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Abstract 

Motivation 20 

Metabolomics is an increasingly common part of health research and there is need for pre-

analytical data processing. Researchers typically need to characterize the data and to exclude 

errors within the context of the intended analysis. While some pre-processing steps are common, 

there is currently a lack of standardization and reporting transparency for these procedures.  

 25 
Results 

Here we introduce metaboprep, a standardized data processing workflow to extract and 

characterize high quality metabolomics data sets. The package extracts data from pre-formed 

worksheets, provides summary statistics and enables the user to select samples and metabolites 

for their analysis based on a set of quality metrics. A report summarizing quality metrics and the 30 

influence of available batch variables on the data is generated for the purpose of open disclosure. 

Where possible, we provide users flexibility in defining their own selection thresholds.  

 

Availability and implementation 

metaboprep is an open-source R package available at https://github.com/MRCIEU/metaboprep 35 

 

Contact 

d.a.hughes@bristol.ac.uk or laura.corbin@bristol.ac.uk 

 

  40 
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1 Introduction 

In the last decade, the study of chemical products arising from biological processes has moved 

from chemometrics to epidemiology (Ala-Korpela, 2015). In particular, the use of metabolomics 

as a functional read-out of an individual’s current health is becoming increasingly popular 

(Miggiels et al., 2019). With rapid advances in technology and bioinformatics enabling the 45 

quantification of hundreds or even thousands of metabolites from a single biological sample, 

there is potential for these measurements to reveal valuable insights into biology and health. 

Both mass spectrometry (MS) and nuclear magnetic resonance (NMR) are common technologies 

used in the metabolomics field. Typically, laboratories have their own established protocols in 

sample preparation, generation of standards and controls, and corrections for instrument and run 50 

day variability. As a result, researchers are now able to access high quality curated metabolomics 

data at scale.  

 

Subsequent to the data generation by core facilities and prior to statistical analysis, researchers 

perform a series of data characterization and pre-analytical preparation steps. These may include 55 

(1) the identification of samples of poor quality, (2) the identification of metabolites that have 

unfavourable statistical properties and/or may not provide sufficient data for study analyses, and 

(3) to characterize statistical properties of the data that may be relevant to downstream analyses. 

The latter is needed to help inform decisions involving data normalizations, transformations and 

analytical considerations that revolve around missing data.  60 

 

Based on both our own experience and emerging literature published in this area (Barnes, 2020; 

Monnerie et al., 2020), it is clear that approaches for post-acquisition, pre-analytical data 

processing are varied both within and across analytical platforms. The general lack of 

methodological standardization makes combining and comparing data and results across studies 65 

difficult, thus impairing cross-study inference. Into this context, papers and researchers have 

recently called for standardization and transparency in reporting of metabolomic studies (van 

Roekel et al., 2019; Long et al., 2020; Karaman, 2017; Begou et al., 2018; Playdon et al., 2019). 

To some extent, this situation mirrors that seen in the field of genomics a decade ago; here, 

researchers responded with the development of standard protocols supported by open-source 70 

software tools such as EasyQC (Winkler et al., 2014). Under the assumption that, as in 
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genomics, collaboration and independent replication will be key in the utilization of 

metabolomics data going forward, it is important that this field progresses in optimizing 

workflows and recognizing where consistency can be achieved. In addition, efforts need to be 

made to improve transparency in the reporting of pre-analytical data processing.  75 

 

This paper introduces metaboprep, an R package developed to help those working with curated 

metabolomics data to achieve transparent and informed processing of their study sample data 

prior to statistical analysis. The package provides a detailed summary of the data, highlighting 

properties relevant both to setting sample/metabolite filtering criteria and to downstream 80 

analytical choices. metaboprep can process any flat text data file containing curated 

metabolomics data with minimal formatting. In addition, the metaboprep package is currently 

able to process data as supplied by two of the main biotech companies operating in this sector – 
1H-NMR data from Nightingale Health© (Helsinki, Finland) and ultra-high-performance liquid 

chromatography-tandem mass spectrometry (UPLC-MS/MS) data from Metabolon (Research 85 

Triangle Park, NC, USA). We demonstrate the use of metaboprep using the Born in Bradford 

(BiB) cohort, including 1,000 pregnant women with UPLC-MS/MS data (Metabolon), and The 

Avon Longitudinal Study of Parents and Children (ALSPAC), a birth cohort with 3,361 samples 

collected during early adulthood and analysed by NMR (Nightingale Health). 

