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Abstract 

While technological advances improved the identification of structural variants (SVs) in the human 

genome, their interpretation remains challenging. Several methods utilize individual mechanistic 

principles like the deletion of coding sequence or 3D genome architecture disruptions. However, a 

comprehensive tool using the broad spectrum of available annotations is missing. Here, we describe 

CADD-SV, a method to retrieve and integrate a wide set of annotations to predict the effects of SVs. 

Previously, supervised learning approaches were limited due to a small number and biased set of 

annotated pathogenic or benign SVs. We overcome this problem by using a surrogate training-objective, 

the Combined Annotation Dependent Depletion (CADD) of functional variants. We use human and 

chimpanzee derived SVs as proxy-neutral and contrast them with matched simulated variants as proxy-

pathogenic, an approach that has proven powerful for SNVs. 

Our tool computes summary statistics over diverse variant annotations and uses random forest models 

to prioritize deleterious structural variants. The resulting CADD-SV scores correlate with known 

pathogenic and rare population variants. We further show that we can prioritize somatic cancer variants 

as well as non-coding variants known to affect gene expression. We provide a website and offline-

scoring tool for easy application of CADD-SV (https://cadd-sv.bihealth.org/). 
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Introduction 

In the light of recent advances in the field of structural variant (SV) detection and the study of regulatory 

domain architectures, phenotypic effects of SVs in humans moved into the focus of research [1–4]. SVs 

can be deletions, duplications, insertions, translocations or inversions and often span multiple kilobases 

of sequence in the genome. Due to their size, they have the potential to cause significant phenotypical 

effects and are therefore relevant for clinical genetics [1,3,5,6]. While SVs affecting the expression of 

whole genes or exons are still the research focus, effects of non-coding DNA sequence alterations are of 

high interest. These variants are especially hard to predict, as our understanding of such regions lags 

behind coding annotations [7]. In comparison to pathogenic variants (e.g. frame shift mutations or 

disruption of transcription factor binding) caused by single nucleotide variants (SNVs), structural variants 

have a higher potential to affect the regulatory architecture of the genome. Thus, the functional 

characterization of SVs may help us to understand unexplained disease phenotypes and contribute to 

our understanding of regulatory mechanisms. 

Recent advances in the study of regulatory genome architectures provided evidence along these lines 

and already shed light on previously unexplained human disease conditions [8,9] . The most relevant 

examples are improved Hi-C protocols to study genome architecture [10], the experimental annotation 

of enhancers and enhancer-promoter links [11], mapping of multiple epigenetic features across many 

cell-types [12], but also methods to test the regulatory potential of sequences in high-throughput [13–

16]. All these advances provide a basic understanding of topological domain structures, regulatory 

elements and other fundamental mechanistic insights like enhancer hijacking [17,18]. However, wider 

understanding of how SVs link to phenotypic alterations and therefore human diseases remains poor. 

SV identification and annotation lags behind SNV and InDel annotation as SVs often exceed the size of 

common read-lengths, are difficult to align, fall within repetitive regions or can be of complex structure 

[19]. In addition, various factors may contribute to pathogenicity or molecular effect in these regions as 

structural rearrangements can affect primary gene structure, chromatin architecture, DNA accessibility 

and tissue-specificity of regulatory elements and genes. Further, the putatively different mechanisms of 

phenotypic effects of deletions compared to insertions or duplications complicates a generalized 

approach for variant effect prediction as the effect can be mediated by copy number alterations of 

redundant or unique genomic sequence, positional effects or rendering functional DNA dysfunctional. 

Capturing all possible disease relevant mechanisms mediated by structural variants remains challenging. 

While various tools are available for ranking SNVs and small insertion/deletions (InDels), very few tools 

can score structural variants. Therefore, it remains very difficult to assess SV effects on phenotype and 

disease, with many different ad-hoc approaches being applied. Existing tools like SVScore [20] or TAD-

Fusion [21] focus on individual features such as the presence of deleterious SNVs (mostly in coding 

regions) which are overlapping the SV or focus specifically on boundary element reshuffling by a novel 

SV, respectively. AnnotSV [22] annotates the structural variant and categorizes pathogenicity depending 

on overlap with known pathogenic SVs. SVFX [23] provides a framework for training specific models, but 

does not allow the direct application to novel variants. At this stage, no tool combines ease of use with a 

comprehensive set of annotations, including the prioritization of disease effects from genome 

architecture alterations.  
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Further, SV data sets of sufficient size and curation that can be used to apply Machine Learning 

approaches for the identification of relevant annotations or for their integration are not easy to obtain. 

