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Abstract 1 

Epidemiological models are commonly fit to case data to estimate model parameters and to infer 2 

unobserved disease dynamics. More recently, epidemiological models have also been fit to viral 3 

sequence data using phylodynamic inference approaches that generally rely on the 4 

reconstruction of viral phylogenies. However, especially early on in an expanding viral population, 5 

phylogenetic uncertainty can be substantial and methods that require integration over this 6 

uncertainty can be computationally intensive. Here, we present an alternative approach to 7 

phylodynamic inference that circumvents the need for phylogenetic tree reconstruction. Our 8 

“tree-free” approach instead relies on quantifying the number of segregating sites observed in 9 

sets of sequences over time and using this trajectory of segregating sites to infer epidemiological 10 

parameters within a Sequential Monte Carlo (SMC) framework. Using forward simulations, we 11 

first show that epidemiological parameters and processes leave characteristic signatures in 12 

segregating site trajectories, demonstrating that these trajectories have the potential to be used 13 

for phylodynamic inference. We then show using mock data that our proposed approach 14 

accurately recovers key epidemiological quantities such as the basic reproduction number and 15 

the timing of the index case. Finally, we apply our approach to SARS-CoV-2 sequence data from 16 

France, estimating a reproductive number of approximately 2.2 and an introduction time of mid-17 

January 2021, consistent with estimates from epidemiological surveillance data.  Our findings 18 

indicate that “tree-free” phylodynamic inference approaches that rely on simple population 19 

genetic summary statistics can play an important role in estimating epidemiological parameters 20 

and reconstructing infectious disease dynamics, especially early on in an epidemic. 21 
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Introduction 28 

Phylodynamic inference methods use viral sequence data to estimate epidemiological quantities 29 

such as the basic reproduction number and to reconstruct epidemiological patterns of incidence 30 

and prevalence. These inference methods have been applied to sequence data across a broad 31 

range of RNA viruses, including HIV (Stadler and Bonhoeffer 2013; Popinga et al. 2014; Ratmann 32 

et al. 2017; Volz et al. 2017), ebola (Stadler et al. 2014; Vaughan et al. 2017; Volz and Siveroni 33 

2018), dengue (Rasmussen et al. 2014), influenza (Rasmussen and Stadler), and most recently 34 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(Danesh et al. 2020; Miller et al. 35 

2020; Geidelberg et al. 2021). Most commonly, phylodynamic inference methods rely on 36 

underlying coalescent models or birth-death models. Coalescent-based approaches have been 37 

generalized to accommodate time-varying population sizes and parameter estimation for 38 

structured epidemiological models, for example, susceptible-exposed-infected-recovered (SEIR) 39 

models and models with spatial compartmentalization (Volz 2012; Volz and Siveroni 2018). Birth-40 

death approaches (Stadler 2010; Stadler et al. 2012), where a birth in the context of infectious 41 

diseases corresponds to a new infection and death corresponds to a recovery from infection, 42 

instead carry other advantages, such as incorporating the role of demographic stochasticity in 43 

disease dynamics, which may be particularly important in emerging diseases that start with low 44 

infection numbers (Boskova et al. 2014). Both of these classes of phylodynamic inference 45 

approaches rely on time-resolved phylogenies and have been incorporated into the 46 

phylogenetics software package BEAST2 (Bouckaert et al. 2014: 2) to allow joint estimation of 47 

epidemiological parameters and dynamics while integrating over phylogenetic uncertainty 48 

(Stadler et al. 2013; Volz and Siveroni 2018). Integrating over phylogenetic uncertainty is crucial 49 

when applying these methods to viral sequence data that are sampled over a short period of time 50 

and contain only low levels of genetic diversity. However, integrating over phylogenetic 51 

uncertainty is computationally intensive. Moreover, phylodynamic approaches that use 52 

reconstructed trees for inference require estimation of parameters associated with models of 53 

sequence evolution, along with parameters that are of more immediate epidemiological interest.  54 
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Here, we present an alternative phylodynamic inference method that is particularly appropriate 55 

to use when viral sequences are sampled over short time periods and when phylogenetic 56 

uncertainty is considerable. This method does not rely on time-resolved phylogenies to infer 57 

epidemiological parameters or to reconstruct patterns of viral spread. Instead, the “tree-free” 58 

method we propose here fits epidemiological models to time series of the number of segregating 59 

sites observed in a viral population that is sampled over time. Like existing coalescent-based 60 

approaches, the approach we propose here allows for structured infectious disease models to be 61 

considered in a straightforward “plug-and-play” manner. Like existing birth-death process 62 

approaches, it incorporates the effect that demographic noise may have on epidemiological 63 

dynamics. Below, we first describe how segregating site trajectories are calculated using 64 

sequence data and how they are impacted by sampling effort, rates of viral spread, and 65 

transmission heterogeneity. We then describe our proposed phylodynamic inference method 66 

and apply it to simulated data to demonstrate the ability of this method to infer epidemiological 67 

parameters and to reconstruct unobserved epidemiological dynamics. Finally, we apply our 68 

segregating sites method to SARS-CoV-2 sequence data from France, arriving at quantitatively 69 

similar parameter estimates to those arrived at using epidemiological data.    70 

New Approaches 71 

Mutations occur during viral replication within infected individuals and these have the potential 72 

to be transmitted. During the epidemiological spread of an emerging virus, the virus population 73 

(distributed across infected individuals) thus accrues mutations and diversifies genetically. This 74 

joint process of viral spread and evolution can be simulated forward in time using compartmental 75 

models, with patterns of epidemiological spread leaving signatures in the evolutionary trajectory 76 

of the virus population. Parameters of these compartmental models that govern patterns of 77 

epidemiological spread can thus be estimated using observed viral evolutionary trajectories. 78 

Here, we develop a phylodynamic inference approach that fits compartmental epidemiological 79 

models to times series of a low-dimensional evolutionary summary statistic. Specifically, we use 80 

trajectories of the number of segregating sites from samples of the viral population taken over 81 

time for phylodynamic inference. In Materials and Methods, we provide details on the simulation 82 
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of epidemiological models that incorporate viral evolution and thus can yield simulated time 83 

series of the number of segregating sites. We further describe our phylodynamic inference 84 

approach that relies on using particle filtering (otherwise known as Sequential Monte Carlo; SMC) 85 

to infer parameters for these epidemiological models of arbitrary complexity and to reconstruct 86 

unobserved disease dynamics.  87 

Results 88 

Segregating site trajectories are informative of epidemiological dynamics. 89 

Simulations of epidemiological models, as detailed in Materials and Methods, indicate that the 90 

number of segregating sites that are observed over time in a viral population are sensitive to 91 

sampling effort and are informative of epidemiological dynamics. To demonstrate this, we first 92 

simulated a susceptible-exposed-infected-recovered (SEIR) model under an epidemic scenario 93 

starting with a single infected individual (Figure 1A), further tracking the viral genotypes 94 

according to the approach outlined in Materials and Methods. The effect of sampling effort is 95 

shown in Figure 1B, which plots segregating site trajectories under dense sampling effort (40 96 

sequences per 4-day time window) and under sparse sampling effort (20 sequences per 4-day 97 

time window). At both of these sampling efforts, the number of segregating sites first increases 98 

as the epidemic grows, as expected, with mutations accumulating in the virus population. 99 