 90 

2 Materials and methods 

Overview 

Metaboprep is an R package designed to standardise the steps involved in preparing population 

level metabolomics data sets for statistical analysis. It was written using R (version 3.6.0) (R 

Core Team, 2019), is dependent upon R version 3.4.0 or greater, and is available on GitHub 95 

(https://github.com/MRCIEU/metaboprep). A README is available on the metaboprep GitHub 

page that provides detailed instructions for running the metaboprep pipeline and functions used 

within. All analyses performed in this manuscript used R (version ≥ 3.4.0); code is available on 

the repository providing a walk-through of the metaboprep package. Data used here is available 

upon application from BiB and ALSPAC, and an example data set is also available on the 100 

GitHub repository. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451488
http://creativecommons.org/licenses/by-nc/4.0/


   

 5 

Data processing and filtering pipeline 

When run in its entirety, the metaboprep package performs five main actions: (1) extracts and 

processes (un)targeted metabolite data from source files, saving datasets in a standard tab-105 

delimited format for use elsewhere; (2) generates summary statistics from the initial raw data set 

which are exported to a standard tab-delimited text file;  (3) performs sample and metabolite 

filtering according to user-defined thresholds and using a standard pipeline; (4) repeats the 

generation of summary statistics but on the filtered data set; (5) and finally summarises the data 

in a PDF report while also reporting on the influence of available batch variables.  110 

 

An overview of the workflow is shown in Figure 1 and a brief description given below. A log 

file is generated detailing each step taken in the pipeline including the filtering thresholds 

defined by the user and the number of samples or metabolites excluded at each step. We do not 

normalize or transform the data in any way for the user, nor do we perform any imputation. This 115 

is because we feel decisions around whether and how to do these depend on specific analyses for 

specific research questions and the aim of metaboprep is to undertake processes that we consider 

valuable to be completed on metabolomics data before any main analyses. We do report on the 

normality (Shapiro-Wilk W-statistic) of log-transformed data in the PDF report to help inform 

the user on its appropriateness in parametric analyses.  120 

 

Running the R package 

The package can be run via the command line using a parameter file but can also be run in an 

interactive mode using the functions built within. The parameter file contains key information for 

running the pipeline including the project name, the path to the source data directory, the input 125 

file names, the platform the metabolomics data is derived from and the preferred filtering 

thresholds. Thresholds to be provided are: (1) the fraction of metabolite missingness retained, (2) 

the fraction of sample missingness retained, (3) the total sum abundance (TSA) threshold in 

standard deviations from the mean, (4) the principal component (PC) threshold for samples in 

standard deviations from the mean, and (5) if derived variables should be excluded (TRUE or 130 

FALSE). 
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Data Extraction 

Input data files can be in one of two possible formats, (1) excel spreadsheets as supplied by 

Nightingale Health or Metabolon; (2) formatted tab-delimited text files. When an excel 135 

spreadsheet is provided as the source data, the package extracts (a) the (semi-) quantified 

metabolite data, (b) the associated sample metadata (e.g. technical batch information, sample 

identifiers) and (c) the associated metabolite metadata (e.g. metabolite class/pathway, HMDB 

identifier) and writes each ‘raw’ (i.e. unaltered) data set to its own tab-delimited text file. 

Alternatively, the user can provide their (a) metabolite data, (b) optional sample metadata, and 140 

(c) optional metabolite metadata, as text files (.csv or .txt). The text files can contain metabolite 

abundance data from any platform.  

 

Special considerations are made for certain metabolites when the data is derived from the 

commercial platforms of Metabolon or Nightingale Health. In the case of Metabolon data, 145 

metabolites labelled as “xenobiotics” are excluded from calculations relating to sample 

missingness and do not follow the same processing pipeline as other metabolites. Xenobiotics are 

treated in this way because of their typically high level of missingness (or absence), which is 

both expected and biologically relevant given their (predominantly) exogenous origins. In the 

case of Nightingale Health data, many of the data summary and filtering steps are carried out 150 

having (optionally) excluded derived measures, which include a number of measures expressed 

as percentages or ratios. In brief, including these measurements could, for example, artificially 

inflate missingness estimates and lead to unwanted exclusions. See Discussion for further 

explanation on this point. 

