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Abstract 

Motivation: As the number of public data resources continues to proliferate, identifying relevant 

datasets across heterogenous repositories is becoming critical to answering scientific questions. 

To help researchers navigate this data landscape, we developed Dug: a semantic search tool for 

biomedical datasets that utilizes evidence-based relationships from curated knowledge graphs to 

find relevant datasets and explain why those results are returned.  

Results: Developed through the National Heart, Lung, and Blood Institute’s (NHLBI) BioData 

Catalyst ecosystem, Dug can index more than 15,911 study variables from public datasets in just 

over 39 minutes. On a manually curated search dataset, Dug’s mean recall (total relevant 

results/total results) of 0.79 outperformed default Elasticsearch’s mean recall of 0.76. When 

using synonyms or related concepts as search queries, Dug’s (0.28) far outperforms Elasticsearch 

(0.1) in terms of mean recall.  

Availability and Implementation: Dug is freely available at 

https://github.com/helxplatform/dug. An example Dug deployment is also available for use at 

https://helx.renci.org/ui. 

Contact: awaldrop@rti.org or scox@renci.org 
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Introduction 

The ability to interrogate large-scale data resources is becoming a central focus of many research 

efforts. In past decades, the U.S. National Institutes of Health (NIH) and other public funding 

agencies have supported data generation at unprecedented scales through projects such as Trans-

Omics for Precision Medicine (TOPMed) (University of Washington Department of 

Biostatistics, 2020), All of Us (The “All of Us” Research Program, 2019), and Helping to End 

Addiction Long-Term (HEAL) (Collins et al., 2018). As a result of these continued data 

generation efforts, the ability to integrate data within and across often disjoint and complex 

public data repositories is quickly replacing data scarcity as a primary bottleneck to research 

progress. While successful data integration efforts have resulted in novel diagnostics, therapies, 

and prevention strategies, researchers often lack even the most basic tools for navigating this 

complex data landscape (Powell, 2021). 

 

In particular, there is a growing need for comprehensive search tools that can identify datasets 

relevant to a researcher's particular scientific question. Despite recent NIH emphasis on making 

research data more Findable, Accessible, Interoperable, and Re-Usable (“FAIR” data principles) 

(Wilkinson et al., 2016), the diversity of public data repositories has proven to be a formidable 

barrier to developing intelligent search strategies. To illustrate this heterogeneity, consider that 

the NIH alone currently refers data submission to more than 95 domain-specific repositories 

(NIH Data Sharing Resources, 2020). In many cases, even the more established repositories like 

the NIH Database of Genotypes and Phenotypes (dbGaP) often only require studies to submit 

free-text descriptions of experimental variables. One does not have to think of more complex 
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examples than “gender” vs. “sex” or “heart attack” vs. “myocardial infarction” to understand the 

challenges of identifying relevant datasets among the massive, growing corpus of non-

standardized biomedical datasets.  

 

In the absence of widespread adoption of metadata standards, emerging techniques for Natural 

Language Processing (NLP) are increasingly enabling semantic search over biomedical datasets. 

Here, we define semantic search as search that considers the intent and context of the query as 

opposed to a purely lexical approach (Tran et al., 2007). A number of existing tools successfully 

employ methods for named entity recognition to annotate free text with synonyms or similar 

ontology terms (Bell et al., 2019; Chen et al., 2018; Canakoglu et al., 2019; Huang et al., 2016; 

Laulederkind et al., 2012; Pang et al., 2015; Soto et al., 2019). As an example, these tools might 

annotate a variable called “myocardial infarction” with synonyms like “heart attack” and 

“cardiac episode” so that any of these search queries would return the underlying dataset.  

 

Despite the utility of these tools, there remains a need for a truly context-aware search tool that 

recognizes higher-order and potentially more interesting connections between datasets. Consider 

a researcher seeking datasets related to cancer across a set of repositories with which she is 

unfamiliar. Obviously, she would expect her results to include datasets that explicitly contain 

words like ‘cancer,’ ‘carcinoma,’ or ‘sarcoma.’ But what if she was specifically interested in 

lung cancer and it could show her datasets that measured smoking behavior? Or asbestos 

exposure? And what if it could even explain exactly why it was returning these more speculative 

results? By expanding our conception of what constitutes a relevant result, we can show 
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researchers biological connections that, while not explicitly searched for, might be useful for 

hypothesis generation or scientific support. 