Following the peak of the epidemic, the number of segregating sites starts to decline as viral 100 

lineages die out, reducing the amount of genetic variation present in the viral population.  At 101 

lower sampling effort, less of the genetic variation present in the viral population over a given 102 

time window is likely to be sampled, resulting in a lower number of observed segregating sites 103 

during any time window. 104 

To assess whether segregating site trajectories could be used for phylodynamic inference, we 105 

first considered whether these trajectories differed between epidemics governed by different 106 

basic reproduction numbers (R0 values). Figure 1C shows simulations of the SEIR model under 107 

two parameterizations of the basic reproduction number: an R0 of 1.6, corresponding to the 108 

simulation shown in Figure 1A, and a higher R0 of 2.0. Differences in R0 were implemented by 109 

differences in the transmission rate. The epidemic with the higher R0 grew more rapidly (Figure 110 
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1C) and, under the same sampling effort, resulted in a more rapid increase in the number of 111 

segregating sites (Figure 1D). This indicates that segregating site trajectories can be informative 112 

of R0 early on in an epidemic. 113 

We next considered the effect of transmission heterogeneity on segregating site trajectories. 114 

Many viral pathogens are characterized by ‘superspreading’ dynamics, where a relatively small 115 

proportion of infected individuals are responsible for a large proportion of secondary infections 116 

(Lloyd-Smith et al. 2005). The extent of transmission heterogeneity is often gauged relative to 117 

the 20/80 rule (the most infectious 20% of infected individuals are responsible for 80% of the 118 

secondary cases (Woolhouse et al. 1997)), with some pathogens like SARS-CoV-2 exhibiting 119 

extreme levels of superspreading, with as low as 6-15% of infected individuals responsible for 80% 120 

of secondary cases (Althouse et al. 2020; Miller et al. 2020; Lemieux et al. 2021; Sun et al. 2021). 121 

Because transmission heterogeneity is known to impact patterns of viral genetic diversity (Koelle 122 

and Rasmussen 2012), we simulated the above SEIR model with transmission heterogeneity to 123 

ascertain its effects on segregating site trajectories. Transmission heterogeneity was 124 

implemented using a negative binomial distribution parameterized such that the most infectious 125 

6% of infected individuals are responsible for 80% of the secondary cases (Materials and 126 

Methods). Because transmission heterogeneity has a negligible impact on epidemiological 127 

dynamics once the number of infected individuals is large (Keeling and Rohani 2008), these 128 

simulated epidemiological dynamics should be quantitatively similar to one another, with 129 

transmission heterogeneity simply expected to shorten the timing of epidemic onset in 130 

simulations with successful invasion (Lloyd-Smith et al. 2005). Our simulations confirm this 131 

pattern (Figure 1E). To compare segregating site trajectories between these simulations, we 132 

therefore shifted the simulation with transmission heterogeneity later in time such that the two 133 

simulated epidemics peaked at similar times (Figure 1E). Comparisons of segregating site 134 

trajectories between these simulations indicated that transmission heterogeneity substantially 135 

decreases the number of segregating sites during any time window (Figure 1F). These results 136 

indicate that the number of segregating sites in principle could be informative of the extent of 137 

transmission heterogeneity present in an unfolding epidemic. They also indicate that 138 
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transmission heterogeneity needs to be taken into consideration when estimating 139 

epidemiological parameters using segregating site trajectories.  140 

Finally, we wanted to assess whether changes in R0 over the course of an epidemic would leave 141 

signatures in segregating site trajectories. We considered this scenario because phylodynamic 142 

inference has often been used to quantify the effect of public health interventions on R0, most 143 

recently in the context of SARS-CoV-2 (Danesh et al. 2020; Miller et al. 2020). We thus 144 

implemented simulations with R0 starting at 1.6 and then either remaining at 1.6 or reduced to 145 

either 1.1 or 0.75 when the number of infected individuals reached 400 (Figure 1G). The 146 

segregating site trajectories for these three simulations indicate that reductions in R0 over the 147 

course of an epidemic leave faint signatures in this low-dimensional summary statistic of viral 148 

diversity, with the signature being more pronounced with a more precipitous drop in R0 (Figure 149 

1H).  150 

Phylodynamic inference using segregating site trajectories  151 

To examine the extent to which phylodynamic inference based on segregating sites can be used 152 

for parameter estimation, we generated a mock segregating site trajectory by forward simulating 153 

an SEIR model with a R0 of 1.6, sampling viral sequences from this simulation (Figure 2A), and 154 

calculating a segregating site trajectory from these sampled sequences (Figure 2B). Because the 155 

duration of the exposed period and the duration of the infectious period are generally known for 156 

viruses undergoing phylodynamic analysis, we fixed these parameters at their true values and 157 

first attempted to estimate only R0 under the assumption that the timing of the index case t0 is 158 

known. We estimated an R0 value of 1.59 (95% confidence interval of 1.49 to 1.64; Materials and 159 

Methods; Figure 2C, 2C inset), demonstrating that phylodynamic inference using our segregating 160 

sites approach applied to this simulated dataset is able to recover the true R0 value of 1.6.  161 

Because the timing of the index case is almost certainly not known for an emerging epidemic, we 162 

further attempted to estimate both R0 and t0 using the segregating site trajectory shown in Figure 163 

2B. To do this, we first considered the parameter space ranging from an R0 of 1.2 to 2.5 and from 164 

a t0 of 60 days prior to the true start date of 0 to 56 days following this true start date. Considering 165 

R0 intervals of 0.02 and t0 intervals of 2 days, we ran 10 SMC simulations for every parameter 166 
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combination. In Figure 3A, we plot the mean value of these 10 SMC log-likelihoods for every 167 

parameter combination in the considered parameter space. Examination of this plot indicates 168 

that there is a log-likelihood ridge that runs between early t0/low R0 parameter combinations and 169 

late t0/high R0 parameter combinations. However, this ridge falls off on both edges, indicating 170 

that the segregating sites approach can in principle estimate both t0 and R0. We therefore 171 

calculated profile likelihoods for both R0 and t0 (Figures 3B, 3C; Materials and Methods), arriving 172 

at an R0 estimate of 1.50 (95% confidence = 1.34 to 1.67; Figure 3B) and a t0 value of -13.8 (95% 173 

confidence = -27.8 to 0.3; Figure 3C) for the simulated dataset. While the maximum likelihood 174 

estimate for R0 ran low and for t0 ran early, the confidence intervals contained the true values of 175 

R0 = 1.6 and t0 = 0, respectively. Our results indicate that joint estimation of these parameters is 176 

thus possible. Using our estimates of R0 and t0, we reconstructed the dynamics of the segregating 177 

sites (Figure 4A) and unobserved state variables: the number of susceptible, exposed, and 178 

infected individuals over time (Figures 4B, C, D). These reconstructed state variables captured 179 

the true epidemiological dynamics, demonstrating that our segregating sites phylodynamic 180 

inference approach can be used to estimate epidemiological variables that generally go 181 

unobserved. 182 

Phylodynamic inference for SARS-CoV-2 sequences from France  183 

We applied the segregating sites inference approach to a set of SARS-CoV-2 sequences sampled 184 

from France between January 23, 2020 and March 17, 2020, when a country-wide lockdown was 185 

implemented. We decided to apply our approach to this set of sequences for several reasons. 186 