 155 

Data summary 

A data summary is generated twice by the package. Once on the raw, unaltered dataset and again 

on the filtered (analysis ready) dataset. The summary includes a series of sample- and 

metabolite-based summary statistics. We use ‘sample’ here as a generic term that in many 

studies will mean the same as participant as analyses to generate metabolite data will have been 160 

run on one sample per participant. However, as some studies will have repeat samples drawn 

over time from the same participants, sample, as used here means each individual sample on 

which metabolites are measures. Sample-based summary statistics include (1) an estimate of 
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sample missingness, calculated as the proportion of missing (‘NA’) data and (2) total sum 

abundance (TSA; often referred to as total peak area (TPA) for those familiar with mass 165 

spectroscopy data), calculated for each sample by summing values across all metabolites. TSA 

provides an estimate of the total (measured) metabolite concentration in the sample. Sample 

missingness is estimated using (a) all metabolites and again (b) to the exclusion of any defined 

list of metabolites, such as xenobiotics or derived measures. Sample TSA is estimated using (a) 

all metabolites and (b) again using only those metabolites with no missing data. Additionally, an 170 

outlier occurrence count, or an integer count of the total number of times an individual’s 

metabolite value is more than five standard deviations from the mean metabolite concentration, 

is calculated and provided in the sample-based summary statistics file. Finally, subsequent to the 

estimation of metabolite summary statistics and the identification of representative metabolites, 

sample PC’s are estimated, and the top 10 PCs provided in the summary data. This latter step is 175 

detailed below. Metabolite-based summary statistics include metabolite missingness, sample size 

(n) or the count of individuals without missing (`NA`) data, and numerous other descriptive 

statistics including mean, standard deviation, skew, and the coefficient of variance. A direct 

measure of each metabolites’ data distribution conformity to normality is provided by an 

estimate of Shapiro’s W-statistic, provided for both untransformed and log10 transformed data 180 

distributions. In addition, for each metabolite a count of the number of outlying samples is 

provided as a further indication of skewness.  

 

For the purposes of defining correlation structure and identifying a subset of approximately 

independent or ‘representative’ metabolites from the complete set of metabolites, a data 185 

reduction step is performed. These analyses provide users with a count of the effective number of 

metabolites in their data set, which could be used for multiple testing correction, as well as a list 

of ‘representative’ metabolites. In the case of Nightingale Health NMR data or other data 

containing ratios of metabolites, derived measures can be excluded from this step. Further, data 

are restricted to common metabolites such that only those that are (a) variable and (b) have less 190 

than or equal to 20% missingness are included. A dendrogram is then constructed (‘stats’ 

package hclust() function, with method ‘complete’) based on a Spearman’s rho distance matrix 

(1-|Spearman’s rho|). A set of ‘k’ clusters (groups of similar metabolites) are identified based on 

a user-defined tree cut height (default 0.5 and equivalent to a Spearman’s rho of 0.5), using the 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451488
http://creativecommons.org/licenses/by-nc/4.0/


   

 8 

function cutree() from the ‘stats’ package. For each ‘k’ cluster the metabolite with the least 195 

missingness is then tagged as the representative metabolite for that cluster. Representative 

metabolites are identified by 1’s in the metabolite summary statistics file in the column 

“independent_features_binary”. 

 

A principal component analysis (PCA) is conducted to evaluate inter-individual variability in 200 

metabolomic profiles. This sample-based analysis uses only the subset of representative 

metabolites previously identified. Strictly for the purposes of deriving the PCs, missing values 

are imputed to the median and data then standardised (z-transformed) so that the mean equals 

zero and the standard deviation equals one for each metabolite. The variance explained for each 

PC is extracted and an estimate of the number of PCs (n) to retain is estimated, by both the 205 

acceleration factor and parallel analysis with the function nScree() from the ‘nFactors’ R 

package. The estimate of n derived by the acceleration factor, with a defined minimum of two, is 

used to identify sample outliers or those that deviate too far from the mean on those n PCs. By 

default, the outlier threshold is defined as five standard deviations from the mean, but this can be 

set by the user.  210 

 