 

Toward that end, we present Dug (https://github.com/helxplatform/dug): a semantic search tool 

for biomedical datasets that leverages ontological knowledge graphs to intelligently suggest 

relevant connections derived from peer-reviewed research. Given a search term, Dug returns 

lexical matches, semantically equivalent terms, and biologically relevant terms based on 

connections in curated knowledge graphs. As shown in Fig. 1, Dug is also the first biomedical 

search engine that can explain why it returns what it returns. Here, we discuss Dug's motivations, 

architecture, functionality, and evaluation, as well as demonstrate its successful deployment in 

the NHLBI’s BioData Catalyst Ecosystem (National Heart Lung and Blood Institute et al., 

2020). 

Fig 1: The Dug web portal leverages knowledge graph connections with supporting links to 

PubMed literature to explain why certain results are relevant to a user’s query.  

s, 
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Implementation/Methods 

Returning to our researcher above, Dug is designed to find relevant datasets for a query like 

“lung cancer,” and to allow users to discover datasets they wouldn’t have found using lexical or 

even synonym-based search engines. In this section, we discuss the computational architecture 

underpinning this functionality.  

 

Dug consists of two primary components: A Dug API service that orchestrates metadata 

ingestion, indexing, and search, and the Dug search web portal for displaying results to end 

users (Figure 2).  

 

Briefly, the ingestion/indexing pipeline is designed to:  

1. Parse heterogenous study metadata formats into a common Dug metadata format. For our 

researcher, this might be reading in clinical trial datasets from ClinicalTrials.gov or 

clinical data from COPDGene in dbGaP.  

 

2. Annotate free-text descriptions of study variables with a set of ontological identifiers. For 

example, Dug might annotate a study variable from one of the datasets above called 

“cigarette usage” with an ontology term for “smoking behavior”  

 

3. Expand resulting annotations with relevant terms returned from knowledge-graph queries 

(e.g., “What chemical entities are risk factors for lung cancer?”). In the above example, 
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we might discover a knowledge graph connection between “smoking behavior” and an 

ontology term for “lung cancer” 

 

4. Index each study variable, its associated ontological concepts, and the set of knowledge 

graph answers to an Elasticsearch (Kuć and Rogozinski, 2016) endpoint. Putting it all 

together, our researcher will now be able to both find relevant datasets to her initial 

query, as well as explore and discover related datasets.  

 

Fig. 2: Dug makes study metadata searchable by parsing heterogenous metadata formats into a 

common format (ingest), annotating metadata using NLP tools to extract ontology identifiers 

from prose text (NLP annotation), searching for relevant connections in federated knowledge 

graphs using Translator Query Language (TranQL) (concept expansion), and finally indexing all

this information into an Elasticsearch index. Dug’s web portal utilizes a flexible API to query 

and display search results back to end users.  

 

 

all 
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Finally, the Dug search portal is a web-based application that sits on top of the Dug API and 

displays the results of user queries, renders auditable knowledge graphs for certain results, and 

organizes search results by underlying data type (e.g., “genotype” vs “DICOM image”). Below, 

we discuss each of these components in greater detail.   

Ingestion and Indexing Pipeline 

Data ingestion 

Researchers need insight into studies prior to applying for data use. To accommodate this, Dug 

ingests and indexes study metadata (e.g., text descriptions of study variables, descriptions of 

clinical images) as opposed to the actual study data, which may be controlled access (e.g., 

genotypes, clinical phenotypes). To accommodate the diversity of metadata formats available 

across public data repositories, our ingestion pipeline abstracts out retrieval modes (e.g., local 

file, network file, FTP, API) and data parsing formats (e.g., dbGaP data dictionary, XML, 

JSON). Similar to the Data Tags Suite (DATS) metadata schema (Sansone et al., 2017), Dug 

parses diverse metadata formats into a common DugElement metadata model, which defines a 

standard set of metadata required for indexing (e.g., variable name, description, study/collection 

name, study description). Dug can be flexibly adapted to ingest nearly any metadata format by 

extending its plug-in interface to implement a single function parsing input data into DugElement 

objects.  

