown in Fig. 1. We use the pupillometry 

data, ranked by pupil area, to estimate arousal at each time-point. We stratify high and 
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low arousal states by selecting time-points from the top 20% (large) and bottom 20% 

(small) pupil areas, resulting in 160 frames of fMRI data for each state. Using data from 

either the high or low arousal state, we estimated resting state networks and nodal k-

hubness using SPARK (Lee et al., 2019; Lee et al., 2016). SPARK represents the BOLD 

signals from each node as a sparse, weighted linear combination of atoms, where each 

atom is a temporal feature of each network(Lee et al., 2011). When there are subject-

specific N networks in the whole brain, a node involves a node-specific combination of k 

(less than N, therefore, sparse) networks, identifying temporally and spatially overlapping 

networks. k-hubness is a measure of between-network integration and can serve to 

identify connector hubs, which are obtained by counting the number of functional 

networks that overlap at each node.  

      In this work, SPARK was applied for an individual fMRI data (a time by node 

matrix) as follows (Fig. S1 for a summary diagram). First, a circular block bootstrap with 

a block length h was performed to generate 300 surrogate datasets with equal 

dimensions(Bellec et al., 2010). Using a proper choice of h (e.g. equal to or larger than 

the square root of the number of time-points) to preserve temporal structures in the 

BOLD signal, we assume that resampled data are from the same probabilistic 

distribution(Bellec et al., 2010). SPARK aims to detect highly consistent hubs across a 

large number of bootstraps. For each resampled dataset, a sparse dictionary learning 

algorithm (Aharon et al., 2006; Lee et al., 2018; Lee et al., 2016) was applied to learn a 

dictionary involving N time-course atoms (temporal features) and a corresponding sparse 

coefficient matrix (spatial maps). The algorithm involves an automatic parameter 

estimation strategy using the minimum description length criteria(Lee et al., 2018). The 

total number of networks (N) was estimated independently for each resampled dataset by 

varying N from 1 to the number of principal components that explained 99% of the 

variance in each resampled dataset. The level of sparsity (k) was determined by varying k 

from 1 to N/2 for each N. The reproducibility of parameters (N and k) of the sparse model 

were assessed across bootstraps. 

      After the 300 parallel processes, we collected 300 sparse coefficient matrices and 

applied K-means spatial clustering. The number of clusters was the median of estimated 
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N across 300 resampled datasets. The spatial maps were averaged within each cluster, 

and thresholded at 95% confidence interval by approximating the Gaussian distribution 

of background noise in the average matrix. This provided the final sparse matrix, in 

which each row represented a spatial map of individually reliable resting state networks. 

Counting the non-zeros for each column of this matrix provided an estimation of k-

hubness for each node. This clustering procedure was repeated 100 times to take into 

account random initializations in K-mean clustering. Finally, nodal k-hubness was 

determined by the mean of k-hubness values estimated over 100 clustering results. The 

density of k-hubness was calculated as the % proportion of nodes with non-zero k-

hubness to the total number of nodes estimated from data obtained in each arousal.  

      For comparison purposes, we generate null data by randomizing the assignment of 

pupillometry to fMRI across the 27 subjects (Fig. 1c). This results in 702 false fMRI-

pupillometry pairs, from which we stratify random high/low arousal assignments. 

Pupillometry time-courses are unique to the individual (Fig. 1d). The distribution of pupil 

time-course correlations is not skewed (skewness= -.04) and not normal (Lilliefors’ test, 

p<.003). See Fig. S2 for the individual pupillometry time-courses. We compare our 

results to those from null data, in order to test the null hypothesis that there is no 

association between resting state functional connectivity and spontaneous arousal 

fluctuations defined using pupillometry. 

 

2.6.Hub disruption index.  

      To assess the brain-wide connector hub reorganization with arousal, we defined the 

hub disruption index (HDIk) using k-hubness from resting state fMRI at high and low 

arousal states(Lee et al., 2018). The HDI was first proposed for studying hubs defined 

using degree centrality in graph theory(Achard et al., 2012) and introduced for k-hubness 

to study the reorganization of connector hubs in patients with epilepsy(Lee et al., 2018). 