The summary statistics described above are written to two tab-delimited text files, one for 

samples and one for metabolites, and additionally once for the raw dataset and once for the 

filtered dataset. In addition, key statistics are reported (including graphically) in a PDF report 

(see below).   215 

 

Data filtering 

The next step in the pipeline is to derive a version of the metabolomics dataset which has 

undergone sample and metabolite filtering according to the user specifications provided in the 

parameter file. The first step is to remove, first samples, and then metabolites with extremely 220 

high rates of missingness (>=80%). In the second step, missingness is recalculated and sample 

and metabolite exclusions are made according to the user-defined thresholds for missingness 

with a default suggested value of 0.2 or 20%. Sample exclusions are then made on TSA, using 

only metabolites with complete data, according to user-defined thresholds with a suggested 

default of five standard deviations from the mean. Then, using all remaining samples and 225 
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metabolites, the clustering and sample PCA steps described previously (as part of the data 

summary) are repeated. Results of the PCA are used to identify sample outliers for exclusion, 

defined as those that lie more than the user-defined threshold from the mean on n PCs where n is 

defined by the acceleration factor (as described previously). The default suggested threshold 

value is five standard deviations from the mean. This post-filtering version of the metabolite data 230 

is then passed back through the data summary procedure described above and finally exported in 

flat text format.  

 

The most appropriate thresholds for sample and feature missingness will depend on both the total 

sample size and the intended analysis and we recommend users consider carefully the thresholds 235 

they set. Additionally, sample metabolome profile exclusions (TSA and PCA) are set at five 

standard deviations from the mean, as we have observed this to be a reasonable threshold to 

exclude samples that perform poorly, when sampling a random presumptively healthy 

population. If sampling something similar to a case-control study design where extremes are 

perhaps expected or indeed a study sample with known substructure (e.g. different sample types) 240 

it would be advisable to evaluate the distributions in the packages PDF report (see below) and 

consider modifying these parameters.  

 

PDF report 

The standardised PDF report (designed for inclusion in papers in order to facilitate data 245 

description and hence transparency) includes the project name, the platform, a workflow image, 

contact information for feedback, data summaries, and analysis of batch effects on key properties 

of the data – missingness and TSA. The data summary includes (1) an overview of the raw 

dataset: (1a) a visual of missingness in the data matrix, (1b) samples and metabolite missingness 

distributions; (2) an overview of the filtering steps: (2a) an exclusion summary, (2b) metabolite 250 

data reduction summary, and (2c) a PC plot illustrating sample structure and identifying potential 

sample outliers; (3) a summary of the filtered dataset: (3a) count of remaining samples and 

metabolites, (3b) distributions for sample missingness, metabolite missingness and TSA, (3c) a 

metabolite clustering dendrogram highlighting the representative metabolites, (3d) a metabolite 

data reduction summary, (3e) a PC plot of sample structure, (3f) histograms for Shapiro W-255 

statistic estimates across untransformed and log10 transformed metabolite abundances, and (3g) 
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a summary of sample and metabolite outliers. The report also includes an evaluation of the 

relationship between key sample properties (missingness rates and TSA) and potential batch 

variables, as provided by the user. Such variables include sample storage box identifier, run day, 

super- and sub-pathway, sampling data and time, and MS run mode. How these batch variables 260 

associate with missingness and TSA is illustrated in a series of boxplots that include an estimate 

of the variance explained by the batch, derived from a univariate analysis of variance and 

estimation of eta-squared using sums of squares. In addition, all the identified batch variables are 

placed in a type II multivariate analysis of variance and again the variance explained by each is 

summarised by the eta-squared statistic.  265 

 

A power analysis for continuous and binary traits is provided based on the sample size of the 

dataset and using functions from the ‘pwr’ R package. If researchers are interested in the 

relationship between metabolites and a continuous trait (for example, weight), power estimates 

are provided assuming a general linear model, whereas for the case of binary analyses (e.g. 270 

case/control) calculations are based on a two-sample t-test (allowing unequal sample sizes). The 

aim of these power calculations is to demonstrate the loss of power that can be expected as a 

result of varying degrees of missing data (i.e. as actual sample size decreases). During the 

generation of the main PDF report, a second PDF is written that contains, for each metabolite, a 

scatter plot identifying outlying data points and a histogram that includes selected summary 275 

statistics. Together, these two PDFs provide a quick overview and reference for the dataset. 