Clinically relevant SV sets [24], i.e. pathogenic and benign variants, are small in number, biased towards 

very large SVs and tend to overlap well studied disease genes. Here, we present a novel Machine 

Learning approach (CADD-SV) to score the effects of SVs by choosing an unbiased and sufficiently large 

training dataset derived from species differences. For training and application of our models, we 

implement fast SV annotation and data integration of diverse genomic features (incl. regulatory and 3D 

architecture). We validate model performance on independent datasets of germline and somatic SVs. 

Our tool enables an easy application to novel SVs and its normalized features values give insights into 

potential underlying phenotypic effects. 

Materials & Methods 

Training dataset 

We use evolutionarily fixed chimpanzee and human derived SVs from Kronenberg et al. [25]. We refer to 

the human and chimpanzee deletions and insertions from this set as proxy-neutral or proxy-benign. A 

set of randomly distributed SVs over the human autosomes was obtained by shuffling the ape SVs 

matched in length and number (within coordinates considered alignable by Kronenberg et al.). We refer 

to this set as proxy-pathogenic. To compare these SVs with those in ClinVar [24], we annotated them 

with the distance to the next start codon, pLI and haploinsufficiency scores (Supplemental Figure 1). We 

use sets of variants derived from human and chimpanzee to score different SV types. For novel human 

deletions, we chose the chimp deletions to model the span and human deletions to model the SV flank. 

Respective annotations are present along the range of chimpanzee deletions in the human genome 

build, while they are absent for derived human deletions. Similarly, to score insertions, we use the 

derived human insertions to model the flank and the chimpanzee insertions to model the site of an 

insertion. Duplication sites are modeled by the chimpanzee deletion model for span and human 

insertion model for the flank, as the span of duplications contains known sequence most similar to the 

one found in annotated deletion sequences.  

Feature annotation and transformation 

We obtained a set of 127 continuous human derived features (see Supplemental Table 1) ranging from 

species conservation, distance to gene model hallmarks, over to genome architecture features such as 

the directionality index derived from Hi-C datasets. We use customized bash and R scripts to annotate 

the contrasting SV sets using bedtools [26]. All features are Z-score (mean 0, variance 1) transformed 

using 20,000 randomly selected SVs of the same-type from healthy individuals reported in the gnomAD-

SV release v2.0 [2]. All SVs are annotated over the span of the primarily affected sequence (span) as well 

as 100 bp up- and downstream of the site of the structural rearrangement (flank). From the different 

annotations, we create summary statistics and transformations as model features. These are 

summarized in Supplemental Table 1. The annotation framework automatically retrieves the features 

from primary annotation sets using the workflow management system Snakemake [27]. It tabulates 

results in a BED-like format that is used in the CADD-SV model. Missing values are imputed with zeros. 
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Models 

We trained logistic regression and random forest classification models contrasting proxy-benign and 

proxy-pathogenic training datasets. Models are trained in R (v3.5.1) for the SV spanning sequence for 

deletions and duplications and the site of integration for insertions (span), as well as 100bp up- and 

downstream of the reported breakpoints (flank, see Supplemental Figure 2). For logistic regression, we 

use the R generalized linear model implementation and for random forests the package “randomForest” 

[28]. For random forests, we limit the number and depth of the decision trees based on a 

hyperparameter search (Supplemental Figure 3; explored ranges for ntree = {25, 50, 75, 100, 200, 500, 

1000}, nodesize = {10, 50, 100, 250, 500, 1000}, maxnodes = {10, 50, 100, 250, 500, 1000}, while one 

parameter was optimized, the other parameters were set to 100). We randomly withheld 10% of the 

annotated SVs as hold-out and assessed model performance metrics using the R Package PRROC [29]. 

CADD-SV scoring and normalization 

Each novel SV is scored using the span and flank models of the respective SV type. To make models 

comparable, both span and flank scores are ranked according to the score distribution of the same type 

of SV identified in gnomAD-SV release v2.0 [2]. To capture pathogenicity mediated by the affected 

sequence as well as sequence context, the higher ranking (more pathogenic) score is reported as the 

final score of the event. As a result, the CADD-SV score equals the rank percentile of the novel SV in the 

distribution of 20,000 SVs of the same type identified in healthy individuals. Values range from zero to 

one, where a value of one signifies that no SV with a higher score was detected in the healthy cohort. 