First, a large fraction of the 479 available full-genome sequences from France over this time 187 

period appear to be genetically very similar to one another (Gámbaro et al. 2020), indicating that 188 

one major lineage may have taken off in France (or at least, that most samples stemmed from 189 

one major lineage). This lineage would be the focus of our analysis. Second, an in-depth analysis 190 

previously inferred R0 for France prior to the March 17 lock-down measures that were 191 

implemented (Salje et al. 2020). This analysis fit a compartmental infectious disease model to 192 

epidemiological data that included case, hospitalization, and death data. Because our 193 

phylodynamic inference approach can accommodate epidemiological model structures of 194 

arbitrary complexity, we can adopt the same model structure as in this previous analysis. We can 195 
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also set the epidemiological parameters that are assumed fixed in this previous analysis to their 196 

same values. By controlling for model structure and the set of model parameters assumed as 197 

given, we can ask to what extent sequence data corroborate the R0 estimates arrived at from 198 

detailed fits to epidemiological data.  199 

To apply our segregating sites approach to the viral sequences from France, we first identified 200 

the subset of the 479 sequences that constituted a single, large lineage. To keep with the “tree-201 

free” emphasis of our approach, we identified this subset of n = 432 sequences without inferring 202 

a phylogeny (Materials and Methods). Using phylogenetic inference, however, we confirmed that 203 

our subset of sequences constituted a single evolutionary lineage (Figure S1).  We calculated the 204 

nucleotide distance from each sequence in this subset to Wuhan/Hu-1 (Wu et al. 2020) 205 

(EPI_ISL_402125), a commonly used reference SARS-CoV-2 sequence that stemmed from a 206 

sample collected in Wuhan, China in late December 2019. Using these nucleotide distances, we 207 

estimated an evolutionary rate of 8.21 x 10-4 substitutions/site/yr (Figure 5A), consistent with the 208 

range of inferred evolutionary rate estimates for SARS-CoV-2 (Duchene et al. 2020; Pekar et al. 209 

2020). This provides another confirmation that this subset of sequences is a single evolutionary 210 

lineage brought into France early on during the pandemic. 211 

To generate a segregating site trajectory from these sequences, we established consecutive, non-212 

overlapping 4-day time windows such that the last time window ended on March 17, 2020. Figure 213 

5B shows the number of sequences falling into each time window. Figure 5C shows the 214 

segregating site trajectory calculated from these sequences. We jointly estimated R0 and t0 using 215 

this segregating site trajectory, under the assumption that the most infectious 15% of SARS-CoV-216 

2 infected individuals are responsible for 80% of secondary infections, based on literature 217 

estimates of the extent of SARS-CoV-2 transmission heterogeneity (Sun et al. 2021) (Materials 218 

and Methods). We parameterized the model with a per genome, per transmission mutation rate 219 

of µ = 0.33 using consensus sequence data from established SARS-CoV-2 transmission pairs that 220 

were available in the literature (James et al. 2020; Popa et al. 2020; Braun et al. 2021; Lythgoe et 221 

al. 2021) (Materials and Methods). Specifically, for each of the 87 transmission pairs we had 222 

access to, we calculated the nucleotide distance between the consensus sequence of the donor 223 

sample and that of the recipient sample and fit a Poisson distribution to these data (Figure 5D). 224 
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Using this approach, we estimated a µ value of 0.33 (95% confidence interval of 0.22 to 0.48), 225 

corresponding approximately to one mutation occurring every 3 transmission events. 226 

Similar to the approach we undertook with our simulated data to jointly estimate R0 and t0, we 227 

first considered a broad parameter space over which to calculate log-likelihood values. 228 

Specifically, we considered R0 values between 1.2 and 3.4 (at intervals of 0.1) and t0 values 229 

between December 2, 2019 and February 16, 2020 (at intervals of 2 days). We ran 10 SMC 230 

simulations and calculated the mean log-likelihood for each parameter combination (Figure 6A). 231 

Similar to our findings on the simulated data set, we found evidence for a log-likelihood ridge 232 

between early t0/low R0 and late t0/high R0 parameter combinations. Profile log-likelihoods for 233 

R0 and t0 are shown in Figures 5B and 5C, respectively, yielding an estimate of R0 =  2.22 (95% 234 

confidence interval = 1.5 to 2.94) and an estimate of t0 =  January 11 (95% confidence interval = 235 

December 26, 2019 to January 28, 2020). Our maximum likelihood estimate of R0 is somewhat 236 

lower than the R0 estimate arrived at through the epidemiological time series analysis that 237 

presented the epidemiological model structure we adopted (Salje et al. 2020). That analysis 238 

inferred an R0 of 2.9 (95% confidence interval = 2.81 to 3.01) in France over this same time period. 239 

However, the confidence intervals of our analyses are relatively broad for R0, and their estimate 240 

of R0 = 2.9 falls within our 95% confidence interval. Our estimate is closer in line with estimates 241 

of the reproduction number in Wuhan prior to travel restrictions being introduced (R0 = 2.35, 242 

with 95% CI of 1.15-4.77) (Kucharski et al. 2020) and with those estimated for Western European 243 

countries using incidence data up through March 17, 2020 (R0 = 2.2, with 95% CI of 1.9-2.6) 244 

(Locatelli et al. 2021). Our estimate also aligns more closely with projections of R0 made 245 

specifically for France, using outbreak data from Wuhan (Hilton and Keeling 2020): R0 = 2.2 and 246 

R0 = 2.7, under different assumptions related to age-dependent susceptibility and infectiousness. 247 

Finally, our R0 estimates can be juxtaposed against results from phylodynamic analyses that used 248 

a birth-death model to infer R0 during three distinct epochs in France using a similar set of 249 

sequence data we analyze here (Danesh et al. 2020). Their second epoch spanned February 19 250 

through March 7, and the R0 inferred for this time period was 2.56 (95% credible interval = 1.66 251 

to 4.74). Our maximum likelihood estimate of t0 in the middle of January 2020 aligns well with 252 

findings from Gámbaro et al. ( 2020) and is further consistent with the estimate from Salje et al. 253 
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(2020) that 58.65 (95% CI 37.85 – 88.37) individuals were present in the exposed (E1 class) on 254 

January 22, 2020 based on fitting the epidemiological model to epidemiological data. 255 

As we had done in our analysis of the simulated data set, we reconstructed the unobserved state 256 

variables using sampled particles from SMC simulations parameterized with R0 and t0 values that 257 

were sampled from the parameter space shown in Figure 6, weighted according to the log-258 

likelihood values of the parameter combination.  Plotting of reconstructed segregating site 259 

trajectories indicated a very good fit to the observed segregating site trajectory (Figure 7A). The 260 

number of individuals in the E1, E2, and I classes increased exponentially over the time period 261 

considered (Figure 7B), as expected for an epidemic with an R0 > 1. In Figure 7C, we plot the 262 

reconstructed cumulative number of exposed individuals over time and the reconstructed 263 

cumulative number of recovered individuals over time. These cumulative dynamics indicate that 264 

by mid-March 0.004% to 0.069% of the population in France had become infected by this SARS-265 