 

Example datasets 

Born in Bradford – Mass Spectrometry 

The Born in Bradford (BiB; https://borninbradford.nhs.uk/) study is a population-based 280 

prospective birth cohort based in Bradford, United Kingdom. Full details of study methodology 

have been reported previously (Wright et al., 2013). Ethical approval for the study was granted 

by the Bradford National Health Service Research Ethics Committee (ref 06/Q1202/48), and all 

participants gave written informed consent. For the data used in this example, women of White 

British (N=500) or Pakistani (N=500) ancestry were selected to have samples analysed on the 285 

basis of their having complete data on a set of pre-specified variables, including valid pregnancy 

fasting and post-load glucose measures, and both them and their index child having genome-
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wide data available (as described previously (Taylor et al., 2020) and in Supplementary Figure 

S1). Samples were collected during pregnancy at around 24-28 weeks’ gestation. Participant 

characteristics are shown in Supplementary Table S1. 290 

 

The untargeted metabolomics analysis of over 1,000 metabolites was performed on these 

samples at Metabolon, Inc. (Durham, North Carolina, USA) on a platform consisting of four 

independent ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS) runs. Detailed descriptions of the platform can be found in Supplementary Methods 295 

and in published work (DeHaven et al., 2010; Evans et al., 2009; Taylor et al., 2020). The 

resulting datasets comprised a total of 1,369 metabolites, of which 1,000 were of known identity 

(named biochemicals) at the time of analysis. This dataset will be referred to throughout as 

BiB_MS-1. 

 300 

Avon Longitudinal Study of Parents and Children - NMR 

The Avon Longitudinal Study of Parents and Children (ALSPAC; 

http://www.bristol.ac.uk/alspac/) is a prospective birth cohort study, based in the former region 

of Avon, United Kingdom. Detailed information about the methods and procedures of ALSPAC 

can be found in Supplementary Methods and in published work (Fraser et al., 2013; Boyd et 305 

al., 2013; Northstone et al., 2019). Ethical approval for the study was obtained from the 

ALSPAC Ethics and Law Committee and the Local Research Ethics Committees (a full list of all 

ethical approvals relating to ALSPAC are available online: 

http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Specifically ethical approval for 

the clinic in which samples were collected for this work was granted by the National Research 310 

Ethics Service Committee South West – Frenchay (14/SW/1173). Consent for biological samples 

has been collected in accordance with the Human Tissue Act (2004). 

 

NMR-derived metabolomics data were derived for 3,361 EDTA-plasma/serum samples collected 

from 3,277 unique individuals during the age 24 years clinic visit. Participant characteristics are 315 

shown in Supplementary Table S2. Quantification of selected circulating lipids, fatty acids, and 

metabolites was performed using a 1D proton (1H) NMR spectroscopy-based platform from 

Nightingale Health (Helsinki, Finland). Spectra were acquired using standardised parameters 
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using two NMR experiments or ‘molecular windows’ to characterise lipoproteins, low molecular 

weight metabolites and lipids. Further information relating to the data derivation can be found in 320 

Supplementary Methods and has been described previously (Inouye et al., 2010; Soininen et 

al., 2015, 2009). Raw metabolomics data pre-processing and quantification were as previously 

described (Soininen et al., 2015; Inouye et al., 2010; Soininen et al., 2009). The resulting dataset 

comprised a total of 225 metabolites (including 78 derived measures); this dataset will be 

referred to throughout as ALSPAC_F24. 325 

 

3 Results 

We used data from two established population-based cohorts (BiB_MS-1 and ALSPAC_F24) 

and two different analytical platforms (Metabolon and Nightingale Health) to demonstrate the 

utility of metaboprep. The summary PDF reports generated for each dataset can be found in 330 