Model validation 

Pathogenic and benign annotations for clinical SVs [24] were downloaded from ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar) on June 24th, 2021. Only variants with pathogenic or benign 

labels of at least 50 bp and annotated as deletion (pathogenic n = 3262, benign = 33), duplication 

(pathogenic n=82, benign n = 4) or insertion (pathogenic n = 78, benign n = 18) are considered. Further, 

to increase the number of pathogenic insertions, unique pathogenic insertions (n = 39) reported in 

Hancks et al.[30] and Gardner et al [31] were added. Area under the receiver-operator curve (AUROC) 

metrics are calculated using the PRROC R-package [29]. 

Germline SVs identified from healthy individuals over various populations [2] were downloaded from 

gnomAD-SV release v2.0 (https://gnomad.broadinstitute.org/downloads). Allele frequency values as 

well as common and ultra-rare SVs are determined across all available populations. Common variants 

are defined as minor allele frequency greater 0.05, ultra-rare variants are defined as singletons. To show 

the clinical benefit of prioritization of SVs using CADD-SV, we use 1000 Genome genotyped SVs [32] and 

add one (randomly selected) labelled pathogenic SV as found in ClinVar into the reported set of 

individual specific SVs. From the 1000 Genome events annotations, we consider Alu and Line1 SVs to be 

insertions. We report the rank of the pathogenic SVs within the occurring SV sets. 

Somatic SVs (n = 95,749) from cancer patients were obtained from the International Cancer Genome 

Consortium [33] at 

https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passonly.i

cgc.public.tgz. In addition, insertions reported in cancer genomes were taken from Qian et al. (n = 18) 

[34]. To assess the performance of CADD-SV beyond coding regions, we use non-coding SVs (n = 687) 

that are known to impact human gene expression in data from the GTEx consortium [1]. 
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SV scoring tools 

CADD-SV performance on various validation sets was compared to existing tools SVScore [20], AnnotSV 

[22] and, for deletions, the TAD-fusion-score [21] using standard parameters. As SVScore and TAD-

Fusion score were not designed for the current genome build GRCh38, UCSC liftover [35] was used to 

transfer SV coordinates and respective scores. 

Implementation 

Novel SVs can be scored with a pipeline implemented in Snakemake [27], using conda [36] for 

dependency management. The source code for the framework is available for download on GitHub 

(https://github.com/kircherlab/CADD-SV/). A webservice (https://cadd-sv.bihealth.org/) allows for 

online scoring of SVs in BED format as well as for obtaining results for different human genome builds 

(GRCh38; NCB16 & GRCh37 through automated coordinate liftover). In addition, pre-scored variants 

from cohorts such as gnomAD or ClinVar with all annotations can be queried online including all 

features. For better interpretability, feature outlier values are color-coded based on their Z-scores. 

Results 

Large and unbiased training data set 

Machine Learning methods strongly rely on the quality of training datasets to yield meaningful 

predictions. Using clinical databases such as CinVar or HGMD to curate an annotated training dataset is 

challenging for SNVs or small InDels, where it requires a careful matching of pathogenic and benign 

variants in genomic regions and effect classes [37,38]. This seems currently impossible for SVs. The 

ClinVar dataset [24] is very sparse for SVs, i.e. only few (3,262 deletions, 82 duplications and 78 

insertions) and mostly very large SVs (mean size of 106 kb for deletions) are being annotated. This is 

insufficient for an insightful training dataset, especially as population SVs are much smaller (mean size of 

7.4 kb). Further, when compared to large population SV sets [39], strong biases towards high effect 

variants clustering around well studied genes are apparent (Supplemental Figure 1). Therefore, we opt 

for an unbiased evolutionary set of SVs obtained from comparisons in the great ape lineage [25]. A key 

strength of this approach is that the model is trained on a larger training set of 19,113 deletions and 

26,823 insertions and duplications that does not suffer from the ascertainment bias inherent to curated 

sets (Suppl. Figure 1). 

This is motivated by the Combined Annotation Dependent Depletion (CADD) framework, an approach 

that has proven powerful in the interpretation of SNVs and short InDels [40]. In CADD-SV, we assume 

that millions of years of purifying selection removed SVs that are deleterious, i.e. have a negative impact 

on human or chimpanzee reproductive success. Thus, fixed SVs in humans or chimpanzees can be 

classified as proxy-neutral. In contrast, variants of the same size randomly drawn from the human 

genome are likely to contain a significant number of deleterious variants by chance. While many of the 

random variants will be neutral, an unknown but considerable fraction would likely be deleterious. For 

simplicity, we refer to these variants as proxy-deleterious. The contrast between the proxy-neutral and 

proxy-deleterious variant sets, i.e. the relative paucity of deleterious, phenotypically influential genome 

alterations in the proxy-neutral set and the resulting differences in their annotation features, is the core 

characteristic of what we then model as SV deleteriousness (Fig. 1).  
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Annotating Structural Variants 

We wanted to integrate diverse annotations into predictive, genome‐wide models for identifying 

variants of phenotypic effect. While many annotations are readily available for SNVs, informative and 

computational efficient statistics need to be created to summarize annotations over the span of SVs. 

