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Abstract

Epidemiological models are commonly fit to case data to estimate model parameters and to infer
unobserved disease dynamics. More recently, epidemiological models have also been fit to viral
sequence data using phylodynamic inference approaches that generally rely on the
reconstruction of viral phylogenies. However, especially early on in an expanding viral population,
phylogenetic uncertainty can be substantial and methods that require integration over this
uncertainty can be computationally intensive. Here, we present an alternative approach to
phylodynamic inference that circumvents the need for phylogenetic tree reconstruction. Our
“tree-free” approach instead relies on quantifying the number of segregating sites observed in
sets of sequences over time and using this trajectory of segregating sites to infer epidemiological
parameters within a Sequential Monte Carlo (SMC) framework. Using forward simulations, we
first show that epidemiological parameters and processes leave characteristic signatures in
segregating site trajectories, demonstrating that these trajectories have the potential to be used
for phylodynamic inference. We then show using mock data that our proposed approach
accurately recovers key epidemiological quantities such as the basic reproduction number and
the timing of the index case. Finally, we apply our approach to SARS-CoV-2 sequence data from
France, estimating a reproductive number of approximately 2.2 and an introduction time of mid-
January 2021, consistent with estimates from epidemiological surveillance data. Our findings
indicate that “tree-free” phylodynamic inference approaches that rely on simple population
genetic summary statistics can play an important role in estimating epidemiological parameters

and reconstructing infectious disease dynamics, especially early on in an epidemic.
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Introduction

Phylodynamic inference methods use viral sequence data to estimate epidemiological quantities
such as the basic reproduction number and to reconstruct epidemiological patterns of incidence
and prevalence. These inference methods have been applied to sequence data across a broad
range of RNA viruses, including HIV (Stadler and Bonhoeffer 2013; Popinga et al. 2014; Ratmann
et al. 2017; Volz et al. 2017), ebola (Stadler et al. 2014; Vaughan et al. 2017; Volz and Siveroni
2018), dengue (Rasmussen et al. 2014), influenza (Rasmussen and Stadler), and most recently
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(Danesh et al. 2020; Miller et al.
2020; Geidelberg et al. 2021). Most commonly, phylodynamic inference methods rely on
underlying coalescent models or birth-death models. Coalescent-based approaches have been
generalized to accommodate time-varying population sizes and parameter estimation for
structured epidemiological models, for example, susceptible-exposed-infected-recovered (SEIR)
models and models with spatial compartmentalization (Volz 2012; Volz and Siveroni 2018). Birth-
death approaches (Stadler 2010; Stadler et al. 2012), where a birth in the context of infectious
diseases corresponds to a new infection and death corresponds to a recovery from infection,
instead carry other advantages, such as incorporating the role of demographic stochasticity in
disease dynamics, which may be particularly important in emerging diseases that start with low
infection numbers (Boskova et al. 2014). Both of these classes of phylodynamic inference
approaches rely on time-resolved phylogenies and have been incorporated into the
phylogenetics software package BEAST2 (Bouckaert et al. 2014: 2) to allow joint estimation of
epidemiological parameters and dynamics while integrating over phylogenetic uncertainty
(Stadler et al. 2013; Volz and Siveroni 2018). Integrating over phylogenetic uncertainty is crucial
when applying these methods to viral sequence data that are sampled over a short period of time
and contain only low levels of genetic diversity. However, integrating over phylogenetic
uncertainty is computationally intensive. Moreover, phylodynamic approaches that use
reconstructed trees for inference require estimation of parameters associated with models of

sequence evolution, along with parameters that are of more immediate epidemiological interest.
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Here, we present an alternative phylodynamic inference method that is particularly appropriate
to use when viral sequences are sampled over short time periods and when phylogenetic
uncertainty is considerable. This method does not rely on time-resolved phylogenies to infer
epidemiological parameters or to reconstruct patterns of viral spread. Instead, the “tree-free”
method we propose here fits epidemiological models to time series of the number of segregating
sites observed in a viral population that is sampled over time. Like existing coalescent-based
approaches, the approach we propose here allows for structured infectious disease models to be
considered in a straightforward “plug-and-play” manner. Like existing birth-death process
approaches, it incorporates the effect that demographic noise may have on epidemiological
dynamics. Below, we first describe how segregating site trajectories are calculated using
sequence data and how they are impacted by sampling effort, rates of viral spread, and
transmission heterogeneity. We then describe our proposed phylodynamic inference method
and apply it to simulated data to demonstrate the ability of this method to infer epidemiological
parameters and to reconstruct unobserved epidemiological dynamics. Finally, we apply our
segregating sites method to SARS-CoV-2 sequence data from France, arriving at quantitatively

similar parameter estimates to those arrived at using epidemiological data.
New Approaches