Data Annotation 
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As shown in Fig 3, the purpose of Dug’s data annotation module is to extract a set of biomedical 

ontology identifiers from ingested metadata elements using tools for named entity recognition. 

For most instances of Dug, we prefer the functionality of the /nlp/annotate endpoint exposed by 

the Monarch Initiative’s (Mungall et al., 2016) Biolink API (https://github.com/biolink/biolink-

api). For context, the underlying Biolink model (https://biolink.github.io/biolink-model) provides 

a high-level data model for representing biomedical knowledge (Reese et al., 2021) and can be 

used to integrate across domain-specific ontologies like the Chemical Entities of Biological 

Interest ontology (ChEBI) (Hastings et al., 2013) or the Human Phenotype Ontology (HPO) 

(Köhler et al., 2021). Monarch’s particular API service accepts prose text as input and returns a 

set of ontological identifiers with additional information in JSON format.  

 

As with the ingest module, to accommodate the growing number of NLP services and tools for 

biomedical named entity recognition, Dug also abstracts out the Annotation module. To extend 

Dug’s annotation interface, developers need only create a child class specifying the new API 

endpoint and define an additional function converting successful API responses into an internal 

data structure called a DugIdentifier, which defines a minimal set of ontological information 

needed for downstream processing (e.g., id, name, Biolink type).  

 

By converting free text to standardized ontology identifiers, we can leverage the growing number 

of semantic web services supporting this nomenclature in order to gather additional information 

about each identifier. Dug utilizes a normalization service to transform identifiers to the 

preferred equivalents (https://github.com/TranslatorSRI/NodeNormalization), and an ontology 
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metadata service for fetching identifier names, descriptions, synonyms, and Biolink types 

(https://onto.renci.org/apidocs/).  

Fig. 3: Detailed example of ingest and index pipeline. After ingesting a variable called 

“adenocarcinoma of the lung” from study metadata, Dug leverages NLP methods for named 

entity recognition to annotate the variable with an ontology identifier for “Lung Cancer” from 

the MONDO disease ontology. The resulting identifier is then used to gather synonyms for lung 

cancer such as “Neoplasm of lung” from an external API service. During concept expansion, 

Dug leverages TranQL to query knowledge graphs for other ontological concepts related to lung 

cancer through certain predicates; above we are looking for risk factors, treatments, and 

anatomical entities impacted by lung cancer. During indexing, all terms discovered through 

annotation and concept expansion are combined with the original metadata into a single 

Elasticsearch record so that queries against any of these terms will yield the initial variable 

measuring “adenocarcinoma of the lung.”  

 

ng 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451461


Concept Expansion 

Dug’s ability to retrieve contextualized search results and explain these connections to end users 

is undergirded by a process we call concept expansion. The goal of concept expansion is to 

further annotate ontological identifiers by identifying relevant connections within ontological 

knowledge graphs. For example (Fig. 3), we might augment a metadata variable annotated in the 

previous step as “lung cancer” with ontological identifiers for “asbestos exposure” or “cigarette 

smoking” based on peer-reviewed evidence supporting those linkages. 

 

Briefly, the core data structure for concept expansion is a knowledge graph, in which biomedical 

data are organized into a network structure, with nodes representing entity types (e.g., disease, 

gene, chemical exposure) and edges providing predicates that describe the relationship between 

entities; Biolink predicates include terms such as ‘causes,’ ‘is associated with,’ and ‘is expressed 

in.’ 