The HDIk is a summary measure to quantify overall hub reorganization across the whole 

brain between control (e.g., high arousal) and experimental (e.g., low arousal) brain 

states(Achard et al., 2012). We measured the HDIk at both the group and single subject 

levels. At the group level, HDI<k> is the slope of the linear regression model fit to group 
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average k-hubness across subjects at high arousal (x-axis, <k>High) and the difference in 

group average k-hubness between low and high arousal (y-axis, <k>Low - <k>High) (Fig. 

2a). A negative slope means that some of the hubs identified at high arousal lose their 

hub status at low arousal (i.e., nodes exhibiting a high <k>High relative to <k>Low have a 

negative value of <k>Low - <k>High). HDI<k> becomes zero when there is no difference in 

k-hubness between the two states. The same approach is used to define HDIk at the 

individual level, by using the individual subject’s nodal k-hubness (k) in a single subject 

(x-axis, kHigh; y-axis, kLow - kHigh). 

 

2.7.Hub connectivity probability.  

      To investigate whether and how state-dependent changes in connector hubs relate to 

the actual patterns of network integration within these hubs, we computed the conditional 

probability (𝒑!) of each node i to be a member of functional networks overlapping in a 

hub j. To do this, for each arousal state, we first collected all resting state network maps 

estimated from all individual subjects. Using this collection, 𝒑! was computed by the 

proportion of the number of functional networks involving both a node i and the hub j 

over all subjects to the total number of networks that involved the node j over all 

subjects, such that 𝒑! =1 if i = j.  

𝒑! = 𝑃(𝑖|𝑗) =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠	𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔	𝑏𝑜𝑡ℎ	𝑛𝑜𝑑𝑒𝑠	𝑖	𝑎𝑛𝑑	𝑗

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠	𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔	𝑎	𝑛𝑜𝑑𝑒	𝑗	  

This provided a probability map of functional connectivity associated with a hub j. A 

high probability 𝒑! indicates that a node i is more likely to be a part of functional 

connectivity associated with a specific hub j across subjects, or the extent to which a 

connector hub contributes to inter-subject consistency of functional connectivity 

integration across the brain. Next, we calculated for each node i the total functional 

connectivity across the whole brain as the total probability 𝑷!: 

𝑷! =>𝑃(𝑖|𝑗)𝑃(𝑗)
"

!#$

 

where 𝑃(𝑗) = 1 (𝑉 − 1)⁄  and V is the total number of nodes in the brain. The total 

probability 𝑷! indicates the amount of nodal functional connectivity associated with 
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distributed hubs over the whole brain. Note that the total number of networks involving a 

hub is state dependent; therefore, it is possible to normalize within state. Then, a 

transition vector was identified for each node within the scatter plot of the group average 

k-hubness (<k>, x-axis) and the total probability (𝑷!, y-axis), as a vector that links a node 

at high arousal state (<k>high, 𝑷! (high)) to the same node at low arousal state (<k>low, 

𝑷! (low)). To visualize the magnitude and direction of transition vectors for all nodes, the 

transition vectors were re-centered to have a link from (0,0) to (<k>low- <k>high, 𝑷! (low)-

	𝑷! (high)). 

 

3. Results 

      We present the results from our connector hub analyses across arousal levels as 

follows. First, we assessed whether the global scale of functional connectivity is 

preserved across high and low arousal states (Section 3.1). We then estimated hub 

disruptions in the whole brain at both the group and single subject levels (Section 3.2). 

Next, we investigated the impact of arousal on connector hubs in large-scale networks 

(Section 3.3) and inter-subject variability of the connector hub organizations (Section 

3.4). Then, we studied whether and how such connector hub disruptions relate to the 

actual patterns of functional network integration within these hubs (Section 3.5). Lastly, 

the reliability and robustness of our hub estimations are addressed in Section 3.6. 

3.1.Preserved global network scale between high and low arousal states 

      We first assessed whether the total number of functional networks in the whole brain 

is preserved across high and low arousal states. To avoid any potential confounds 

introduced by the state stratification strategy in our parameter estimations (e.g., the 

number and duration of continuous state segments), we did not directly compare the 

distributions of N between high and low arousal states. Instead, we compared the 

between-state differences in N to the difference observed from null data (Wilcoxon rank 

sum test, p>.5). In-line with previous work(Achard et al., 2012; Vatansever et al., 2020), 

we found that the total number of networks (N) detected by SPARK from individuals was 

preserved between states (Fig. 2a). Estimated N was 30 ± 16.3 (median ± interquartile 
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range) at high arousal and 25 ± 8 at low arousal. The goal is to investigate whether the 

patterns of connector hubs actually change with arousal modulations, while the global 

network scale is preserved during resting state.  