Supplementary Data. The single core machine run times for the datasets were 3 and 10 minutes 

for ALSPAC_F24 and BiB_MS-1, respectively. An overview of each dataset based on the 

summary statistics generated by metaboprep prior to filtering are shown in Table 1. The choice 

of user-defined thresholds used in our analyses and the resulting exclusions made are 

summarised in Table 2. Based on the thresholds used here, 11 and 6 samples were excluded 335 

from BiB_MS-1 and ALSPAC_F24, respectively. The sample exclusions made on the basis of 

the PCA in BiB_MS-1 relate to an underlying sub-structure in these data made obvious by the 

metaboprep steps (Figure 2) (see Discussion). No metabolites were excluded from 

ALSPAC_F24 whilst metabolite missingness criteria resulted in 24% of metabolites being 

excluded from BiB_MS-1. 340 

 

4 Discussion 

In this paper, we have presented metaboprep, an R package for use by researchers working with 

curated, high quality, metabolomics data and developed in the context of population health 

research. The package enables metabolomics data from different platforms to be extracted, 345 

processed, summarised and prepared for subsequent statistical analysis within a standardised and 

reproducible workflow. This work was motivated by the need for increased consistency and 

transparency in the pre-analytical processing of data across cohorts and studies, but also 

acknowledges that a ‘one size fits all’ approach is unlikely to be feasible given the range of study 
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designs being employed. Metabolomics is a growing field within population sciences, with 350 

application to a vast array of hypotheses. As such, research groups have differing approaches to 

data preparation, which can make results hard to interpret and compare across studies. It is 

important to understand the properties of metabolomics data in order that suitable pre-analytical 

processing steps can be performed, and downstream analytical results interpreted appropriately.  

 355 

In the proposed pipeline, considerations were made for two specific conditions within two 

platforms currently available. It is difficult to mitigate against future developments, but the 

metaboprep approach is able to accommodate specific flags as they appear. In this case, 

xenobiotics - common in the Metabolon dataset, and derived variables - common in the 

Nightingale Health dataset. Xenobiotics are exogenous metabolites (i.e. not produced by the 360 

body), such as drug compounds and a quantified measure indicates presence of the exogenous 

compound. Consequently, they can have very high rates of missingness, while still being 

critically informative to a study as the majority with missing data will be a true ‘no’ for exposure 

to the exogenous compound. For this reason, we do not exclude xenobiotics on the basis of high 

missingness but would advocate affording them special consideration in any downstream 365 

statistical analyses. For example, these metabolites might best be evaluated within a 

presence/absence framework rather than by analysis of relative abundance. In data from 

Nightingale Health, derived variables are metabolite traits that are a summary of two or more 

other metabolites (possibly already represented in the dataset) or ratios of two or more 

metabolites. These variables can introduce bias in estimates of sample missingness (where a 370 

single metabolite is missing, any derived measures based on that metabolite will also be missing) 

and may not be appropriate to retain when identifying a set of representative metabolites for the 

data set. We allow the user to include or exclude the derived variables in the pipeline at their 

discretion.  

 375 

One of the most commonly implemented pre-analytical steps is filtering based on missingness. 

Missingness is defined as the proportion of data with no value and can vary hugely within a 

dataset (0-99.9% missing). Typically, researchers filter metabolites on missingness to remove 

metabolites that exhibit evidence of technical error, or where the proportion of missingness 

introduces downstream analytical difficulties. Conversely, the filtering of samples based on 380 
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missingness helps identify samples that may have been of poor quality or mishandled before or 

during the metabolomic assay(s). However, without external data the nature of the missingness, 

and the extent to which removal of samples or metabolites introduces more or less bias than not 

excluding these (and possibly imputing missing data) is unclear (Hughes et al., 2019) and will 

vary by sample size and the intended main research questions. Deciding upon appropriate 385 

missingness thresholds can be critical to a study and some caution and consideration is 

warranted. This results from the variety of reasons for missing data in this context – e.g. the 

technology, signal to noise ratios, signal intensity, error (Do et al., 2018) (for further discussion 

on missingness see Supplementary Discussion). Crucially, missingness might also represent 

true absence and thus be informative for some biological hypotheses, for example, differential 390 

missingness by class (e.g. case/control status or sex). For this reason, our workflow allows uses 

to define the thresholds they want to apply for missing samples and metabolites, the thresholds 

for these two can be different and either or both can be zero (no exclusions based on missing 

data). This allows researchers to repeat the workflow with different thresholds to explore the 

extent that these influence main analysis results.   395 

 