Further, distance measures can retain information about the vicinity of the impacted DNA sequence. For 

this purpose, we developed an automated SV annotation pipeline using the workflow management 

system Snakemake [27] that combines bedtools [26] with customized bash and R scripts. We integrate 

not only coding information such as gene models but also a wide variety of regulatory annotation 

retrieved from ENCODE [12] such as histone modifications or DNA accessibility. In addition, we make use 

of functional and evolutionary scores [37,38,41,42] as well as information about the 3D architecture of 

the genomic region derived from Hi-C experiments [43–45]. 

All SVs are annotated over the full span of the event as well as 100 bp up- and downstream (Suppl Figure 

2). For insertions, the span of novel SVs only contains the site of integration and CADD-SV does not 

derive features from the inserted sequence. While deletions directly remove putatively functional 

sequence, insertions and duplications interfere with functionality by integration of additional sequence, 

e.g. disrupting regulatory interactions by increasing distance or introducing frameshifts into coding 

sequence. We incorporate this in the CADD-SV modelling by deriving features from the deleted 

sequence (span), annotating the context of the SV (flank) and including distance features in the model. 

Across SV ranges, we mostly annotate max values, mean values and the amount of high impact values 

above the top 90
th

 percentile. Additionally, span and flank models use genomic distances to certain 

feature coordinates (e.g. genes, exons, and enhancers). All features and their transformation are 

described in Supplemental Table 1. To ease later interpretation of feature impact, all features are Z-

score transformed using the annotation distribution of the same type of SV from healthy individuals 

reported in gnomAD [39]. 

Modeling and hold-out set performance 

SV mediated pathogenicity depends on the type of SV. We implement separate models for deleted, 

inserted, or duplicated sequence. Due to the lack of training data for inversions and translocations, we 

can currently not train models for these variant types. Using the described training data sets, we train 

four types of models (Fig. 1). We train models of human-derived deletion (human DEL) and insertion 

(human INS) events against respective sets of equally sized events drawn across the genome. Further, 

models based on chimp insertion (chimp INS) and deletions (chimp DEL) events are trained. Here, we 

project the events onto the human reference sequence and use the human annotations. While the 

human events are also manifested in the human reference, the chimp events allow us to use human 

annotation unimpaired by an actual SV event. Hence, chimp DEL models are similar to how we would 

score new events observed in an individuals' genome aligned to the human reference sequence. In 

contrast, no annotation for human derived deletions can be obtained over the span of the deletion as 

experimental readouts and conservation score are not available for the missing sequence. Similarly, 

chimp INS provide an insertion model based on events that did not impair human annotations or 

biochemical readouts.  

To score novel SVs in the human genome we exploit this relationship by training the span of novel 

deletions with the chimp DEL set and train the sequence 100bp up- and downstream of the breakpoints 

using the human DEL set. As the inverse applies for insertions and duplications, i.e. chimpanzee 
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insertions do not span sequence in the human genome build while human derived insertions do, we use 

the chimp INS set for the insertion site and the human INS set for the up- and downstream sequence. 

Duplications are scored using the full sequence span of the duplicated locus, hence using the chimp DEL 

model for the span and human INS model for the up- and downstream sequence. The final score is 

calculated from the maximum (more deleterious) value of both models applied after being ranked 

compared to the score distribution of the same type of SV reported in healthy individuals. 

We trained both logistic regression models as well as random forest models. We note that the latter 

show increased hold-out performance as well as validation set performance (Suppl. Figure. 3) and we 

only describe the random forest models here. The hold-out shows that all four model types differentiate 

between the proxy-benign and proxy-pathogenic sets (Fig 2A). Considering the anticipated mislabeling in 

our training data, specifically in the randomly drawn SVs as described above, the hold-out performance 

will however not be representative for our models' performance in scoring actual pathogenic versus 

benign variants. Here, we only look for a non-random model performance and the relative ranking of 

the models. For better interpretation, we also normalize the final score distribution in a healthy 

population cohort (gnomAD-SV) separately for each type of SV. The score distribution for the hold-out 

data is available in Fig. 2B for the proxy-pathogenic and proxy-benign SV sets. We see a significant shift 

with a bimodal distribution in the proxy-pathogenic variants, with the smaller mode corresponding to 

the potentially pathogenic variants in the randomly drawn set. 