 

Figure 2. Distributed connector hubs are re-organized with arousal modulations 
during resting state. (a) The total number of resting state networks (N) detected by 
SPARK from individuals were preserved between high and low arousal states. (b-c) The 
group average k-hubness maps at high (b) and low (c) arousal. (d) The map of difference 
in the group average k-hubness between the low and high arousal states. (e) The 
estimation of group-level HDI<k> between high and low arousal. A linear regression 
model is used to find a linear fit of nodal group-average k-hubness (<k>) estimated from 
the two states. HDI<k> is defined as a slope of the linear fit. (f). The estimation of group-
level HDI<k> between two randomized states, by averaging k-hubness across 702 false 
brain-pupil pairs in each node. (g) An example of individual-level HDIk from a single 
subject exhibiting the median of HDIk within group. Note that nodal k-hubness is an 
integer, therefore nodes with a same value are superimposed in this scatter plot. (h) The 
distribution of individual-level HDIk (top) and those from null data (bottom). p-value 
estimated using the left-tailed Wilcoxon rank sum test is shown. (i) The bar plot of k-
hubness distributions within the eleven pre-defined large-scale networks in each state. 
Mean ± standard deviation. (j) Data points in figures e-f and j are color-coded using 
eleven a priori functional networks. Ten networks were defined as described in Noble et 
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al.(Noble et al., 2017), and the nodes belonging to the brainstem were assigned to an 11th 
network. 

 

3.2.Brain-wide disruptions of connector hubs from high to low arousal states  

      We observed differences between the group average k-hubness maps estimated from 

resting state fMRI at high and low arousal states. At high arousal, connector hubs are 

widely distributed across the unimodal and transmodal cortices, subcortical structures, 

cerebellum and brainstem (Fig.2b). At low arousal, we observe an overall decrease in k-

hubness across the brain, relative to the high arousal state, with the exception of some 

nodes in the visual networks (Fig. 2c-d, Fig. 2i, two-sided Wilcoxon rank sum test, 

Bonferroni corrected p<.05). 

      To quantify the overall degree of hub disruptions in the whole brain, we defined the 

hub disruption index (HDIk) using k-hubness (Lee et al., 2018). We found the group-level 

HDI<k> to be -0.66, indicating a brain-wide disruption of connector hubs with arousal at 

resting state (Fig. 2e). From the null data, the estimated HDI<k> was 0.08, indicating no 

hub disruption between randomly stratified states (Fig. 2f). We next assessed if our 

group-level finding was replicated in individual subjects. To do this, using the same 

approach, we define HDIk using the individual subject’s nodal k-hubness (k) to quantify 

the overall connector hub reorganization at the individual level (x-axis, kHigh; y-axis, kLow 

- kHigh) (Fig. 2g). In Fig. 2h, the distribution of individual level HDIk estimated from 27 

subjects (HDIk= -1.03 ± 0.08) is shown compared to that from 702 randomized 

pupillometry samples (HDIk = -0.99 ± 0.12). Consistent with the group results, we 

observed a negative relationship indicating that connector hubs reorganize from high to 

low arousal at the individual subject level, when compared to the results from null data 

(left-tailed Wilcoxon rank sum test, p<.003) (see Fig. S3 for the individual level results 

from all subjects). The group- and individual-level HDI analyses for k-hubness 

demonstrate arousal-level-dependent changes in between-network integration in resting 

state functional connectivity. 
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      Motion can be a difficult confound in fMRI analyses(Power et al., 2015; Satterthwaite 

et al., 2012). We assessed if individual-level hub disruption was correlated with subject 

motion in fMRI data and if so, would it account for these findings. We show that inter-

subject variability of the estimated HDIk is not correlated with head motion (Wilcoxon 

rank sum test, p>.8) (Fig. S4). We also tested if individual-level hub disruption was 

correlated with the proportion of missing data-points in the pupillometry data. The 

proportion of missing data-points may affect identification of the arousal state. Potential 

causes of missing data included technical errors such as a connection issue with the eye-

tracking system and inability to quantify pupil size due to blinks and saccades. Across the 

27 subjects, we found 6.02 ± 9.48 % discarded time-points for rest 1 and 4.33 ± 8.33 % 

for rest 2 (Table S1). Inter-subject variability of the estimated HDIk was not correlated 

with missing data (Wilcoxon rank sum test, p>.2) (Fig. S5). 