Mutations occur during viral replication within infected individuals and these have the potential
to be transmitted. During the epidemiological spread of an emerging virus, the virus population
(distributed across infected individuals) thus accrues mutations and diversifies genetically. This
joint process of viral spread and evolution can be simulated forward in time using compartmental
models, with patterns of epidemiological spread leaving signatures in the evolutionary trajectory
of the virus population. Parameters of these compartmental models that govern patterns of
epidemiological spread can thus be estimated using observed viral evolutionary trajectories.
Here, we develop a phylodynamic inference approach that fits compartmental epidemiological
models to times series of a low-dimensional evolutionary summary statistic. Specifically, we use
trajectories of the number of segregating sites from samples of the viral population taken over

time for phylodynamic inference. In Materials and Methods, we provide details on the simulation
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83  of epidemiological models that incorporate viral evolution and thus can yield simulated time
84  series of the number of segregating sites. We further describe our phylodynamic inference
85 approach that relies on using particle filtering (otherwise known as Sequential Monte Carlo; SMC)
86  to infer parameters for these epidemiological models of arbitrary complexity and to reconstruct

87  unobserved disease dynamics.

88  Results

89  Segregating site trajectories are informative of epidemiological dynamics.

90 Simulations of epidemiological models, as detailed in Materials and Methods, indicate that the
91 number of segregating sites that are observed over time in a viral population are sensitive to
92  sampling effort and are informative of epidemiological dynamics. To demonstrate this, we first
93 simulated a susceptible-exposed-infected-recovered (SEIR) model under an epidemic scenario
94  starting with a single infected individual (Figure 1A), further tracking the viral genotypes
95  according to the approach outlined in Materials and Methods. The effect of sampling effort is
96 shown in Figure 1B, which plots segregating site trajectories under dense sampling effort (40
97 sequences per 4-day time window) and under sparse sampling effort (20 sequences per 4-day
98 time window). At both of these sampling efforts, the number of segregating sites first increases
99 as the epidemic grows, as expected, with mutations accumulating in the virus population.
100 Following the peak of the epidemic, the number of segregating sites starts to decline as viral
101 lineages die out, reducing the amount of genetic variation present in the viral population. At
102  lower sampling effort, less of the genetic variation present in the viral population over a given
103  time window is likely to be sampled, resulting in a lower number of observed segregating sites

104  during any time window.

105 To assess whether segregating site trajectories could be used for phylodynamic inference, we
106  first considered whether these trajectories differed between epidemics governed by different
107  basic reproduction numbers (Ro values). Figure 1C shows simulations of the SEIR model under
108  two parameterizations of the basic reproduction number: an Rg of 1.6, corresponding to the
109  simulation shown in Figure 1A, and a higher Ro of 2.0. Differences in Ro were implemented by

110 differences in the transmission rate. The epidemic with the higher Ro grew more rapidly (Figure
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111 1C) and, under the same sampling effort, resulted in a more rapid increase in the number of
112  segregating sites (Figure 1D). This indicates that segregating site trajectories can be informative

113 of Ro early on in an epidemic.

114  We next considered the effect of transmission heterogeneity on segregating site trajectories.
115  Many viral pathogens are characterized by ‘superspreading’ dynamics, where a relatively small
116  proportion of infected individuals are responsible for a large proportion of secondary infections
117  (Lloyd-Smith et al. 2005). The extent of transmission heterogeneity is often gauged relative to
118  the 20/80 rule (the most infectious 20% of infected individuals are responsible for 80% of the
119  secondary cases (Woolhouse et al. 1997)), with some pathogens like SARS-CoV-2 exhibiting
120  extreme levels of superspreading, with as low as 6-15% of infected individuals responsible for 80%
121  of secondary cases (Althouse et al. 2020; Miller et al. 2020; Lemieux et al. 2021; Sun et al. 2021).
122  Because transmission heterogeneity is known to impact patterns of viral genetic diversity (Koelle
123 and Rasmussen 2012), we simulated the above SEIR model with transmission heterogeneity to
124  ascertain its effects on segregating site trajectories. Transmission heterogeneity was
125 implemented using a negative binomial distribution parameterized such that the most infectious
126 6% of infected individuals are responsible for 80% of the secondary cases (Materials and
127  Methods). Because transmission heterogeneity has a negligible impact on epidemiological
128  dynamics once the number of infected individuals is large (Keeling and Rohani 2008), these
129  simulated epidemiological dynamics should be quantitatively similar to one another, with
130 transmission heterogeneity simply expected to shorten the timing of epidemic onset in
131 simulations with successful invasion (Lloyd-Smith et al. 2005). Our simulations confirm this
132  pattern (Figure 1E). To compare segregating site trajectories between these simulations, we
133 therefore shifted the simulation with transmission heterogeneity later in time such that the two
134  simulated epidemics peaked at similar times (Figure 1E). Comparisons of segregating site
135  trajectories between these simulations indicated that transmission heterogeneity substantially
136  decreases the number of segregating sites during any time window (Figure 1F). These results
137  indicate that the number of segregating sites in principle could be informative of the extent of

138  transmission heterogeneity present in an unfolding epidemic. They also indicate that
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139  transmission heterogeneity needs to be taken into consideration when estimating

140 epidemiological parameters using segregating site trajectories.