TSA is a sample-based metric estimated for the purposes of identifying samples with broad 

quality issues, such as handling errors (i.e. differing concentrations of sample) and is calculated 

by summing values across all metabolites. This metric is, by definition, correlated with 

missingness rates, so is estimated a second time here using only complete metabolites with this 400 

latter metric being used in the exclusion step. In order to guard against selection bias, the 

implementation of this exclusion step should be considered carefully and within the context of 

the study design. There may be situations whereby a high (or low) TSA is indicative of a true 

biological state, rather than of any technical issue. For example, if the coverage of the 

metabolomics platform is skewed towards a class of metabolite, e.g. lipids, then certain 405 

characteristics of individuals in the study sample may be correlated with the TSA measure, e.g. 

body fat percentage. Alternatively, if a study design were to include data from various tissues, 

then the TSA distribution may be bimodal and basing exclusions on standard deviations from the 

mean may be difficult if not inappropriate. For these reasons, the TSA distribution is provided in 

the PDF report for assessment by the user who may then choose to explore the sensitivity of 410 

downstream analyses to the application of different thresholds.  
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The proposed workflow provides information relating to structure within the study sample. This 

is done by implementation of sample-based PCA with summary data provided in the summary 

statistic files and corresponding plots for visual inspection. Only metabolites with limited 415 

missingness (<20%) are included in these analyses to avoid the need to implement a probabilistic 

PCA whilst limiting the introduction of error by the simplified (median-based) imputation – an 

imputation used strictly for deriving PCs. Furthermore, data reduction to remove highly 

correlated metabolites is considered necessary to ensure that the estimated PCs are not driven by 

any common, highly correlated metabolite classes, pathways, or clusters. Taking this approach, 420 

the PCs should provide an equally represented, broad perspective of variation in the data. If a 

sample is mishandled, the assumption would be that all of the assayed variables would be 

perturbed, and this would be evident in the PCA. Just as discussed with missingness and TSA 

metrics, proper consideration for thresholds is important here too. Outliers may be biologically 

relevant and gross structure may be present if multiple tissues, populations, or species are 425 

sampled. If that is the case, just as for TSA, then thresholding on standard deviations from the 

mean may be a difficult if not inappropriate filtering step. However, if you are anticipating a 

homogenous sample but observe clustering (as in Figure 2), then you should attempt to identify 

the source of the clustering and potentially re-consider your PCA sample filtering threshold. 

 430 

Three pre-processing steps that the metaboprep pipeline does not, currently, incorporate is 

modification of outlying data points (winsorization or truncation), data transformation and 

imputation. Each of these topics bring with them their own particular issues and considerations 

that are beyond the scope of the current package. We will however note that while log 

transformations appear to be commonly applied to metabolomics data sets - 64% of COMETS 435 

(The COnsortium of METabolomics Studies) responding cohorts claim to routinely log 

transform their data (Playdon et al., 2019) – we routinely observe that this does not always 

generate an approximate normal distribution and at times can make data distributions less 

normal. Shapiro W-statistics (a metric for normality) are provided alongside outlier flags in the 

summary statistic file for metabolites and the distribution of W-statistics for the raw and log-440 

transformed data is provided in the PDF report. We encourage use of this information to aid 

decisions regarding the most appropriate data transformation(s), given the intended statistical 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451488
http://creativecommons.org/licenses/by-nc/4.0/


   

 16 

analyses. These considerations should also include the research question, including whether the 

metabolites are exposures or outcomes, and the planned main analyses.  

 445 

To date, the metaboprep package has only been used to process metabolomics data derived from 

serum or plasma, not other biological samples (e.g. urine, tissue). Whilst we do not anticipate 

any issues in processing data derived from other sources, users should consider carefully whether 

the assumptions we make are appropriate in these scenarios. The same is true if the package is 

used for processing small samples (n<20), where steps such as the identification of independent 450 

metabolites may not perform optimally. We reiterate that the workflow presented here does have 

its compromises. As highlighted above, data preparation does not end with the running of this 

workflow but with the careful evaluation of the data reports provided by it.  