CoV-2 lineage and that 0.001% to 0.017% of the population in France had recovered from 266 

infection from this SARS-CoV-2 lineage. Depending on when seroconversion is assumed to occur, 267 

these cumulative predictions can be compared against findings from a serological study that was 268 

conducted over this time period in France (Le Vu et al. 2021). This study surveyed 3221 individuals, 269 

finding that 0.41% of individuals (95% confidence interval = 0.05 to 0.88) had gotten infected 270 

with SARS-CoV-2 by March 9 to 15, 2020. While these estimates fall slightly higher than our 271 

predictions, we are considering only one SARS-CoV-2 lineage (albeit likely the dominant one 272 

circulating during this time period), and would thus expect the cumulative positive proportion 273 

we predict to be lower than overall (all lineage) serology estimates. Other reasons for possible 274 

underestimation involve epidemiological model misspecification and inaccurate 275 

parameterization, for example, of the extent of transmission heterogeneity ph. 276 

Discussion 277 

Here, we developed a phylodynamic inference approach to estimate epidemiological parameters 278 

from virus sequence data. Our inference approach is a “tree-free” approach in that it does not 279 

rely on the reconstruction of viral phylogenies to estimate model parameters. One benefit of 280 

using a “tree-free” approach for parameter estimation of emerging viral pathogens is that, early 281 
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on in an epidemic or pandemic, phylogenetic uncertainty is significant, and tree-based 282 

phylodynamic inference approaches would need to integrate over this uncertainty, which is often 283 

times computationally intensive. A second benefit of using a “tree-free” approach is that 284 

parameters of the model of sequence evolution do not need to be estimated, reducing degrees 285 

of freedom considerably. Instead of viral phylogenies being the data that statistically interface 286 

with the epidemiological models, we use a low-dimensional summary statistic of the sequence 287 

data, namely the number of segregating sites present in temporally-adjacent sets of viral 288 

sequences. Beyond being a “tree-free” approach, our inference approach also benefits from 289 

being “plug-and-play” in that it can easily accommodate any arbitrarily complex (or simple) 290 

epidemiological model structure. 291 

Based on fits to a simulated data set, we have shown that segregating site trajectories are highly 292 

informative of epidemiological parameters such as R0 and the timing of the index case t0.  As far 293 

as we are aware, only one other peer-reviewed tree-free phylodynamic inference method exists 294 

(Kim et al. 2017), and future work should compare the approach developed here against this and 295 

potentially other phylodynamic inferences approaches.  296 

Although there are clear benefits of the phylodynamic inference approach detailed here, it still 297 

relies on several assumptions that are also shared by other phylodynamic inference methods. 298 

Most notably, it relies on an assumption of random sampling of individuals. However, in contrast 299 

to coalescent-based models, the sampling rate does not have to be small relative to the number 300 

of infected individuals. Phylodynamic inference based on birth-death-sampling models instead 301 

requires the specification of a sampling process, such as a constant probability of an infected 302 

individual being sampled upon recovery/death (Stadler 2010). Misspecification of the sampling 303 

process can severely bias results, and much of the statistical power gained from these 304 

approaches appears to arise from the sequence of sample times rather than genealogical 305 

structure (Volz and Frost 2014). While our approach similarly requires an assumption of when 306 

individuals are sampled, our approach provides considerable flexibility in what assumptions are 307 

adopted, since the process model component of the state-space model can be easily 308 

implemented under any number of assumptions of when individuals are available for sampling. 309 

For example, in the compartmental model we used in the analysis of the France sequence data, 310 
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we could in principle assume that individuals could be sampled once they became infected during 311 

a time window, rather than if they recovered during the time window. 312 

The analysis we presented here focuses on phylodynamic inference using sequence data alone. 313 

In recent years, there has also been a growing interest in combining multiple data sources – for 314 

example, sequence data and epidemiological data or serological data - to more effectively 315 

estimate model parameters. The few studies that have managed to incorporate additional data 316 

while performing phylodynamic inference have shown the value in pursing this goal (Rasmussen 317 

et al. 2011; Li et al. 2017). As a next step, we aim to extend the segregating sites approach 318 

developed here to incorporate epidemiological data and/or serological data more explicitly. 319 

Straightforward extension is possible due to the state-space model structure that is at the core 320 

of the particle filtering routine we use. While the process model would stay the same, another 321 

observation model can be added that relates the underlying state variables (e.g., S, E, I, R) to 322 

observed case data for instance. This proposed approach mirrors a previously described 323 

approach (Rasmussen et al. 2011), which showed that combining multiple data sources improved 324 

parameter estimation.  325 

Our analysis focused on phylodynamic inference based on sequence data belonging to a single 326 

viral lineage, with a single index case. Our approach however can be expanded in a 327 

straightforward manner to multiple viral lineages, each with their own index case. This is 328 

especially useful in cases like SARS-CoV-2, where many regions have witnessed multiple clade 329 

introductions in fueling the start of more local epidemics (Gonzalez-Reiche et al. 2020; Miller et 330 

al. 2020). In this case, under the assumption that all lineages are phenotypically neutral and are 331 

expanding in subpopulations experiencing the same epidemiological parameters (e.g., R0), the 332 

inference code can be expanded to estimate a single set of epidemiological parameters along 333 

with multiple index case times, one corresponding to each viral lineage. When considering 334 

multiple clades, a single segregating sites trajectory would be calculated for each clade, such that 335 

multiple segregating site trajectories could be fit to at the same time.   336 

Our approach can also be extended in a straightforward manner to consider multiple clades that 337 

may be subject to different parameterizations for either intrinsic or extrinsic reasons. For 338 
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example, clades circulating in the same region may expand at different rates due to genetic 339 

differences between the clades that confer a selective advantage of one clade over others. In this 340 

case, multiple segregating site trajectories could again be calculated – one for each clade – and 341 

phylodynamic inference would involve estimating epidemiological parameters, some of which 342 

may be assumed to be similar across clades, while others such as R0 may differ between clades. 343 

As such, this inference method, which we initially developed for emerging pathogens with low 344 

levels of genetic diversity, may continue to be useful for endemic pathogens when questions 345 

involving emerging clades are a focus. Future work thus needs to determine when tree-free 346 

phylodynamic inference provides advantages over tree-based phylodynamic inference, and 347 

when tree-based methods provide better resolution into the dynamics of circulating virus 348 

populations. 349 

Materials and Methods 350 

Epidemiological model simulations and calculation of segregating site trajectories. We consider 351 

epidemiological models of arbitrary complexity that incorporate demographic stochasticity using 352 