Feature contributions 

We analyzed feature contributions in our random forest models using the R package randomForest [28]. 

To ease interpretation, we categorized model features into six groups ("Integrated scores", "Species 

conservation and constraint", "Population and disease constraint", "Epigenetic and regulatory activity", 

"3D genome organization", "Gene and element enrichment"; Supplemental Table 1). Models benefit 

highly from features in the groups of "Species conservation and constraint" (incl. GERP, PhastCons, 

PhyloP scores) and "Integrated scores" (i.e. summaries of CADD SNV and LINSIGHT scores) in 

differentiating between the contrasted SV sets. Regulatory annotations as well as 3D genome 

architecture features contribute to a smaller extent but are present within the top 20 most important 

features of all models (e.g. ReMap transcription factor occupancy, TAD annotations, enhancer-promotor 

links and chromHMM states). Distance features (such as distance to coding sequence) are particularly 

prevalent in the human DEL flank model, where for a reference altered by the deletion event these 

features become informative. Major feature contributions of the chimp DEL model are presented in 

Figure 2C, for all models feature importance is available in Suppl. Figures 5-8. 

Independent Validation Datasets 

To validate the general applicability of the framework, we use multiple lines of evidence (Fig. 3A) to 

substantiate the results of the hold-out performance. We look at known pathogenic variants from 

ClinVar (Fig. 3B, 3D-F), we show that SVs occurring in healthy populations are under negative selection 

and therefore high CADD-SV scores enriched for singletons events (Fig. 3C), we analyze variants from the 

International Cancer Genome Consortium (Fig. 3D-F), and SVs affecting gene expression (Fig. 3D-F). 

Thereby, we show that CADD-SV can be used to prioritize both pathogenic germline and somatic 

structural variants. 
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Pathogenic germline variants 
We collected pathogenic SVs from ClinVar (n=3262 deletions, 82 duplications and 78 insertions). To look 

at how CADD-SV prioritizes pathogenic variants among all SVs identified in single individuals (including 

rare and singleton events), we added each one clinically characterized SV from ClinVar into sets of 

structural variants found in presumed healthy individuals from the 1000 Genomes project [32]). We 

assessed CADD-SVs performance by looking at the pathogenic variants rank among all observed SVs. We 

found that in 50.5% of cases the ClinVar deletion is within the top fifth percentile of all ranks (Fig. 3B). 

Clinically labelled insertions and duplications were also enriched among the top candidates. In 86% of 

individuals for insertions and 49% of individuals for duplications do these events fall within the top fifth 

percentiles. 

Further, we contrasted the complete sets of pathogenic SVs from ClinVar with a matched number of 

common SVs from healthy individuals in gnomAD (AF >= 0.05, Fig. 3D-F). CADD-SV correctly identifies a 

vast majority of the known pathogenic SVs with an Area Under the ROC Curve (AUROC) of 0.942 for 

deletions (Fig 3D). CADD-SV performs comparable to the existing SVScore ([20], AUROC of 0.915) and 

AnnotSV ([22], AUROC of 0.949) methods and outperforms TAD-Fusion score ([21], AUROC of 0.692) in 

this task. 

Depletion of deleterious SVs in healthy populations 
We assessed the distribution of CADD-SV scores in SVs from healthy individuals of the gnomAD SV call-

set. Allele frequency values are significantly decreased in the pathogenic tail of the CADD-SV score 

distribution compared to the benign tail (top/bottom fifth percentile CADD-SV scores, two-sided 

Wilcoxon rank sum test, p-value < 10
-16

). We reason that CADD-SV is able to prioritize deleterious 

variants in healthy individuals as these variants would be under negative selection and removed from 

the gene pool. Accordingly, the proportion of singleton deletions amongst the top fifth percentile CADD-

SV scores (pathogenic tail) is 1.3 times higher than the average of the full SV set (Fig. 3C). This 

observation is striking for deletions but less pronounced in the insertion and duplication SV sets (Suppl. 

Figure 9). We note that in the top fifth percentile, 35% of deletions are coding variants classified as "Loss 

of Function" by gnomAD compared to 0.3 % of variants scored in the remainder of the CADD-SV score 

distribution.  

Further, the average deletion length is six times longer for the top fifth percentile compared to the rest 

of the distribution, suggesting that longer deletions are more likely to be functional as they affect more 

sequence. However, short (less than 100bp) and high scoring (top fifth percentile) deletions are 1.1 

times more likely to be singletons compared to short deletions, suggesting that CADD-SV prioritizes SVs 

beyond length. In addition, we detect high frequency deleterious variants in the pathogenic tail, 

speculating that these variants could be phenotypically functional variants and potentially beneficial for 

carriers. 