 

Figure 3. Decreased network integration at low relative to high arousal. (a) Around 
the circle, we show the distributions of between-state changes in group-average k-
hubness (∆<k>, low-high) within each of the pre-defined large-scale networks (color-
coded). The null distribution of ∆<k> was generated from the same nodes in each 
network over 5,000 permutations (shown in grey). Asterisks indicate Bonferroni 
corrected p-values from the two-tailed Wilcoxon rank sum tests. At the center of the 
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circle, we show a node-wise two-sample test result (one-tailed bootstrap test, FDR 
corrected p<.05) with 5,000 bootstraps(Efron and Tibshirani, 1994). (b) A summary of 
network-level ∆<k> distributions that are shown in (a), using the mean of ∆<k> within 
each network. p<.004 using the two-tailed Wilcoxon rank sum test. PreM: Premotor 
cortex. vACC: ventral anterior cingulate cortex. PA: primary auditory cortex. dlPFC: 
dorsolateral prefrontal cortex. Hipp: hippocampus. BS/CBL: brainstem/cerebellum. 

 

3.3.Brain-wide decreases in network integration at low relative to high arousal 

      We next investigated the impact of arousal on large-scale networks. In Fig. 3a, we 

show the distribution of arousal-level-dependent changes in group-average k-hubness 

(∆<k>, low - high) within each large-scale network(Noble et al., 2017). For each 

network, we compare the ∆<k> distribution from the nodes belonging to this network 

estimated across our 27 subjects (color-coded), to the null ∆<k> distribution from the 

same nodes estimated from randomized data over 5,000 permutations (in gray color). To 

do this, the null ∆<k> distribution was obtained by averaging nodal k-hubness across the 

same 27 subjects with a randomized set of brain-pupillometry pairs. As a result, we found 

decreases in group-average k-hubness with decreased arousal in the frontoparietal, motor, 

limbic and cerebellum networks (two-tailed Wilcoxon rank sum test, Bonferroni 

corrected p<.001) and the default mode network (p<.01).  

      In addition, node-wise statistical tests on individual connector hubs confirmed our 

observation of a brain-wide decrease in between-network integration, and highlighted 

nodes that exhibited consistent changes across subjects (Fig. 3a, at the center of circle 

plot). We used the left-tailed bootstrap-based two-sample tests proposed in Efron et 

al.(Efron and Tibshirani, 1994), because individual-level k-hubness is a discrete integer 

within a small range (e.g. [0, 5]) and the symmetry of distributions are not assumed. We 

found decreases in k-hubness at low arousal in the premotor/supplementary motor, 

ventral anterior cingulate, primary auditory and dorsolateral prefrontal cortices, 

hippocampus, cerebellum, and in the node that spans from the cerebellum to the locus 

coeruleus in the brainstem (Z= -24 in the MNI coordinates)(Keren et al., 2009) (FDR 

corrected p<.05, see Table S2). In Fig. 3b, we summarize our findings using the mean of 
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∆<k> within each network, highlighting arousal-dependent decreases in group-average k-

hubness in the five large-scale networks. 

 

 

Figure 4. Inter-subject variability in functional network integration decreases from 
high to low arousal. (A) The map of between-state difference in the standard deviation 
of k-hubness (𝜎%) across subjects; between low and high arousal resting states. (B) The 
bar plot of 𝜎% distributions within the eleven pre-defined large-scale networks in high and 
low arousal states. Mean ± standard deviation. (C) The distribution of between-state 
differences in inter-subject variance of k-hubness (∆𝜎% , low – high), estimated across 27 
subjects. The null distribution of ∆𝜎% was generated over 5,000 permutations. (D) A 
summary of network-level ∆𝜎% 	distributions using the mean of ∆𝜎% 	within each network 
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(left) compared to the null distribution of ∆𝜎% (right). (E) Brain-wide changes in 𝜎% 
between high and low arousal. The hub disruption index (HDI) for nodal 𝜎% reveals a 
brain-wide decrease in inter-subject variability. (F) Whereas there is no difference 
observed for null data. Asterisk indicates statistical significance from Wilcoxon rank sum 
tests with Bonferroni corrected p-values, *: p<.05, **: p<.01, ***: p<.001. 