Gillespie’s t-leap algorithm. As a concrete example of such an epidemiological model, we here 353 

use a susceptible-exposed-infected-recovered (SEIR) model whose dynamics are governed by the 354 

following equations: 355 

𝑆!"#! = 𝑆! − 𝑁$→&  356 

𝐸!"#! = 𝐸! + 𝑁$→& − 𝑁&→' 357 

𝐼!"#! = 𝐼! + 𝑁&→' − 𝑁'→(  358 

𝑅!"#! = 𝑅! + 𝑁'→(  359 

where: 360 

𝑁$→&~𝑃𝑜𝑖𝑠(𝛽
𝑆!
𝑁 𝐼!Δ𝑡) 361 

𝑁&→'~𝑃𝑜𝑖𝑠(𝛾&𝐸!Δ𝑡) 362 

𝑁'→(~𝑃𝑜𝑖𝑠(𝛾'𝐼!Δ𝑡) 363 
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Here, b is the transmission rate, N is the host population size, gE is the rate of transitioning from 364 

the exposed to the infected class, gI is the rate of recovering from infection, and Dt is the t-leap 365 

time step used. R0 is given by b /gI. While the epidemiological dynamics of this model can be 366 

simulated from the above equations alone, additional complexity is needed to incorporate virus 367 

evolution throughout the time period of the simulation. To incorporate virus evolution, we 368 

subcategorize both exposed individuals and infected individuals into genotype classes, with 369 

genotype 1 being the reference genotype present at the start of the simulation. Mutations to the 370 

virus occur at the time of transmission, with the number of mutations that occur in a single 371 

transmission event given by a Poisson random variable with mean µ, the per genome per 372 

transmission event mutation rate. We assume infinite sites such that new mutations necessarily 373 

result in new genotypes. New genotypes are numbered chronologically according to their 374 

appearance. When new mutations are generated at a transmission event, the new genotype is 375 

assumed to harbor the same mutation(s) as its infecting genotype plus any new mutations, which 376 

are similarly numbered chronologically based on appearance. We use a sparse matrix approach 377 

to store genotypes and their associated mutations to save on memory. 378 

Given this model, during a time step Dt, 𝑁&→' individuals are drawn at random from the set of 379 

individuals who are currently exposed; these will be the individuals who will transition to the 380 

infected class during this time step. Similarly, 𝑁'→(  individuals at drawn at random from the set 381 

of individuals who are currently infected; these will be the individuals who will transition to the 382 

recovered class during this time step. We further add 𝑁$→&  new individuals to the set of exposed 383 

class during time step Dt. For each newly exposed individual, we randomly choose (with 384 

replacement) a currently infected individual as its ‘parent’. If no mutations occur during 385 

transmission, then this new individual enters the same genotype class of its parent. If one or 386 

more mutations occur during transmission, then this new individual enters a new genotype class, 387 

and the sparse matrix is extended to document the new genotype and its associated mutations.  388 

We start the simulation with one infected individual carrying a viral genotype that we consider 389 

as the ‘reference’ genotype (genotype 1). To calculate a time series of segregating sites, we 390 

define a time window length T (T > Dt) of a certain number of days and partition the simulation 391 
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time course into discrete, non-overlapping time windows. During simulation, we keep track of 392 

the individuals that recover (transition from I to R) within a time window. For each time window 393 

i, we then sample ni of these individuals at random, where ni is the number of sequences sampled 394 

in a given time window based on the sampling scheme chosen. Because we have the genotypes 395 

of the sampled individuals from the sparse matrix, we can calculate for any time window i, the 396 

number of segregating sites Si. Si is simply the number of polymorphic sites across the sampled 397 

individuals in time window i.  398 

Phylodynamic inference using time series of segregating sites. Our phylodynamic inference 399 

approach relies on particle filtering, also known as Sequential Monte Carlo (SMC), to estimate 400 

model parameters and reconstruct latent state variables. The underlying forward model we use 401 

is formulated as a state-space model, with epidemiological variables (e.g., S, E, I, and R) being 402 

latent/unobserved variables in the process model. The model is simulated using Gillespie’s t-leap 403 

algorithm, as described in the section above. The evolutionary component of the model also 404 

contributes to the process model. For the observation model, we perform k ‘grabs’ of sampled 405 

individuals, with each ‘grab’ consisting of the following steps: 406 

• pick (without replacement) ni individuals from the set of individuals who recovered during 407 

time window i, where ni is the number of samples observed in the empirical dataset in 408 

window i.  We sample the same number of individuals as in the segregating sites dataset 409 

that the model interfaces with, since sampling effort impacts the number of segregating 410 

sites.  411 

• calculate the simulated number of segregating sites Si
sim, based on the genotypes of the 412 

sampled ni individuals (and their associated mutations).  413 

Between ‘grabs’, replacement of previously sampled individuals occurs. We then calculate the 414 

mean number of segregating sites for window i by taking the average of all k Si
sim values. Finally, 415 

we calculate the probability of observing Si segregating sites in window i, given the model-416 

simulated mean number of segregating sites, using a Poisson probability density function 417 

parameterized with the mean Si
sim value and evaluated at Si. We use a Poisson probability density 418 

function based on our observation that a Poisson distribution with the mean number of 419 
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segregating sites captures the distribution of Si
sim values from the ‘grabs’ effectively (Figure S2). 420 

These probabilities serve as the weights for the particles. Particle weights are calculated at the 421 

end of each time window with ni > 0. Particles are resampled at the end of each of these time 422 

windows according to their assigned weights. Particles with stochastic extinction of the virus prior 423 

to the end of the last time window with ni > 0 have weights set to 0 in time window i. If the 424 

number of sampled individuals ni in time window i exceeds the total number of individuals who 425 

recovered in time window i, the particle weight is similarly set to 0. We run 10 SMC simulations 426 

for each parameter set considered, resulting in 10 log-likelihood values.  427 

For maximum likelihood estimation, weighted quadratic fitting is used, which is adapted from 428 

Ionides et al. (2017). First, we use local quadratic smoothing (LOESS) with a span of 0.75 to obtain 429 

the peak of the log-likelihood surface. The weight of each data point is determined by the 430 

distance between this peak, using the tri-cube weight function. After excluding data points with 431 

smaller weights by filtering out the smallest l ´ 100 percent, a quadratic function is fitted to data 432 

points based on weights. For Figure 2C, the l for the quadratic fit was set to 0.5. For Figure 3B, 433 

the l was set to 0.75, and for Figure 3C, the l was set to 0.55. Latent state variables are 434 

reconstructed by randomly sampling a particle’s x0:tend at the end of an SMC simulation, where 435 

tend is the date at which the last sampled time window ends. All of our SMC simulations were 436 

performed with 200 particles. We used k = 100 ‘grabs’ for the simulated data and, in the interest 437 

of time, k = 50 ‘grabs’ for the France data. 438 

Note that the complexity of this phylodynamic method is largely independent of the number of 439 

input sequences, in contrast to phylodynamic inference approaches that rely on integrating over 440 

phylogenetic uncertainty with BEAST.  441 

Implementation of the transmission heterogeneity model. We implement transmission 442 

heterogeneity by subcompartmentalizing the infected classes into a high-transmission and a low-443 

transmission class, as has been done elsewhere (Volz and Siveroni 2018; Miller et al. 2020). For 444 

an SEIR model, the model extended to incorporate transmission heterogeneity becomes: 445 

𝑆!"#! = 𝑆! − 𝑁$→&  446 
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𝐸!"#! = 𝐸! + 𝑁$→& − 𝑁&→'! − 𝑁&→'"  447 