Identifying somatic cancer variants 
We assessed the performance of CADD-SV on somatic variants and the power to identify deleterious 

cancerogenous variants (n=52,677 deletions, 42,972 duplications and 18 insertions) using SV variants 

from cancer patients in the International Cancer Genome Consortium [33] as well as insertions reported 

in Qian et al. [34]. We find an enrichment of SVs detected in cancer patients in the pathogenic tail of the 

distribution compared to SVs from a healthy cohort (two sided Wilcoxon rank sum test, p-value <10
-16

). 

CADD-SV enriches the cancer-derived SVs from common gnomAD-SVs in a ROC Curve analysis (AUROC 
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0.848 / 0.933 / 0.975 for deletions / duplications / insertions, Fig. 3D-F), outperforming available tools 

on this task and supporting the claim that CADD-SV prioritizes functional somatic SVs. 

Identifying expression altering non-coding variants 
To test the ability to prioritize functional variants beyond coding regions, we use a set of non-coding SVs 

known to alter the expression of genes. Here, we look at 387 deletions and 300 duplications that were 

shown to affect expression levels of nearby genes and are therefore considered expression Quantitative 

Trait Loci (eQTL) by the GTEx consortium [1]. We compare them against common variants (AF >= 0.05) 

from gnomAD in a ROC Curve analysis (Fig. 3D-F). Even though less pronounced compared to ClinVar or 

the cancer-derived SVs, CADD-SV is able to differentiate the two classes of SVs (AUROC 0.598 for 

deletions and 0.635 for duplications, respectively) outperforming existing methods SVScore (AUROC 

0.467 / 0.534), AnnotSV (AUROC 0.459 / 0.402) and TAD-Fusion score (AUROC 0.425 for deletions). 

Interpreting Structural Variants 

To make scores easier to interpret, we rank CADD-SV raw scores among 20,000 SVs from healthy 

individuals in gnomAD. Final CADD-SV scores range from 0 (potentially benign) to 1 (potentially 

pathogenic), indicating the position of the novel variant within the gnomAD score distribution. For 

example, a value of 0.9 represents that 90% of variants reported from healthy individuals are scoring 

lower than the variant under consideration. In addition, all feature annotations are used and reported 

after Z-score transformation (mean 0, standard deviation of 1) according to the features value 

distribution in gnomAD. This allows users to inspect the individual features for extreme values easily. For 

instance, a conservation feature value of four represents an outlier value of four standard deviations 

away from the gnomAD mean of that annotation. Such noticeable values are highlighted by color-coding 

on the CADD-SV website (Figure 4) for the pre-scored variant sets. Generally, CADD-SV scores with or 

without annotation information are available from our command line tool as well as on the webserver 

for direct variant interpretation. Our online services include region lookups of existing SV datasets, 

coordinate transfers between human genome builds, the download of pre-scored datasets and 

annotations, a simple API for pre-scored variants as well as the online scoring of novel SV datasets. 

Coordinate ranges and variants of other genome builds (i.e. GRCh37/hg19 and NCBI36/hg18) can be 

used on the webserver and are automatically lifted to GRCh38 coordinates (providing the original 

coordinates in the variant's name field). 

Discussion 

We present CADD-SV as an unbiased and powerful tool for the annotation and prioritization of 

deleterious structural variants. CADD-SV is built from machine learning models that are trained using 

evolutionary-derived and putative benign variants that underwent millions of years of purifying 

selection. These variants are contrasted with a background set of the same size and length, 

encountering deleterious events by chance. We show that our approach is able to model and score 

deletions, insertions as well as duplication and we validate the CADD-SV models using clinically 

annotated, non-coding or population germline SVs as well as somatic SVs reported in cancer patients. 

Structural variant calling is prone to biases towards certain types of SVs, as the signal to for example 

detect deletions is vastly different compared to signals of duplication or even inversions [19]. Further, 

the exact annotation of SV breakpoints is often limited, e.g. due to their frequent positioning in 
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repetitive sequence [46]. Apart from these universal limitations, changes in the application of arrays and 

sequencing technologies over the last decades have affected available SV sets. However, in previous 

work it seems underappreciated how much the historic and functional ascertainment imprinted on 

potential training and validation sets for machine learning. Specifically, the ClinVar-annotated SVs are 

comparably large and clustered around well-studied genes. Using an alternative source for the training 

data, the CADD-SV approach is not confounded and performance can be evaluated broadly, as allele-

frequency features or any ClinVar annotations are not included in the features or otherwise considered 

when building the training sets. The number of labelled SVs to validate the performance of CADD-SV is 

still limited though. Assessing the performance on duplications and insertions is particularly hard as the 

number of known pathogenic events is small and strongly biased towards coding sequence. We 

anticipate that future datasets will provide a better opportunity to test and interpret models for 

duplications and insertions. 