141  Finally, we wanted to assess whether changes in Ro over the course of an epidemic would leave
142  signatures in segregating site trajectories. We considered this scenario because phylodynamic
143  inference has often been used to quantify the effect of public health interventions on Ry, most
144  recently in the context of SARS-CoV-2 (Danesh et al. 2020; Miller et al. 2020). We thus
145  implemented simulations with Ro starting at 1.6 and then either remaining at 1.6 or reduced to
146  either 1.1 or 0.75 when the number of infected individuals reached 400 (Figure 1G). The
147  segregating site trajectories for these three simulations indicate that reductions in Ro over the
148  course of an epidemic leave faint signatures in this low-dimensional summary statistic of viral
149  diversity, with the signature being more pronounced with a more precipitous drop in Ro (Figure

150  1H).
151  Phylodynamic inference using segregating site trajectories

152  To examine the extent to which phylodynamic inference based on segregating sites can be used
153  for parameter estimation, we generated a mock segregating site trajectory by forward simulating
154  an SEIR model with a Ro of 1.6, sampling viral sequences from this simulation (Figure 2A), and
155  calculating a segregating site trajectory from these sampled sequences (Figure 2B). Because the
156  duration of the exposed period and the duration of the infectious period are generally known for
157  viruses undergoing phylodynamic analysis, we fixed these parameters at their true values and
158  first attempted to estimate only Ro under the assumption that the timing of the index case tois
159  known. We estimated an Ro value of 1.59 (95% confidence interval of 1.49 to 1.64; Materials and
160 Methods; Figure 2C, 2C inset), demonstrating that phylodynamic inference using our segregating

161  sites approach applied to this simulated dataset is able to recover the true Ro value of 1.6.

162  Because the timing of the index case is almost certainly not known for an emerging epidemic, we
163  further attempted to estimate both Roand to using the segregating site trajectory shown in Figure
164  2B. To do this, we first considered the parameter space ranging from an Rpof 1.2 to 2.5 and from
165  atpof 60 days prior to the true start date of 0 to 56 days following this true start date. Considering

166  Rointervals of 0.02 and to intervals of 2 days, we ran 10 SMC simulations for every parameter
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167  combination. In Figure 3A, we plot the mean value of these 10 SMC log-likelihoods for every
168  parameter combination in the considered parameter space. Examination of this plot indicates
169  thatthereis alog-likelihood ridge that runs between early to/low Ro parameter combinations and
170  late to/high Ro parameter combinations. However, this ridge falls off on both edges, indicating
171  that the segregating sites approach can in principle estimate both ty and Ro. We therefore
172 calculated profile likelihoods for both Ro and to (Figures 3B, 3C; Materials and Methods), arriving
173  at an Roestimate of 1.50 (95% confidence = 1.34 to 1.67; Figure 3B) and a to value of -13.8 (95%
174  confidence = -27.8 to 0.3; Figure 3C) for the simulated dataset. While the maximum likelihood
175  estimate for Roran low and for to ran early, the confidence intervals contained the true values of
176  Ro=1.6 and to = 0, respectively. Our results indicate that joint estimation of these parameters is
177  thus possible. Using our estimates of Ro and to, we reconstructed the dynamics of the segregating
178  sites (Figure 4A) and unobserved state variables: the number of susceptible, exposed, and
179  infected individuals over time (Figures 4B, C, D). These reconstructed state variables captured
180 the true epidemiological dynamics, demonstrating that our segregating sites phylodynamic
181  inference approach can be used to estimate epidemiological variables that generally go

182  unobserved.
183  Phylodynamic inference for SARS-CoV-2 sequences from France

184  We applied the segregating sites inference approach to a set of SARS-CoV-2 sequences sampled
185  from France between January 23, 2020 and March 17, 2020, when a country-wide lockdown was
186  implemented. We decided to apply our approach to this set of sequences for several reasons.
187  First, a large fraction of the 479 available full-genome sequences from France over this time
188  period appear to be genetically very similar to one another (Gdmbaro et al. 2020), indicating that
189  one major lineage may have taken off in France (or at least, that most samples stemmed from
190 one major lineage). This lineage would be the focus of our analysis. Second, an in-depth analysis
191  previously inferred Ro for France prior to the March 17 lock-down measures that were
192  implemented (Salje et al. 2020). This analysis fit a compartmental infectious disease model to
193 epidemiological data that included case, hospitalization, and death data. Because our
194  phylodynamic inference approach can accommodate epidemiological model structures of

195  arbitrary complexity, we can adopt the same model structure as in this previous analysis. We can
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196  also set the epidemiological parameters that are assumed fixed in this previous analysis to their
197  same values. By controlling for model structure and the set of model parameters assumed as
198  given, we can ask to what extent sequence data corroborate the Ro estimates arrived at from

199  detailed fits to epidemiological data.