 

3.4.Inter-subject variance in network integration decreases from high to low 

arousal 

      Next, we quantified the change in inter-subject variance of nodal k-hubness between 

arousal states. Figure 4a illustrates the map of between-state differences in the standard 

deviation of k-hubness (𝜎%). At low relative to high arousal, we found a brain-wide 

decrease in inter-subject variance of k-hubness across the brain in regions belonging to 

the medial frontal, frontoparietal, default mode, motor, limbic, cerebellum and brainstem 

networks (Fig. 4b, two-sided Wilcoxon rank sum test, Bonferroni corrected p<.05). To 

test if such decreases were above chance, we computed the between-state difference in 

standard deviation of k-hubness (∆𝜎%, low – high) across 27 subjects. The null ∆𝜎%  

distribution was obtained by averaging nodal k-hubness across the same 27 subjects with 

a randomized set of brain-pupillometry pairs. Figure 4c shows that the distribution of ∆𝜎% 

from the 268 nodes in the whole brain is lower than the null  ∆𝜎% distribution (two-sided 

Wilcoxon rank sum test, p<4e-23). In each pre-defined large-scale network, we compared 

the ∆𝜎% distribution from the nodes belonging to each network estimated from 27 

subjects to the null ∆𝜎% distribution (in gray color). In Fig. 4d, we summarize our 

findings using the mean of ∆𝜎% within each network. We found decreases in inter-subject 

variance of k-hubness with arousal, again, in the frontoparietal (two-sided Wilcoxon rank 

sum test, Bonferroni corrected p <.05), default mode (p<.01), motor, limbic and 

cerebellum networks (p<.001). We did not find state-differences in inter-subject 

variability at the node level (Levene’s test for equality of variance, 5,000 permutations, 

FDR corrected p<.05).  

      To quantify brain-wide changes in inter-subject variability between low and high 

arousal, we defined a HDI for 𝜎%, using the method to estimate the HDI for k-hubness. 
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We found a negative slope (-0.67), indicating a brain-wide decrease in inter-subject 

variability at low relative to high arousal (Fig. 4e). For null data, the slope was 0.02, 

which is close to zero, indicating no difference in state-dependent HDI for k-hubness 

(Fig. 4f). Note that the range of 𝜎% for real and null data in Fig. 4e/4f (e.g., less than 2), 

indicating that there is no sample size bias. Taken together, our results demonstrate an 

overall decrease in inter-subject variability of k-hubness comparing the low relative to 

high arousal state. 

 

Figure 5. Resting state networks at low arousal have reduced network overlaps 
while exhibiting brain-wide connectivity. (a) A summary diagram to calculate hub 
connectivity probability (𝒑!) and total connectivity probability (𝑷!). For an arousal state, 
resting state networks involving a hub j are collected from all subjects. 𝒑!: the conditional 
probability of each node i to be a member of functional networks overlapping in a hub j. 
(b) The total number of hub-related networks for each node is lower at low relative to 
high arousal. (c) Probability maps of functional connectivity integrated in a specific hub 
(two exemplary nodes in the right vACC and the left dlPFC) across subjects, at high (red) 
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and low (blue) arousal. (d) Total connectivity probability (𝑷!) is higher at low relative to 
high arousal across the whole brain, indicating an increased global synchronization. (e) 
Scatter plot of hub measures from 268 nodes at high (orange) and low (blue) arousal data. 
x-axis denotes the group average k-hubness (<k>). y-axis denotes the total probability 𝑷! 
of hub functional connectivity (FC) calculated for each node i. Left (L)/Right (R) in bold. 
An exemplary transition vector that links a node at high arousal state (<k>high, 𝑷! (high)) to 
the same node at low arousal state (<k>low, 𝑷! (low)) is shown. (f) Re-centered transition 
vectors for all nodes, from (0,0) to (<k>low- <k>high, 𝑷! (low)-	𝑷! (high)), show a trend 
pointing toward the quadrant II, indicating a decrease in k-hubness and an increase in 𝑷! 
from high to low arousal. Transition vectors for nodes in each large-scale network (color-
coded as in Fig. 2-4) are shown below. Nodes exhibiting large group-average changes in 
<k> also exhibit large changes in inter-subject variability (g) and total connectivity 
probability (h) (rs: Spearman’s rank correlation, p=0). 