 

In conclusion, in the interests of open science and to encourage collaboration we present a first 455 

release of metaboprep, an R package that we hope to develop further in response to feedback 

from the community. In this paper, we have avoided making definitive recommendations 

regarding thresholds that should be used since these should be chosen in the context of the 

specific study design and research question. We encourage those working with curated 

metabolomics data to use our package to enhance their understanding of the characteristics of 460 

their metabolomics data, its structure and how these properties could impact on downstream 

statistical analyses and importantly, to report their findings alongside the results of their main 

analyses.  
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8 Tables 
 
Table 1. Summary statistics by dataset (pre-filtering) 

Summary statistic BiB_MS-1 ALSPAC_F24 
Platform Metabolon Nightingale Health 
No. of samples 1000 3361 
No. of metabolites 1369 225 
Sample statistics     
% sample missingness*  
(min, median, max) 11.85, 18.45, 26.81 0.00, 0.00, 12.24 

Total sum abundance at complete metabolites (min, 
median, max) 4.23, 6.79, 9.91 (x1012) 1.66, 2.08, 2.46 (x105) 

Count of outlying data points per sample  
(min, median, max) 0, 2, 81 0, 0, 44 

Metabolite statistics     

% metabolite missingness (min, median, max) 0, 2.6, 100 0.00, 0.00, 1.73 

Count of outlying data points per metabolite  
(min, median, max) 0, 2, 16 0, 2, 97 

% with W statistic >=0.95   16.08 42.22 
% whose W-statistic decreases following log10 
transformation 9.56 44.89 

No. of representative metabolites 512 24 
 
Table 1 legend: Summary statistics for the initial, raw (pre-filtered) BiB_MS-1 and ALSPAC_F24 datasets. The 530 
table provides details on the platform, sample size, sample and metabolite missingness, total sum abundance (TSA) 
for samples, and outlier counts, the percent of metabolites that may be considered normal distributed and an estimate 
of the number of representative metabolites in the data set. *calculated after the exclusion of derived variables in the 
Nightingale Health dataset and of xenobiotics in the Metabolon dataset. 
 535 
 
Table 2. Results of sample and metabolite filtering based on default exclusion thresholds 

Filtering step Exclusion threshold BiB_MS-1 ALSPAC_F24 

Raw dataset (pre-filtering)  1000 samples 
1369 metabolites 

3361 samples 
225 metabolites 

1. extreme sample missingnessa >=80% 0 0 
2. extreme metabolite missingnessa >=80% 96 0 
3. sample missingnessa* >=20% 0 0 
4. metabolite missingnessa* >=20% 236 0 
5. sample total sum abundanceb* >5SD 0 2 
7. PCA outliersc,d* >5SD 11 4 

Final dataset (post-filtering)  989 samples 
1037 metabolites 

3355 samples 
225 metabolites 

 
Table 2 legend: PCA, principal component analysis; SD, standard deviations. a Calculated after excluding 
metabolites in the xenobiotic class from Metabolon data and derived measures from Nightingale Health data; b 540 
derived from complete metabolites only; C excluding metabolites with >20% missingness; d using the representative 
metabolites only and excluding on the number of PCs determined by the acceleration factor with a minimum of two 
PCs; *user defined threshold. Rows in blue are sample filtering steps.   
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9 Figures 
 545 
Figure 1: Workflow 

 
Figure 1: Brief description of the metaboprep pipeline. Along the top, the five primary steps the pipeline takes are 
outlined. The column on left provides an outline of the steps for the generation of summary statistics while the right 
provides an outline of the steps taken for sample and metabolite filtering. Common abbreviations used are: `dme` for 550 
derived measures excluded; SD for standard deviations; `X` which denotes a threshold variable that is defined by the 
user in the pipeline parameter file; PC for principal components.  
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Figure 2: Principal component analysis to show sample structure 555 
 

 
 
Figure 2 legend: Principal components one and two of a) BiB_MS-1 dataset; b) ALSPAC_F24 dataset. Red vertical 
and horizontal lines represent five standard deviations from the mean on both PC axes, used to identify outliers in 560 
the dataset.  
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