200 To apply our segregating sites approach to the viral sequences from France, we first identified
201 the subset of the 479 sequences that constituted a single, large lineage. To keep with the “tree-
202  free” emphasis of our approach, we identified this subset of n = 432 sequences without inferring
203  aphylogeny (Materials and Methods). Using phylogenetic inference, however, we confirmed that
204  our subset of sequences constituted a single evolutionary lineage (Figure S1). We calculated the
205 nucleotide distance from each sequence in this subset to Wuhan/Hu-1 (Wu et al. 2020)
206  (EPI_ISL_402125), a commonly used reference SARS-CoV-2 sequence that stemmed from a
207  sample collected in Wuhan, China in late December 2019. Using these nucleotide distances, we
208  estimated an evolutionary rate of 8.21 x 10 substitutions/site/yr (Figure 5A), consistent with the
209 range of inferred evolutionary rate estimates for SARS-CoV-2 (Duchene et al. 2020; Pekar et al.
210  2020). This provides another confirmation that this subset of sequences is a single evolutionary

211 lineage brought into France early on during the pandemic.

212 Togenerate a segregating site trajectory from these sequences, we established consecutive, non-
213 overlapping 4-day time windows such that the last time window ended on March 17, 2020. Figure
214 5B shows the number of sequences falling into each time window. Figure 5C shows the
215  segregating site trajectory calculated from these sequences. We jointly estimated Rpand tp using
216  this segregating site trajectory, under the assumption that the most infectious 15% of SARS-CoV-
217 2 infected individuals are responsible for 80% of secondary infections, based on literature
218  estimates of the extent of SARS-CoV-2 transmission heterogeneity (Sun et al. 2021) (Materials
219  and Methods). We parameterized the model with a per genome, per transmission mutation rate
220  of £ =0.33 using consensus sequence data from established SARS-CoV-2 transmission pairs that
221 were available in the literature (James et al. 2020; Popa et al. 2020; Braun et al. 2021; Lythgoe et
222 al. 2021) (Materials and Methods). Specifically, for each of the 87 transmission pairs we had
223 access to, we calculated the nucleotide distance between the consensus sequence of the donor

224  sample and that of the recipient sample and fit a Poisson distribution to these data (Figure 5D).
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225  Using this approach, we estimated a x value of 0.33 (95% confidence interval of 0.22 to 0.48),

226  corresponding approximately to one mutation occurring every 3 transmission events.

227  Similar to the approach we undertook with our simulated data to jointly estimate Ro and to, we
228  first considered a broad parameter space over which to calculate log-likelihood values.
229  Specifically, we considered Ro values between 1.2 and 3.4 (at intervals of 0.1) and to values
230 between December 2, 2019 and February 16, 2020 (at intervals of 2 days). We ran 10 SMC
231 simulations and calculated the mean log-likelihood for each parameter combination (Figure 6A).
232 Similar to our findings on the simulated data set, we found evidence for a log-likelihood ridge
233 between early to/low Ro and late to/high Ro parameter combinations. Profile log-likelihoods for
234 Rp and to are shown in Figures 5B and 5C, respectively, yielding an estimate of Ro = 2.22 (95%
235  confidence interval = 1.5 to 2.94) and an estimate of to = January 11 (95% confidence interval =
236  December 26, 2019 to January 28, 2020). Our maximum likelihood estimate of Ro is somewhat
237  lower than the Ro estimate arrived at through the epidemiological time series analysis that
238  presented the epidemiological model structure we adopted (Salje et al. 2020). That analysis
239  inferred an Ro of 2.9 (95% confidence interval = 2.81 to 3.01) in France over this same time period.
240 However, the confidence intervals of our analyses are relatively broad for Ro, and their estimate
241 of Ro = 2.9 falls within our 95% confidence interval. Our estimate is closer in line with estimates
242  of the reproduction number in Wuhan prior to travel restrictions being introduced (Ro = 2.35,
243 with 95% Cl of 1.15-4.77) (Kucharski et al. 2020) and with those estimated for Western European
244  countries using incidence data up through March 17, 2020 (Ro = 2.2, with 95% Cl of 1.9-2.6)
245  (Locatelli et al. 2021). Our estimate also aligns more closely with projections of Ro made
246  specifically for France, using outbreak data from Wuhan (Hilton and Keeling 2020): Ro= 2.2 and
247  Ro= 2.7, under different assumptions related to age-dependent susceptibility and infectiousness.
248  Finally, our Roestimates can be juxtaposed against results from phylodynamic analyses that used
249  a birth-death model to infer Ry during three distinct epochs in France using a similar set of
250 sequence data we analyze here (Danesh et al. 2020). Their second epoch spanned February 19
251  through March 7, and the Ro inferred for this time period was 2.56 (95% credible interval = 1.66
252  to 4.74). Our maximum likelihood estimate of to in the middle of January 2020 aligns well with