 

3.5.Resting state networks at low arousal have reduced network overlaps and 

increased global connectivity. 

      It is important to investigate how such connector hub disruptions relate to the actual 

patterns of functional network integration within these hubs. For each arousal state, we 

generated a probability map of functional connectivity involving each hub, by computing 

the conditional probability (𝒑!) of each node i to be a member of any functional network 

overlapping in a hub j (Fig. 5a). This conditional probability was computed from the 

pooled collection of all networks estimated from all individual subjects. The total number 

of hub-related (pooled) overlapping networks was 32 ± 11 (median ± interquartile range 

across the 268 nodes) at high arousal and 24 ± 11 at low arousal (Fig. 5b; two-sided 

Wilcoxon rank sum test, p<2e-26). This indicates that there are fewer network overlaps 

resulting in lower between-network integration at low arousal. In addition, the spatial 

distribution of 𝒑! varied across hubs. For example (Fig. 5c), for a connector hub in the 

right ventral anterior cingulate cortex, the spatial distribution of functional connectivity 

integrated with this hub was broader in the low arousal, suggesting lower inter-subject 

variance at low relative to high arousal. On the other hand, the probability map for a 

connector hub in the left dorsolateral prefrontal cortex shows a similar spatial distribution 

of hub-associated functional connectivity at both high and low arousal, including regions 

of the frontoparietal and default mode networks, suggesting stable inter-subject 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.12.452041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452041
http://creativecommons.org/licenses/by-nd/4.0/


 

 

20 

 

variability across arousal levels. Next, we quantified the total amount of functional 

connectivity of each node i over the whole-brain as the total probability 𝑷! (Fig. 5d). The 

median of 𝑷! distribution was higher at low arousal relative to high arousal (two-sided 

Wilcoxon rank sum test, p<2e-26), suggesting an increase in global connectivity. A 

scatter plot of the total probability (𝑷!) and the group average k-hubness (<k>) estimated 

for 268 nodes shows a clear pattern of connector hub disruption: a decrease in k-hubness 

and an increase in 𝑷! from high to low arousal (Fig. 5e). In addition, as expected, we 

found that nodes exhibiting large group-average changes in <k> also exhibit large 

changes in inter-subject variability (g) and total connectivity probability (h) (rs: 

Spearman’s rank correlation, p=0). 

3.6.Reliability and robustness 

      The reliability of hub estimations at the single subject level is assessed using 

SPARK(Lee et al., 2016), to extract the most reproducible patterns of overlapping 

functional networks. Within this procedure, we select highly reproducible components at 

95% confidence interval (CI) by approximating the Gaussian distribution of background 

noise in network maps estimated from an average across 300 bootstraps. In this study, the 

density of k-hubness estimated from data obtained in the high arousal state, for instance, 

decreases with threshold: 0.84 ± 0.38 (median ± interquartile range) at 90% CI, 0.58 ± 

0.41 at 95% CI, and 0.35 ± 0.29 at 99% CI (Fig. S6). This means only 35% of nodes are 

reliably involved in at least one network, when using the most conservative threshold. To 

validate whether our findings are robust to the choice of CI, we repeated our analyses 

using 90% and 99% CI. As expected, between-state changes in global network scale (∆𝑁, 

low-high) were preserved across arousal states. Furthermore, we observed decreases in 

the group-average k-hubness (∆<k>) and their inter-subject variability (∆𝜎%) at low 

relative to high arousal across all CI thresholds, with such changes being most robust in 

the motor and cerebellum networks (Fig. S6). 

 

4. Discussion  

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.12.452041doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.12.452041
http://creativecommons.org/licenses/by-nd/4.0/


 

 

21 

 