𝐼),!"#! = 𝐼),! + 𝑁&→'! − 𝑁'!→(  448 

𝐼+,!"#! = 𝐼+,! + 𝑁&→'" − 𝑁'"→(  449 

𝑅!"#! = 𝑅! + 𝑁'!→( + 𝑁'"→(  450 

where: 451 

𝑁$→&~𝑃𝑜𝑖𝑠(𝛽)
$#
,
𝐼),!Δ𝑡) + 𝑃𝑜𝑖𝑠(𝛽+

$#
,
𝐼+,!Δ𝑡)  452 

𝑁&→'~𝑃𝑜𝑖𝑠(𝛾&𝐸!Δ𝑡) 453 

𝑁&→'!~𝐵𝑖𝑛(𝑁&→' , 𝑝)) 454 

𝑁&→'" = 𝑁&→' − 𝑁&→'!  455 

𝑁'!→	(~𝑃𝑜𝑖𝑠(𝛾'𝐼),!Δ𝑡) 456 

𝑁'"→(~𝑃𝑜𝑖𝑠(𝛾'𝐼+,!Δ𝑡) 457 

The parameter ph quantifies the proportion of exposed individuals who transition to the highly 458 

infectious Ih class. Parameters bh and bl quantify the transmission rates of the infectious classes 459 

that have high and low transmissibility, respectively. We set the values of bh and bl based on a 460 

given parameterization of overall R0 and the parameter ph. To do this, we first define, as in 461 

previous work (Volz and Siveroni 2018; Miller et al. 2020), the relative transmissibility of infected 462 

individuals in the Ih and Il classes as 𝑐 = .!
."

. We further define a parameter P as the fraction of 463 

secondary infections that resulted from a fraction ph of the most transmissible infected 464 

individuals. Based on given values of ph and P, we set c, as in previous work (Miller et al. 2020), 465 

to  
/
$%&!
&!

0

1$'234
. With c defined in this way, ph is interpreted as the proportion of most infectious 466 

individuals that result in P = 80% of secondary infections. Recognizing that 𝑅5 =	
6!.!"(326!)."

9(
 in 467 

this model, we can then solve for bl:  	 ()9(
6!:"(326!)

, and set 𝛽) = 𝑐𝛽+ . 468 
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Epidemiological model structure and parameterization used for the France analysis. 469 

The process model we use in our phylodynamic inference of the France sequence data is based 470 

on a previously published epidemiological model for SARS-COV-2 in France (Salje et al. 2020). We 471 

base our process model on this published model to allow for a direct comparison of inferred R0 472 

values between our sequence-based analysis and their analysis that focuses over a similar time 473 

period. Their analysis was based on fitting an epidemiological model to a combination of case, 474 

hospitalization, and death data. Their model structure, implemented using Gillespie’s t-leap 475 

algorithm, is given by: 476 

𝑆!"#! = 𝑆! − 𝑁$→&3 477 

𝐸3,!"#! = 𝐸3,! + 𝑁$→&3 − 𝑁&3→&; 478 

𝐸;,!"#! = 𝐸;,! + 𝑁&3→&; − 𝑁&;→' 479 

𝐼!"#! = 𝐼! + 𝑁&;→' − 𝑁'→(  480 

𝑅!"#! = 𝑅! + 𝑁'→(  481 

where: 482 

𝑁$→&3~𝑃𝑜𝑖𝑠(𝛽
$#
,
𝐼!Δ𝑡) + 𝑃𝑜𝑖𝑠(𝛽

$#
,
𝐸;,!Δ𝑡)  483 

𝑁&3→&;~𝑃𝑜𝑖𝑠(𝛾&3𝐸3,!Δ𝑡) 484 

𝑁&;→'~𝑃𝑜𝑖𝑠(𝛾&;𝐸;,!Δ𝑡) 485 

𝑁'→	(~𝑃𝑜𝑖𝑠(𝛾'𝐼!Δ𝑡) 486 

with b being the transmission rate, the average duration of time spent in the E1 class given by 487 

1/𝛾&3 = 4 days, the average duration of time spent in the E2 class given by 1/𝛾&; = 1 day, and the 488 

average duration of time spent in the infected class given by 1/𝛾' = 3 days. While exposed class 489 

2 (E2) and infected class I both transmit as efficiently, their model contains this level of detail to 490 

more effectively interface with the case data, where symptoms do not appear before an 491 

individual is infected (in class I). We keep with this model, rather than reducing it to having only 492 
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a single exposed class and a single infectious class to keep the same distribution of infected times 493 

as in their model. 494 

Because SARS-CoV-2 dynamics are characterized by substantial levels of transmission 495 

heterogeneity (Adam et al. 2020; Miller et al. 2020; Sun et al. 2021) and we have shown in Figure 496 

1 that transmission heterogeneity impacts segregating site trajectories, we expanded the 497 

compartmental epidemiological model described above to include transmission heterogeneity in 498 

a manner similar to the one we used in Figures 1E, F. Based specifically on the analysis by Sun 499 

and coauthors (Sun et al. 2021), we set ph to 0.15, such that 15% of infections are responsible for 500 

80% of secondary infections.  501 

Estimation of the per genome, per transmission event mutation rate 502 

We set the per-genome, per-transmission mutation rate parameter µ to 0.33. This is based on 503 

the fit of a Poisson distribution to the number of de novo substitutions between 87 transmission 504 

pairs of SARS-CoV-2 from four studies (James et al. 2020; Popa et al. 2020; Braun et al. 2021; 505 

Lythgoe et al. 2021). Accession numbers for 78/87 of these transmission pairs are available in 506 

Table S1. Accession numbers for the remaining pairs were provided by the corresponding authors 507 

of the relevant publication (Lythgoe et al. 2021) Sequence data were aligned to Wuhan/Hu-1 508 

(MN908947.3) (Wu et al. 2020) using MAFFT v.7.464 (Katoh 2002). Insertions relative to 509 

Wuhan/Hu-1 were removed and the first 55 and last 100 nucleotides of the genome were masked. 510 

De Novo substitutions for each pair were identified in Python v.3.9.4 (http://www.python.org) 511 

using NumPy v.1.19.4 (Harris et al. 2020). Ambiguous nucleotides were considered in the 512 

identification of de novo substitutions (i.e. an R nucleotide was assumed to match both an A and 513 

a G). The mean number of substitutions between transmission pairs is the Maximum Likelihood 514 

Estimate for the λ parameter of the Poisson distribution. The 95% confidence intervals were 515 

calculated using the exact method using SciPy v.1.5.4 (SciPy 1.0 Contributors et al. 2020) such 516 

that the lower bound was 
(<*+,).)*.
* )/;

>?
 and the upper bound was 

(<*(+0$),).23.
* )/;

>?
 where Y is the total 517 

number of observed substitutions.  518 
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The value for µ = 0.33 is consistent with population-level substitution rate estimates for SARS-519 

CoV-2, which range from 7.9 x 10-4 to 1.1 x 10-3 substitutions per site per year (Duchene et al. 520 

2020; Pekar et al. 2020). With a genome length of SARS-CoV-2 of approximately 30,000 521 

nucleotides and a generation interval of approximately 4.5 days (Griffin et al. 2020), these 522 

population-level substitution rates would correspond to per genome, per transmission mutation 523 

rates of between 0.29 and 0.41, respectively.  524 

Estimation of segregating site trajectories for the France data. 525 

We downloaded all complete and high-coverage SARS-CoV-2 sequences with complete sampling 526 

dates sampled through March 17th, 2020 (https://www.france24.com/en/20200316-live-france-527 

s-macron-addresses-nation-amid-worsening-coronavirus-outbreak) in France and uploaded 528 

through April 29th, 2021 from GISAID (Shu and McCauley 2017). Sequences were aligned to 529 