253  findings from Gambaro et al. ( 2020) and is further consistent with the estimate from Salje et al.
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254  (2020) that 58.65 (95% CI 37.85 — 88.37) individuals were present in the exposed (E1 class) on

255  January 22, 2020 based on fitting the epidemiological model to epidemiological data.

256  As we had done in our analysis of the simulated data set, we reconstructed the unobserved state
257  variables using sampled particles from SMC simulations parameterized with Ro and to values that
258  were sampled from the parameter space shown in Figure 6, weighted according to the log-
259  likelihood values of the parameter combination. Plotting of reconstructed segregating site
260 trajectories indicated a very good fit to the observed segregating site trajectory (Figure 7A). The
261  number of individuals in the E1, E3, and / classes increased exponentially over the time period
262  considered (Figure 7B), as expected for an epidemic with an Ro > 1. In Figure 7C, we plot the
263 reconstructed cumulative number of exposed individuals over time and the reconstructed
264  cumulative number of recovered individuals over time. These cumulative dynamics indicate that
265 by mid-March 0.004% to 0.069% of the population in France had become infected by this SARS-
266  CoV-2 lineage and that 0.001% to 0.017% of the population in France had recovered from
267  infection from this SARS-CoV-2 lineage. Depending on when seroconversion is assumed to occur,
268  these cumulative predictions can be compared against findings from a serological study that was
269  conducted over this time period in France (Le Vu et al. 2021). This study surveyed 3221 individuals,
270  finding that 0.41% of individuals (95% confidence interval = 0.05 to 0.88) had gotten infected
271 with SARS-CoV-2 by March 9 to 15, 2020. While these estimates fall slightly higher than our
272 predictions, we are considering only one SARS-CoV-2 lineage (albeit likely the dominant one
273  circulating during this time period), and would thus expect the cumulative positive proportion
274  we predict to be lower than overall (all lineage) serology estimates. Other reasons for possible
275 underestimation involve epidemiological model misspecification and inaccurate

276  parameterization, for example, of the extent of transmission heterogeneity pn.
277  Discussion

278  Here, we developed a phylodynamic inference approach to estimate epidemiological parameters
279  from virus sequence data. Our inference approach is a “tree-free” approach in that it does not
280 rely on the reconstruction of viral phylogenies to estimate model parameters. One benefit of

281  using a “tree-free” approach for parameter estimation of emerging viral pathogens is that, early
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282 on in an epidemic or pandemic, phylogenetic uncertainty is significant, and tree-based
283  phylodynamicinference approaches would need to integrate over this uncertainty, which is often
284  times computationally intensive. A second benefit of using a “tree-free” approach is that
285  parameters of the model of sequence evolution do not need to be estimated, reducing degrees
286  of freedom considerably. Instead of viral phylogenies being the data that statistically interface
287  with the epidemiological models, we use a low-dimensional summary statistic of the sequence
288 data, namely the number of segregating sites present in temporally-adjacent sets of viral
289  sequences. Beyond being a “tree-free” approach, our inference approach also benefits from
290  being “plug-and-play” in that it can easily accommodate any arbitrarily complex (or simple)

291  epidemiological model structure.

292  Based on fits to a simulated data set, we have shown that segregating site trajectories are highly
293  informative of epidemiological parameters such as Ro and the timing of the index case to. As far
294  as we are aware, only one other peer-reviewed tree-free phylodynamic inference method exists
295  (Kimetal. 2017), and future work should compare the approach developed here against this and

296  potentially other phylodynamic inferences approaches.

297  Although there are clear benefits of the phylodynamic inference approach detailed here, it still
298 relies on several assumptions that are also shared by other phylodynamic inference methods.
299  Most notably, it relies on an assumption of random sampling of individuals. However, in contrast
300 to coalescent-based models, the sampling rate does not have to be small relative to the number
301 of infected individuals. Phylodynamic inference based on birth-death-sampling models instead
302 requires the specification of a sampling process, such as a constant probability of an infected
303 individual being sampled upon recovery/death (Stadler 2010). Misspecification of the sampling
304 process can severely bias results, and much of the statistical power gained from these
305 approaches appears to arise from the sequence of sample times rather than genealogical
306  structure (Volz and Frost 2014). While our approach similarly requires an assumption of when
307 individuals are sampled, our approach provides considerable flexibility in what assumptions are
308 adopted, since the process model component of the state-space model can be easily
309 implemented under any number of assumptions of when individuals are available for sampling.

310  For example, in the compartmental model we used in the analysis of the France sequence data,
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311  we couldin principle assume that individuals could be sampled once they became infected during

312  atime window, rather than if they recovered during the time window.