      Using simultaneous fMRI and pupillometry, we demonstrated brain-wide changes in 

network integration associated with fluctuations in arousal during the resting-state. We 

found decreases in between-network integration from high to low arousal by analyzing k-

hubness at both the group- and individual-subject level. K-hubness differences emerged 

in regions including the frontoparietal, default mode, motor, limbic, and cerebellum 

networks. These findings establish a relationship between modulations in arousal during 

resting wakefulness and the dynamics of functional brain organization, including changes 

in connector hubs or between-network integration. The inter-subject variability of 

connector hubs decreases at low relative to high arousal, whereas the impact of arousal 

modulation on connector hub-related functional network integration differed between 

brain regions. State-dependent changes in connector hubs relate to the actual patterns of 

network integration within these hubs. While the global network scale, the total number 

of networks in the brain, was preserved between the high and low arousal states, the 

number of hub-related networks decreased, and the nodal total connectivity probability 

increased at low relative to high arousal state. These findings together suggest a brain 

state transition from high to low arousal characterized by global synchronization or 

reduced functional network specializations. Control analyses indicated that motion and 

eye-closure related effects are not driving results. Our results demonstrate that k-hubness 

is sensitive to arousal levels within resting state and that arousal is not localized to 

specific brain areas known to be directly associated with arousal regulation, but instead 

it’s associated with brain-wide changes involving high-level between-network 

communications.  

      These findings demonstrate the utility of simultaneous pupillometry as a proxy for 

measuring variations in arousal during resting-state fMRI. In the absence of task-related 

cognitive demands, pupil changes are mainly driven by non-specific factors such as 

arousal(Joshi and Gold, 2020; Liu and Falahpour, 2020). We observed brain-wide 

connector hub disruptions between low and high arousal, by measuring the hub 

disruption index of group-average k-hubness (HDI<k>) (Fig. 2). This finding indicates the 

flexibility of functional networks over time even during rest(Barttfeld et al., 2015; Shine 

et al., 2016; Yeo et al., 2015). The negative HDI<k> at the group level was replicated 
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using HDIk values estimated from individual subjects. These results are in agreement 

with previous work using HDI for degree centrality in graph theory, reporting hub 

disruptions in patients with coma(Achard et al., 2012), and in healthy subjects with 

propofol-induced sedation(Vatansever et al., 2020). In this work, we were able to address 

a more subtle question as to whether modulations in arousal during the resting state are 

associated with changes in the functional organization of the brain. On the other hand, we 

found that the HDIk estimated from the randomized state datasets was higher at the 

individual level than that estimated at the group level, potentially reflecting the presence 

of other factors (e.g., ongoing thought, emotion) that could account for a portion of the 

inter-subject variation. Future work should aim to identify such factors to understand the 

relationship between these factors and hub configuration in the resting state. 

      We found decreases in k-hubness at low relative to high arousal in regions of the 

frontoparietal, default mode, motor, limbic and cerebellar networks (Fig. 3). These 

regions have been implicated in previous work that assessed co-fluctuations of resting 

state BOLD activity and simultaneous pupillometry(Breeden et al., 2017; DiNuzzo et al., 

2019; Schneider et al., 2016; Yellin et al., 2015). Schneider et al. found a positive 

coupling of pupil dilation with BOLD activity in the salience and default mode networks, 

frontal and parietal areas, and a negative relationship between spontaneous pupil 

constrictions and BOLD activity in the visual and sensorimotor areas(Schneider et al., 

2016). Modulations of the default mode network have been observed during sleep 

deprivation(De Havas et al., 2012; Gujar et al., 2010; Yeo et al., 2015) and light 

sleep(Boly et al., 2012; Larson-Prior et al., 2011; Spoormaker et al., 2010; Sämann et al., 

2011). We found a between-state change in k-hubness in the node that spans from the 

cerebellum to the locus coeruleus in the brainstem (Z= -24 in the MNI 

coordinates)(Keren et al., 2009), a core region of the ascending arousal system(Lee and 

Dan, 2012), in agreement with Murphy et al. who found that pupil diameter covaries with 

BOLD activity in the locus coeruleus(Murphy et al., 2014). Here, we extend these 

previous studies by demonstrating that modulations of arousal are not limited to specific 

brain areas directly associated with the brain’s ascending arousal system, but instead 

involve brain-wide communication networks. 
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      That we found arousal-level-dependent decreases in between-network integration in 

regions of the frontoparietal cortex, suggests a role of arousal modulations in baseline 

activity related to cognition. Decreases in functional connectivity in the frontoparietal 

network were found during propofol-induced loss of consciousness and sleep(Boly et al., 

2012; Boveroux et al., 2010; Schrouff et al., 2011; Schröter et al., 2012). Shine et 

al.(Shine et al., 2016) proposed that resting state functional connectivity alternates 

between integrated and segregated network topologies, and demonstrated a positive 

relationship between pupil diameter and network integration within these regions. Those 

findings in large part harmonize with our work, but there are several key differences. 