Wuhan/Hu-1 using MAFFT v.7.464 Insertions relative to Wuhan/Hu-1 were removed. Any 530 

sequences with fewer than 28000 A, C, T, or G characters were removed. Following this filtering 531 

protocol our dataset included 479 sequences. We masked the first 55 and last 100 nucleotides in 532 

the genome as well as positions marked as “highly homoplasic” in early SARS-CoV-2 sequencing 533 

data (https://github.com/W-L/ProblematicSites_SARS-CoV2/blob/master/archived_vcf/ 534 

problematic_sites_sarsCov2.2020-05-27.vcf). Pairwise SNP distances were calculated in a 535 

manner that accounted for IUPAC ambiguous nucleotides in Python using NumPy. To subset 536 

these data to a single clade circulating within France, we identified the connected components 537 

of this pairwise distance matrix with a cutoff of 1 SNP in Python using SciPy and identified the 538 

shared SNPs relative to Wuhan/Hu-1 between all sequences in each connected component. The 539 

largest connected component contained 308 sequences which shared the substitutions C241T, 540 

C3037T, C14408T, and A23403G. Our final dataset included these 308 as well as 122 sequences 541 

from connected components that shared these four substitutions relative to Wuhan/Hu-1. We 542 

included connected components in which all sequences had an N at any of the four clade-defining 543 

sites of the largest connected component. Two sequences were excluded as they differed from 544 

all other sequences in the dataset by > 7 SNPs. This dataset is similar to the set of sequences 545 

analyzed in Danesh et al. (2020). Sequences were binned into four-day windows, aligned such 546 

that the last window ended on the latest sampling date, and the number of segregating sites in 547 
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each window calculated in Python using NumPy. Ambiguous nucleotides were considered in the 548 

calculation of segregating sites.  549 

Phylogenetic analysis of SARS-CoV-2 sequences from France. 550 

To confirm that the subset of sequences from France obtained from finding connected 551 

components formed an evolutionary lineage/clade, we first combined the 479 sequences 552 

sampled from France with 100 randomly-selected complete, high-coverage, collected date 553 

complete sequences sampled from outside France through March 17th, 2020 and uploaded to 554 

GISAID through April 29th, 2021. These sequences were aligned to Wuhan/Hu-1 using MAFFT, 555 

insertions were removed, and the sites described above were masked. This alignment was 556 

concatenated with the aligned sequences from France. IQ-Tree v. 2.0.7 (Minh et al. 2020) was 557 

used to construct a maximum likelihood phylogeny, and ModelFinder (Kalyaanamoorthy et al. 558 

2017) was used to find the best fit nucleotide substitution model (GTR+F+I). Small branches were 559 

collapsed. TreeTime v. 0.8.0 (Sagulenko et al. 2017) was used to remove any sequences with 560 

more than four interquartile distances from the expected evolutionary rate, rooting at 561 

Wuhan/Hu-1. Treetime was also used to generate a time-aligned phylogeny assuming a clock rate 562 

of 1 x 10-3 with a standard deviation of 5 x 10-4, a skyline coalescent model, marginal time 563 

reconstruction, accounting for covariation, and resolving polytomies.  564 

Maximum likelihood phylogenies were visualized in Python using Matplotlib v. 3.3.3 (Hunter 565 

2007) and Baltic (https://github.com/evogytis/baltic).  566 

Availability of code. 567 

Python code used for generation of all figures is available on GitHub:  568 

https://github.com/koellelab/segregating-sites  569 

  570 
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FIGURES 571 

 572 

 573 

Figure 1. Segregating site trajectories under simulated epidemiological dynamics. (A) Simulated 574 

dynamics of infected individuals (I) under an SEIR model simulated with an R0 of 1.6. (B) Segregating site 575 

trajectories under dense and sparse sampling. Dense sampling (blue lines) corresponds to 40 sequences 576 

sampled per time window. Sparse sampling (red lines) corresponds to 20 sequences sampled per time 577 

window. (C) Simulated dynamics of infected individuals (I) under an SEIR model simulated with an R0 of 578 

2.0 (purple line) compared to those of the R0 = 1.6 simulation (blue line). A higher transmission rate was 579 

used to generate the higher R0 value of 2.0. (D) Segregating site trajectories for the R0 = 2.0 simulation 580 

(purple lines) and the R0 = 1.6 simulation (blue lines). Both simulations are densely sampled (40 sequences 581 

sampled per time window). (E) Simulated dynamics of infected individuals (I) under an SEIR model with 582 

an R0 of 1.6 and incorporating transmission heterogeneity (teal, dashed line) compared to those of the 583 

original R0 = 1.6 simulation (blue line) without transmission heterogeneity. Transmission heterogeneity 584 

was included by setting ph = 0.06, resulting in 6% of the most infectious individuals being responsible for 585 

80% of secondary infections. For ease of comparing segregating site trajectories, the transmission 586 

heterogeneity simulation was shifted later in time such that its epidemic peak aligned with the simulation 587 

without transmission heterogeneity (teal, solid line). (F) Segregating site trajectories for the shifted 588 

transmission heterogeneity simulation (teal lines) and the simulation without transmission heterogeneity 589 

(blue line). Both simulations are densely sampled (40 sequences sampled per time window). (G) Simulated 590 

dynamics of infected individuals (I) under an SEIR model simulated with changing R0. Changes in R0 591 

occurred when the number of infected individuals reached 400. The simulation in red has R0 decreasing 592 

to 1.1. The simulation in yellow has R0 decreasing to 0.75. The simulation in blue has R0 remaining at 1.6. 593 

(H) Segregating site trajectories for the three simulations shown in Figure 1G. All three simulations are 594 
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densely sampled (40 sequences sampled per time window). In all model simulations, 𝛾! = 1/2 days-1, 595 

𝛾" = 1/3 days-1, population size N = 105, and the per genome, per transmission mutation rate µ = 0.2. 596 

Initial conditions are S(t0) = N-1, E(t0) = 0, I(t0) = 1, and R(t0) = 0. For the transmission heterogeneity 597 

simulation (subplot E), initial conditions are S(t0) = N-1, E(t0) = 0, Ih(t0) = 1, Il(t0) = 0, and R(t0) = 0. A time 598 

step of t = 0.1 days was used in the Gillespie t -leap algorithm. Time windows of T = 4 days were used to 599 

bin sequences for the segregating sites calculation. 100 different segregating site trajectories are shown 600 

for each simulation.  601 

 602 

  603 
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 604 

Figure 2. Phylodynamic inference on a simulated trajectory of segregating sites. (A) The number of 605 

sampled sequences over time, by time window. Sampling was done in proportion to the number of 606 

individuals recovering in a time window. In all, 1000 sequences were sampled over the course of the 607 

simulated epidemic. The number of samples in a given time window was constrained to be ≤100. (B) 608 

Simulated segregating site trajectory from the sampled sequences. (C) Estimation of R0 using SMC. Points 609 

show log-likelihood values from different SMC simulations across a range of R0 values between 1.2 and 610 