Estimating functional effects of SVs is highly complex due their size (involving different molecular 

targets) but also due to different mechanistic types of SVs (e.g. deletion, insertion, duplication or 

inversion of sequence). Thus, deleteriousness effects cannot just result from the sequence alteration, 

but also from interactions with the sequence context. For example, sequences shielding gene regulation 

(e.g. TAD boundaries) can be deleted between coding sequences or non-functional sequence can be 

inserted, interfering with an existing regulatory unit. Therefore, we model each SV type (deletions, 

insertions and duplications) separately, and we use the sequence span as well as the flanking sequence 

regions to capture putative pathogenic effects comprehensively. Further, we integrate distance features 

and a large set of annotations covering both coding and non-coding effects. This allows CADD-SV high 

predictive performance on known disease variants from ClinVar, which often cover coding sequence and 

stand-out by their gene model annotations and genes scores such as pLI [47] or DDD Haploinsufficiency 

[48]. Further, putative pathogenic non-coding variants can be prioritized using sequence conservation 

[42], enhancer annotations [49,50] and links [51], assay readouts such as RNase-seq or ChIP-seq, as well 

as information about 3D interactions from the Hi-C directionality index [43,44] or computational 

predictions such as deepC [45]. These kinds of mechanisms were previously shown to be causal for 

human disease phenotypes [6]. 

Inversions and translocations are particularly hard to assess as they are copy number neutral and their 

impact is often mediated by proximity of certain functional elements to one another or functional 

entities such as TADs being broken or reshuffled rather than deleting or inserting functional sequence 

directly. To our knowledge, there is no training dataset sufficient in size and curation to capture the 

complexity of these events. As no single model captures the mechanistic diversity of the currently 

considered types of structural variants, CADD-SV reports normalized model scores and features, 

normalized to the same type of SVs identified from healthy individuals. Feature normalization enables 

users to inspect annotation outliers directly (reported as standard deviation away from the mean), 

visually highlighting certain annotations and hinting at potential pathogenic mechanisms beyond the 

CADD-SV score. 

In contrast to other tools, length is not a feature of CADD-SV. However, we assume that SV length would 

be a good indicator of SV impact, as long SVs are more likely to affect coding regions or generally 

functional annotations. SV length itself might be a confounder too, as long benign SVs might be 

misinterpreted solely for their length and not for their actual genomic signatures. As the contrasting 

datasets in the CADD-SV framework are matched in SV length, length as a feature does not contribute to 
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the model. However, some genomic feature transformation such as the sum of all intersected 

annotation values or the number of bases above a certain threshold, correlate inevitably with length but 

are bound to functional annotations being present across the span. AnnotSV [22] is powerful and 

efficient in annotating novel SVs with a wide set of annotations. However, validation of AnnotSV on 

ClinVar is biased as AnnotSV uses overlap of novel SVs with labelled SVs from ClinVar as a feature. 

Further, it categorizes SVs in five bins from benign to pathogenic instead of a continuous score. Across 

multiple data sets, we highlight the increased predictive power of CADD-SV compared to AnnotSV, 

SVscore [20]and TAD-Fusion [21]. A comparison of SVFX [23]was not possible, as the package is not 

easily deployed, explicitly normalizes features on each training data set and its released ClinVar variant 

scores are based on a model trained on the same variant set (a biased comparison in which it 

outperforms our scores; data not shown). 

The feature integration implemented by CADD-SV can easily be extended using additional annotations. 

Currently, we use features derived from experiments conducted in specific cell-types (e.g. GM12878, H1, 

A549, CAKI2). More comprehensive or additional cell-types can be included in updated versions. 

Further, CADD-SV does not make us of the inserted sequence itself. Therefore, future versions of CADD-

SV could make use of sequence-based prediction models in addition to reference annotations, e.g. to 

predict open reading frames, repeat content, presence of transcription factor binding sites or the 

general likelihoods of the novel inserted sequence being of open or closed chromatin. This might be 

powerful in assessing inserted sequence function beyond the surrounding genomic context of the 

insertion event. In addition, specific mechanistic events such as gene-fusion predictions are not part of 

our features and CADD-SV is therefore only able to estimate the effect of those events based on other 

already considered feature values like the distance to genes. 