Notably, they identified integrated or segregated “topological” states from data, while we 

identified high or low “behavioral” arousal states. Our approach did not take into account 

intermediate levels of arousal and potential transient variations in hubs, but instead 

focused on detecting the most reproducible and individually consistent hub features 

characterizing each arousal state. Together, these findings lend support to the theory that 

state-dependent changes in brain functional connectivity may be driven by ongoing 

alterations in ascending neuromodulatory input and global fluctuations in neural 

gain(Eldar et al., 2013; Shine et al., 2016).  

      We found decreases in inter-subject variability of k-hubness at low relative to high 

arousal (Fig. 4). The global network scale, the total number of networks estimated in the 

whole brain, was preserved between the high and low arousal states (Fig. 2a). The 

number of networks involving hubs was reduced in the low relative to high arousal state 

(Fig. 5b). The total functional connectivity increased over the whole brain at low arousal, 

despite the reduced number of hub-related networks, suggesting a brain state transition 

from high to low arousal characterized by global synchronization or reduced functional 

network specializations. In addition, the impact of arousal modulation on connector hubs 

differed between brain regions (Fig. 5). This suggests that accounting for arousal-

dependent changes may help understand individual variability in functional connectivity 

and its association with behavior. Functional connectivity has been shown to be valuable 

in identifying individuals using patterns of brain functional connectivity (i.e., 

fingerprinting)(Finn et al., 2015), and in predictive models relating functional 
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organization to behavior both under rest-(Finn et al., 2015; Shen et al., 2017) and task- 

conditions(Finn et al., 2017; Greene et al., 2018; Rosenberg et al., 2015; Rosenberg et al., 

2016). Task conditions offer a controlled manipulation of brain state, in contrast to the 

unconstrained nature of resting state; therefore, it is likely that individual differences in 

task-relevant circuitry can be amplified to help predict related traits(Greene et al., 2018; 

Lowe et al., 2000).  Functional connectivity estimated from higher arousal resting state 

may play a different role in predicting traits, particularly for some phenotypes associated 

with high-level functions. It has already been demonstrated that state manipulations can 

influence trait predictions(Finn et al., 2017) for example. Given this evidence of the 

cognitive relevance of resting state functional connectivity(Barttfeld et al., 2015; 

Gonzalez-Castillo et al., 2019) in developing predictive models of behavior, future work 

should incorporate the role of arousal. 

      It should be noted that data were processed identically in both the high and low 

arousal states and in the null data set. Therefore, our observations cannot be attributed to 

some methodological artifacts, such as dwell time difference. The fMRI in the high and 

low arousal states, was balanced in terms of the amount of data included. We did not take 

into account the potential impact of other potential confounds, such as caffeine and 

alcohol consumption, anxiety levels and substance use, but since we showed within-

subject changes in arousal in the same imaging session these are likely balanced within a 

run. Further work is needed to understand fluctuations in arousal over longer periods of 

time (e.g., days, months) and to relate these measurements to other quantifiable 

modalities (e.g., salivary cortisol measurement(Page et al., 2009)). It also may be 

interesting to explore if any specific arousal levels (and their associated hub disruptions 

at specific arousal levels help improve the performance of connectome-based 

fingerprinting and predictive modeling of individual traits or task performances. To 

compare arousal level-dependent brain network organizations between resting state and 

naturalistic paradigms may help to understand why naturalistic paradigms provides a 

better outcome in predicting behavior in some studies(Finn and Bandettini, 2021).   
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      In conclusion, using the simultaneous measurements of resting state fMRI and 

pupillometry, we show evidence of a brain-wide decrease in between-network integration 

and a decrease in inter-subject variability of connector hubs at low relative to high 

arousal. Our results demonstrate that the estimation of k-hubness using SPARK, which 

reflects the number of overlapping networks for each node, is sensitive to the level of 

arousal within the resting state. By studying connector hubs of hierarchical brain network 

organizations, we suggest that modulations of arousal are not localized to specific brain 

areas, but rather have a more extensive, brain-wide impact that involves high-level 

communication between networks. Delineating arousal effects on functional connectivity 

reconfigurations may help advance future studies on the brain-behavior associations and 

neurological and psychiatric disorders where arousal may play a role in clinical 

phenotypes. 
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