313  The analysis we presented here focuses on phylodynamic inference using sequence data alone.
314 In recent years, there has also been a growing interest in combining multiple data sources — for
315 example, sequence data and epidemiological data or serological data - to more effectively
316  estimate model parameters. The few studies that have managed to incorporate additional data
317  while performing phylodynamic inference have shown the value in pursing this goal (Rasmussen
318 et al. 2011; Li et al. 2017). As a next step, we aim to extend the segregating sites approach
319 developed here to incorporate epidemiological data and/or serological data more explicitly.
320 Straightforward extension is possible due to the state-space model structure that is at the core
321  of the particle filtering routine we use. While the process model would stay the same, another
322  observation model can be added that relates the underlying state variables (e.g., S, E, I, R) to
323  observed case data for instance. This proposed approach mirrors a previously described
324  approach (Rasmussen et al. 2011), which showed that combining multiple data sources improved

325 parameter estimation.

326  Our analysis focused on phylodynamic inference based on sequence data belonging to a single
327 viral lineage, with a single index case. Our approach however can be expanded in a
328  straightforward manner to multiple viral lineages, each with their own index case. This is
329  especially useful in cases like SARS-CoV-2, where many regions have witnessed multiple clade
330 introductions in fueling the start of more local epidemics (Gonzalez-Reiche et al. 2020; Miller et
331 al. 2020). In this case, under the assumption that all lineages are phenotypically neutral and are
332  expanding in subpopulations experiencing the same epidemiological parameters (e.g., Ro), the
333 inference code can be expanded to estimate a single set of epidemiological parameters along
334  with multiple index case times, one corresponding to each viral lineage. When considering
335 multiple clades, a single segregating sites trajectory would be calculated for each clade, such that

336 multiple segregating site trajectories could be fit to at the same time.

337  Our approach can also be extended in a straightforward manner to consider multiple clades that

338 may be subject to different parameterizations for either intrinsic or extrinsic reasons. For
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339 example, clades circulating in the same region may expand at different rates due to genetic
340 differences between the clades that confer a selective advantage of one clade over others. In this
341  case, multiple segregating site trajectories could again be calculated — one for each clade — and
342  phylodynamic inference would involve estimating epidemiological parameters, some of which
343  may be assumed to be similar across clades, while others such as Rp may differ between clades.
344  As such, this inference method, which we initially developed for emerging pathogens with low
345 levels of genetic diversity, may continue to be useful for endemic pathogens when questions
346  involving emerging clades are a focus. Future work thus needs to determine when tree-free
347  phylodynamic inference provides advantages over tree-based phylodynamic inference, and
348 when tree-based methods provide better resolution into the dynamics of circulating virus

349  populations.
350 Materials and Methods

351  Epidemiological model simulations and calculation of segregating site trajectories. We consider
352  epidemiological models of arbitrary complexity that incorporate demographic stochasticity using
353  Gillespie’s t-leap algorithm. As a concrete example of such an epidemiological model, we here
354  use asusceptible-exposed-infected-recovered (SEIR) model whose dynamics are governed by the

355 following equations:

356 Styar =S¢ — Noog

357 Etyar = E¢ + Nsop — Ngog
358  Iyar = It + Ngsy — Niog
359 Riyar = Re + Niog

360 where:
.St
361  Ng_gp~Pois(f NItAt)

363  N;_gr~Pois(y;I;At)
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364  Here, Fis the transmission rate, N is the host population size, j is the rate of transitioning from
365 the exposed to the infected class, y is the rate of recovering from infection, and At is the t-leap
366  time step used. Ro is given by £ /x1. While the epidemiological dynamics of this model can be
367 simulated from the above equations alone, additional complexity is needed to incorporate virus
368 evolution throughout the time period of the simulation. To incorporate virus evolution, we
369  subcategorize both exposed individuals and infected individuals into genotype classes, with
370 genotype 1 being the reference genotype present at the start of the simulation. Mutations to the
371  virus occur at the time of transmission, with the number of mutations that occur in a single
372 transmission event given by a Poisson random variable with mean x4, the per genome per
373  transmission event mutation rate. We assume infinite sites such that new mutations necessarily
374  result in new genotypes. New genotypes are numbered chronologically according to their
375 appearance. When new mutations are generated at a transmission event, the new genotype is
376  assumed to harbor the same mutation(s) as its infecting genotype plus any new mutations, which
377  are similarly numbered chronologically based on appearance. We use a sparse matrix approach

378  to store genotypes and their associated mutations to save on memory.

379  Given this model, during a time step At, N¢_,; individuals are drawn at random from the set of
380 individuals who are currently exposed; these will be the individuals who will transition to the
381 infected class during this time step. Similarly, N;_ individuals at drawn at random from the set
382  of individuals who are currently infected; these will be the individuals who will transition to the
383  recovered class during this time step. We further add Ng_,z new individuals to the set of exposed
384 class during time step At. For each newly exposed individual, we randomly choose (with
385 replacement) a currently infected individual as its ‘parent’. If no mutations occur during
386  transmission, then this new individual enters the same genotype class of its parent. If one or
387 more mutations occur during transmission, then this new individual enters a new genotype class,

388 and the sparse matrix is extended to document the new genotype and its associated mutations.