CADD-SV integrates rich sets of annotations in predictive models of SV effects for deletions, insertions 

and duplications. It is designed for genome build GRCh38 but can be applied to other genome builds due 

to an integrated liftover step. The output consists of a comprehensive score of deleteriousness with 

higher values corresponding to larger effect variants. We normalize CADD-SV scores on germline SVs 

from healthy individuals and report the percentile for a novel SV within this score distribution. CADD-SV 

provides all integrated feature values as an output table for users to screen the predicted effects for 

gene overlap or various other functional effects. 
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Data Availability 

CADD-SV pre-scored variant sets as well as a webtool for the interpretation of novel deletions, insertions 

and duplications is available (https://cadd-sv.bihealth.org/). The CADD-SV framework can be cloned and 

used from GitHub (https://github.com/kircherlab/CADD-SV/). All external data sets used are available 

under the locations specified in the Methods. Further information on the analyses is available on 

request. 
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Figures 

 

 

Figure 1: Depiction of the CADD-SV model and workflow. Human and chimpanzee derived SVs from Kronenberg et al. [25] are 

used as proxy-neutral training dataset. Size and length matched simulated variants are used as proxy deleterious training 

dataset. Next, various informative features are annotated and transformed (see Methods and Suppl. Table 1) across span or 

flank of the variants to train Random Forest classifiers. Models are used to score user provided novel SVs. For this purpose, 

variants are annotated, features transformed and models applied. Raw model scores are ranked among 20,000 gnomAD SVs of 

the same type and the relative rank returned as the output CADD-SV score. 
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Figure 2: Performance of Random Forest models trained on proxy-deleterious and proxy-benign SVs. A) All models show a non

random separation of the two classes in a random 10% holdout. Performance is measured as sensitivity over false positive rate

(FPR). Note that all training datasets contain a high amount of mislabeled SVs, as a majority of proxy-deleterious SVs is likely to

be neutral. B) Model predictions of the Chimp DEL model are shifted towards high impact SVs in the simulated set of chimpanzee

deletions. C) Representation of feature importance in the chimpanzee deletion (chimp DEL) Random Forest model. Note tha

proxy-pathogenic and proxy-benign sets are length matched and that length is not used as an explicit feature. Most important

contributions come from species conservation (e.g. GERP, PhastCons) but also from integrated scores (i.e. CADD or LINSIGHT)

Epigenetic features as well as 3D genome architecture features such as the Directionality Index derived from Hi-C data also

contribute to the most informative features of the models. For a full list of features and explanation of their naming, see Suppl

Table 1. 
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Figure 3: Validation set performance of the Random Forest models. A) Summary of the performance of CADD-SV scores

compared to SVScore, AnnotSV and TAD-Fusion scores across three validation sets (pathogenic variants, cancer variants and

putative eQTL SVs) for deletions, duplications and insertions. B) Rank of ClinVar pathogenic SVs added to SVs of healthy

individuals from the 1000G projects. CADD-SV prioritizes the pathogenic SVs over the SVs in a single patient, scoring pathogenic

variants in the top fifth percentile of deletions, duplications and insertions at 50.5%, 48.7% and 86.1% respectively. C) CADD-SV

score distribution as a function of gnomAD allele frequency. Higher CADD-SV values represent an increased likelihood to be

deleterious. In the deleterious tail of the score distribution, there is an excess of singletons (shown in red; bin-size 0.025), which

might hint towards negative selection against deleterious deletions. D-F) CADD-SV performance of various validation sets

compared to common gnomAD SVs (AF >= 0.05). Performance is measured as sensitivity over false positive rate (FPR). CADD-SV

is able to identify ClinVar pathogenic deletions (pale red) as well as deletions reported in the ICGC cancer cohort (dark red) from

SVs in gnomAD. Further, CADD-SV can identify non-coding SVs that are associated with differences in gene expression

(turquoise). CADD-SV scores (solid lines) are compared to SVScore (dashed lines), AnnotSV (dotted lines) and TAD-Fusion (dashed

and dotted lines) for deletions (D), duplications (E) and insertions (F). 
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Figure 3: The CADD-SV webserver can score custom SV sets, but it can also be used for direct lookup of pre-scored deletions,

duplications and insertions from gnomAD, ClinVar, as well as call-sets from Abel et al. [52] and Beyter et al. [53]. For a given SV,

the website provides scores as well as annotations (Z-score) normalized to the value range in the healthy gnomAD cohort. This

enables users to infer outliers directly not just by the CADD-SV score but also by color-highlighted annotations. Further, the

website provides direct links for each SV to further external resources in gnomAD, Ensembl or the UCSC genome browser. 
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