2.5, in 0.05 increments. Smoothed likelihood surface was obtained by LOESS smoothing with a span of 611 

0.75. Inset: Maximum likelihood estimation of R0 using quadratic fitting. Black points in inset show log-612 

likelihood values from different SMC simulations across a range of R0 values between 1.4 and 1.8. The 613 

vertical black dashed line shows the maximum likelihood estimate (MLE) of R0 (1.59). The red band shows 614 

the 95% confidence interval of R0 (1.49 – 1.64).  MLE and 95% CI were obtained from fitting a quadratic 615 

function to the log-likelihood values shown in the inset, using a similar approach to the one outlined in 616 

Ionides et al. (2017) with a l value of 0.5. 95% CI were set at the values of R0 corresponding to the 617 

maximum likelihood value at the peak of the quadratic curve minus 1.92 log-likelihood units. Model 618 

parameters for the simulated data set are: 𝑅#= 1.6,  𝛾!= 1/2 days-1, 𝛾" = 1/3 days-1, population size N = 619 

105, t0 = 0, and the per genome, per transmission mutation rate µ = 0.2. Initial conditions are S(t0) = N-1, 620 

E(t0) = 0, I(t0) = 1, and R(t0) = 0. A time step of t = 0.1 days was used in the Gillespie t -leap algorithm. A 621 

time window of T = 4 days was used to bin sequences for the segregating sites calculation. 622 
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 624 

Figure 3. Joint estimation of the basic reproduction number (R0) and the timing of the index case (t0) 625 

using simulated data. (A) The likelihood surface based on the segregating site trajectory shown in Figure 626 

2B is shown over a broad range of R0 values (1.2 to 2.4, in 0.1 increments) and t0 values (from 60 days 627 

prior to 56 days following the true t0 of 0 in 2-day increments). Blank cells yielded log-likelihood values of 628 

<-1281. Log-likelihood values shown in each cell across this broad range of R0 and t0 are mean log-629 

likelihood values calculated from 10 SMC simulations at each parameterization. (B-C) Profile likelihood for 630 

R0 (B) and t0 (C). Profile likelihoods were calculated using an approach similar to the one outlined in Ionides 631 

et al. (2017). The LOESS fit is shown with a dotted black line. The quadratic fit is shown with a solid black 632 

line. Points included in the quadratic fit are shown in red; points excluded from the quadratic fit are shown 633 

in gray. The shaded red area is the 95% confidence interval for the focal parameter. The shaded blue area 634 

shows the range of log-likelihood values that fall within 1.92 log-likelihood values of the quadratic fit’s 635 

maximum value. 636 
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 638 

 639 

Figure 4. Trajectories of reconstructed unobserved state variables for the simulated dataset. (A) 640 

Simulated trajectory of the number of segregating sites (red), alongside reconstructed trajectory of the 641 

number of segregating sites from 10 sampled SMC particles (gray). For each SMC particle, a combination 642 

of t0 and R0 values of 10 SMC iterations were randomly chosen based on their log-likelihood values. (B) 643 

Simulated dynamics of susceptible individuals (red), alongside reconstructed dynamics of susceptible 644 

individuals from these SMC simulations (gray). (E) Simulated dynamics of exposed individuals (red), 645 

alongside reconstructed dynamics of exposed individuals (gray). (F) Simulated dynamics of infected 646 

individuals (red), alongside reconstructed dynamics of infected individuals (gray).  647 
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 649 

Figure 5. Sequences and parameters used in the estimation of R0 and t0 for the France data. (A) 650 

Sequences used in the phylodynamic analysis, plotted by their collection date and their nucleotide 651 

divergence from the Wuhan/Hu-1 reference sequence. (B) The number of sampled sequences over time, 652 

calculated using a T = 4 day time window. (C) The segregating site trajectory calculated from the sampled 653 

sequences, using the same T = 4 day time window shown in (B). (D) Estimation of the per genome, per 654 

transmission mutation rate µ. Blue histogram plots the fraction of transmission pairs with consensus 655 

sequences that differed from one another by the number of mutations shown on the x-axis. The Poisson 656 

estimate from these data, shown in black, was µ = 0.33 (95% CI = 0.22-0.48). 657 
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 659 

Figure 6. Joint estimation of the basic reproduction number R0 and the timing of the index case t0 using 660 

the France data. (A) The joint log-likelihood surface based on the estimated segregating site trajectory for 661 

the France data. Each cell is colored according to the mean of log-likelihood for a t0, R0 combination 662 

obtained from 10 SMC simulations. (B-C) Profile likelihood for R0 (B) and t0 (C). Profile likelihoods were 663 

calculated using an approach similar to the one outlined in Ionides et al. (2017). The LOESS fit is shown 664 

with a dotted black line. The quadratic fit is shown with a solid black line. Points included in the quadratic 665 

fit are shown in red; points excluded from the quadratic fit are shown in black. The shaded red and blue 666 

areas are, as in Figures 3B and 3C, the 95% confidence interval for the focal parameter and the range of 667 

log-likelihood values that fall within 1.92 log-likelihood values of the quadratic fit’s maximum value. 668 
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 670 

 671 

Figure 7. Trajectories of reconstructed unobserved state variable for the France data. For the 672 

reconstruction of all state variables shown, a combination of two parameters, R0 and t0, are sampled 673 

based on their log-likelihood values from 10 SMC simulations. (A) Segregating site trajectory for the France 674 

data, alongside segregating site trajectories from 10 sampled SMC particles. (B) Reconstructed dynamics 675 

of the number of individuals in the first exposed class (E1), the second exposed class (E2), and the infected 676 

class (I). (C) Cumulative number of exposed individuals (yellow) and cumulative number of recovered 677 

individuals (purple) over time. The maximum likelihood estimate of the fraction of the population that 678 

had been infected with SARS-CoV-2 by mid-March, and the 95% confidence interval of this estimate, are 679 

shown in black. Estimates are from a serological study conducted during the time window March 9-15, 680 

2020 (Le Vu et al. 2021).  681 
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 683 

Figure S1. Inferred phylogenies for the sequences sampled from France, January 23-March 17, 2020. (A) 684 

Divergence tree, showing the number of nucleotide substitutions from Wuhan/Hu-1. Sequences from 685 

France are colored in blue, with dark blue coloring indicating sequences that were included in our single-686 

lineage analysis and light blue coloring indicating sequences that were excluded from our analysis. Tips 687 

colored in gray denote genetically similar sequences sampled from outside of France during this time 688 

period. (B) Time-aligned maximum likelihood phylogeny, with coloring of sequences as in (A).  689 
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  691 

Figure S2. Appropriateness of the Poisson distribution in the observation model.  Each subplot shows a 692 

time window i, with the blue vertical line indicating the observed value in that time window, Si. Each time 693 

window further shows a histogram of Si
sim values from 100 ‘grabs’ from a single randomly sampled particle. 694 

The dash-dotted black curves show Poisson probability mass functions, parameterized with the average 695 

of the Si
sim values.  696 

 697 

Table S1. Transmission pairs used to estimate the per genome, per transmission event mutation rate µ. 698 

Accession numbers of the consensus sequences from the donor and the recipient of the transmission pair 699 

are provided. 700 

 701 
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