389  We start the simulation with one infected individual carrying a viral genotype that we consider
390 as the ‘reference’ genotype (genotype 1). To calculate a time series of segregating sites, we

391  define a time window length T (T > At) of a certain number of days and partition the simulation


https://doi.org/10.1101/2021.07.07.451508

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451508; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

392  time course into discrete, non-overlapping time windows. During simulation, we keep track of
393  theindividuals that recover (transition from | to R) within a time window. For each time window
394 |, we then sample n; of these individuals at random, where niis the number of sequences sampled
395 in a given time window based on the sampling scheme chosen. Because we have the genotypes
396  of the sampled individuals from the sparse matrix, we can calculate for any time window i, the
397 number of segregating sites Si. Si is simply the number of polymorphic sites across the sampled

398 individuals in time window i.

399 Phylodynamic inference using time series of segregating sites. Our phylodynamic inference
400 approach relies on particle filtering, also known as Sequential Monte Carlo (SMC), to estimate
401  model parameters and reconstruct latent state variables. The underlying forward model we use
402 is formulated as a state-space model, with epidemiological variables (e.g., S, E, I, and R) being
403  latent/unobserved variables in the process model. The model is simulated using Gillespie’s z-leap
404  algorithm, as described in the section above. The evolutionary component of the model also
405  contributes to the process model. For the observation model, we perform k ‘grabs’ of sampled

406  individuals, with each ‘grab’ consisting of the following steps:

407 e pick (without replacement) niindividuals from the set of individuals who recovered during
408 time window i, where nj is the number of samples observed in the empirical dataset in
409 window i. We sample the same number of individuals as in the segregating sites dataset
410 that the model interfaces with, since sampling effort impacts the number of segregating
411 sites.

412 e calculate the simulated number of segregating sites Si™, based on the genotypes of the
413 sampled nj individuals (and their associated mutations).

414  Between ‘grabs’, replacement of previously sampled individuals occurs. We then calculate the
415 mean number of segregating sites for window i by taking the average of all k S™ values. Finally,
416  we calculate the probability of observing Si segregating sites in window i, given the model-
417  simulated mean number of segregating sites, using a Poisson probability density function
418  parameterized with the mean S™ value and evaluated at Si. We use a Poisson probability density

419 function based on our observation that a Poisson distribution with the mean number of
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420 segregating sites captures the distribution of S values from the ‘grabs’ effectively (Figure S2).
421  These probabilities serve as the weights for the particles. Particle weights are calculated at the
422  end of each time window with n; > 0. Particles are resampled at the end of each of these time
423  windows according to their assigned weights. Particles with stochastic extinction of the virus prior
424  to the end of the last time window with ni > 0 have weights set to 0 in time window i. If the
425  number of sampled individuals nj in time window i exceeds the total number of individuals who
426  recovered in time window i, the particle weight is similarly set to 0. We run 10 SMC simulations

427  for each parameter set considered, resulting in 10 log-likelihood values.

428  For maximum likelihood estimation, weighted quadratic fitting is used, which is adapted from
429  lonides etal. (2017). First, we use local quadratic smoothing (LOESS) with a span of 0.75 to obtain
430 the peak of the log-likelihood surface. The weight of each data point is determined by the
431  distance between this peak, using the tri-cube weight function. After excluding data points with
432  smaller weights by filtering out the smallest 4 x 100 percent, a quadratic function is fitted to data
433  points based on weights. For Figure 2C, the A for the quadratic fit was set to 0.5. For Figure 3B,
434  the A was set to 0.75, and for Figure 3C, the 4 was set to 0.55. Latent state variables are
435  reconstructed by randomly sampling a particle’s xo:tend at the end of an SMC simulation, where
436  tend is the date at which the last sampled time window ends. All of our SMC simulations were
437  performed with 200 particles. We used k = 100 ‘grabs’ for the simulated data and, in the interest

438  of time, k=50 ‘grabs’ for the France data.

439  Note that the complexity of this phylodynamic method is largely independent of the number of
440 input sequences, in contrast to phylodynamic inference approaches that rely on integrating over

441  phylogenetic uncertainty with BEAST.

442  Implementation of the transmission heterogeneity model. We implement transmission
443  heterogeneity by subcompartmentalizing the infected classes into a high-transmission and a low-
444  transmission class, as has been done elsewhere (Volz and Siveroni 2018; Miller et al. 2020). For

445  an SEIR model, the model extended to incorporate transmission heterogeneity becomes:

446 St+at =S¢ — Ns_g


https://doi.org/10.1101/2021.07.07.451508

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451508; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

447  E¢ine = E¢ + Nsop — Ny, — Ny,
448  Iptyae = Ine + Ngsp, — Niy g

449 ljpyone = I + Ngoyy — Npjor

450  Reypar = Ry + Nppor + Ny

451  where:

452 Ng_z~Pois(By %zh,tAt) + Pois(B, %IMM)
453  Ng_;~Pois(ygE:At)

454 Ng_;,~Bin(Ng_;, pn)

455  Ngop, = Ngop— Ngopy,

456 N, g~Pois(yIAt)

457 N;_g~Pois(yl,;At)

458  The parameter pn quantifies the proportion of exposed individuals who transition to the highly
459  infectious Iy class. Parameters £, and £ quantify the transmission rates of the infectious classes
460  that have high and low transmissibility, respectively. We set the values of £, and /£ based on a
461  given parameterization of overall Rp and the parameter pn. To do this, we first define, as in

462  previous work (Volz and Siveroni 2018; Miller et al. 2020), the relative transmissibility of infected

463  individuals in the Iy and /i classes as ¢ = /;—h We further define a parameter P as the fraction of
l

464  secondary infections that resulted from a fraction pn of the most transmissible infected
465 individuals. Based on given values of pn and P, we set ¢, as in previous work (Miller et al. 2020),

1—ph
466 to [f’h ]] With ¢ defined in this way, pn is interpreted as the proportion of most infectious

P

PrBrt+(1-pn)Bi in

467  individuals that result in P = 80% of secondary infections. Recognizing that R, = »
1

Royr

468  this model, we can then solve for f: —————,
ppc+(1-pp)

and set 8, = cf3;.
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469  Epidemiological model structure and parameterization used for the France analysis.

470  The process model we use in our phylodynamic inference of the France sequence data is based
471  ona previously published epidemiological model for SARS-COV-2 in France (Salje et al. 2020). We
472  base our process model on this published model to allow for a direct comparison of inferred Ro
473  values between our sequence-based analysis and their analysis that focuses over a similar time
474  period. Their analysis was based on fitting an epidemiological model to a combination of case,
475  hospitalization, and death data. Their model structure, implemented using Gillespie’s =leap

476  algorithm, is given by:

477 Seyae = St — Nsopa

478  Ejgiar = E1t + Nsspr — Npiopo
479 Eyiine = Ez¢ + Npisp2 — Neaoyg
480  Igypr = It + Ngzoy — Niop

481  Reyar = Ry + Niog

482  where:

483 Ny_p1~Pois(B2LI,At) + Pois(B LB, cAt)
484 Ngy,py~Pois(yg1Eq,cAt)

485  Ngy;~Pois(ygE; (At)

486  N;_, gp~Pois(y;I;At)

487  with S being the transmission rate, the average duration of time spent in the E1 class given by
488  1/yg1 =4 days, the average duration of time spent in the E; class given by 1/yg, =1 day, and the
489  average duration of time spent in the infected class given by 1/y; = 3 days. While exposed class
490 2 (E2) and infected class I both transmit as efficiently, their model contains this level of detail to
491 more effectively interface with the case data, where symptoms do not appear before an

492  individual is infected (in class /). We keep with this model, rather than reducing it to having only
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493  asingle exposed class and a single infectious class to keep the same distribution of infected times

494  as in their model.

495  Because SARS-CoV-2 dynamics are characterized by substantial levels of transmission
496  heterogeneity (Adam et al. 2020; Miller et al. 2020; Sun et al. 2021) and we have shown in Figure
497 1 that transmission heterogeneity impacts segregating site trajectories, we expanded the
498 compartmental epidemiological model described above to include transmission heterogeneity in
499  a manner similar to the one we used in Figures 1E, F. Based specifically on the analysis by Sun
500 and coauthors (Sun et al. 2021), we set pn to 0.15, such that 15% of infections are responsible for

501  80% of secondary infections.
502  Estimation of the per genome, per transmission event mutation rate

503 We set the per-genome, per-transmission mutation rate parameter x to 0.33. This is based on
504 the fit of a Poisson distribution to the number of de novo substitutions between 87 transmission
505  pairs of SARS-CoV-2 from four studies (James et al. 2020; Popa et al. 2020; Braun et al. 2021;
506 Lythgoe et al. 2021). Accession numbers for 78/87 of these transmission pairs are available in
507 Table S1. Accession numbers for the remaining pairs were provided by the corresponding authors
508 of the relevant publication (Lythgoe et al. 2021) Sequence data were aligned to Wuhan/Hu-1
509 (MN908947.3) (Wu et al. 2020) using MAFFT v.7.464 (Katoh 2002). Insertions relative to
510 Wuhan/Hu-1 were removed and the first 55 and last 100 nucleotides of the genome were masked.
511  De Novo substitutions for each pair were identified in Python v.3.9.4 (http://www.python.org)
512  using NumPy v.1.19.4 (Harris et al. 2020). Ambiguous nucleotides were considered in the
513 identification of de novo substitutions (i.e. an R nucleotide was assumed to match both an A and
514 a G). The mean number of substitutions between transmission pairs is the Maximum Likelihood
515  Estimate for the A parameter of the Poisson distribution. The 95% confidence intervals were
516  calculated using the exact method using SciPy v.1.5.4 (SciPy 1.0 Contributors et al. 2020) such

X3y 0.025)/2 (X%(Y+1),0.975)/2

517  that the lower bound was and the upper bound was where Y is the total

518 number of observed substitutions.
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