 

In order to contextualize metadata within a knowledge graph, we leverage data integration 

approaches developed through the NCATS Biomedical Data Translator (Biomedical Data 

Translator Consortium, 2019). Chief among these are ROBOKOP (Reasoning Over Biomedical 

Objects linked in Knowledge Oriented Pathways) (Bizon et al., 2019), a biomedical knowledge 

graph-based, open-question-answering system that allows users to ask questions such as, “What 

chemical entities are associated with lung cancer?” and TranQL (Translator Query Language; 

https://tranql.renci.org) (Cox et al., 2020), a query, visualization, and API environment for 

iterative querying of Translator knowledge graphs. 
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Dug leverages TranQL to gather an expanded set of ontological concepts related to those 

extracted via NLP annotation in the previous step. Dug allows platform administrators to define 

the set of TranQL query templates used to retrieve related ontology identifiers. Below is an 

example of a query template used to retrieve diseases impacting a specific body part: 

 

FIND Disease -> Anatomical_Entity WHERE ANATOMICAL_ENTITY == 

{query_ontology_id} 

 

During concept expansion, Dug then uses these templates to substitute actual ontological 

identifiers extracted from the previous NLP annotation step in order to retrieve a set of relevant 

terms for a specific variable.  

 

The “answers” returned by TranQL queries are then used to both increase the search relevance of 

related concepts and provide a basis for including explanations for the links that led to the result. 

Critically, this includes the ability to point users to peer reviewed literature and curated 

ontological knowledge for further research. As shown in Fig. 4, TranQL “answers” are actually 

knowledge graphs themselves: a set of nodes (ontological identifiers), edges (predicates), and 

metadata about both edges and nodes including names, descriptions, and synonyms of each 

ontological identifier, as well as any PubMed literature links supporting each edge. 
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Figure 4: An example TranQL query for chemical risk factors of lung cancer. Each TranQL 

answer returned is a knowledge subgraph linking one chemical element node back to the query 

node.  

Data Indexing 

Once a metadata record has been annotated and undergone concept expansion, the entire 

resulting data structure must be indexed. To maximize the speed and flexibility of Dug’s search 

functionality, Dug’s back-end search architecture is implemented as a set of linked Elasticsearch 

indices. Though Dug’s ingestion and indexing pipelines are relatively time-intensive, Dug’s 

actual search is remarkably fast and efficient because it searches over pre-computed indices.  

 

As shown in Fig. 3, Dug's semantic capabilities result from combining ingested study metadata 

with terms harvested through the annotation and concept expansion steps into a single 

 

h 
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Elasticsearch record. For each metadata variable ingested, Dug’s indexer adds a ‘search_terms’ 

field to the original record containing the names and synonyms of every identifier added via the 

data annotation step. The indexer then adds an ‘optional_terms’ field by traversing the names of 

knowledge graph nodes added during concept expansion. For example, a metadata variable 

originally called “adenocarcinoma of the lung” may now also be labeled with “asbestos 

exposure” and would be returned by queries against either term.  

 

To allow Dug to quickly organize search results by higher-level concepts, we partition 1) 

ingested metadata records, 2) core ontological concepts, and 3) expanded knowledge graph 

answers respectively into three separate Elasticsearch indices. Any ontological identifier 

extracted during data annotation is added to the Concept index. By indexing study variables with 

id pointers to these concepts, Dug eliminates the need to calculate these groups dynamically, and 

eliminates redundant text stored across study variables mapping to the same ontological concept. 

Each indexed knowledge graph answer contains a JSON representation of the answer sub-graph 

returned by TranQL, as well as a pointer back to the ontological concept that was used in the 

original query.  

Search Engine 

Search Functionality 

Dug’s search API exposes three search endpoints for querying each of its underlying 

Elasticsearch indices. 
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• /search_var - search for study variables matching a user’s query 

• /search_concepts - search for ontological concepts matching a user’s query 

• /search_kg - search for knowledge graph answers matching user’s query and an 

ontological concept id 

 

Dug’s search API uses the default Elasticsearch algorithm (cosine similarity based on vector 

space model using TF-IDF weighting) (Elasticsearch, 2021) to rank and retrieve indexed 

metadata records. The search field weighting scheme prioritizes exact matches from the 

originally ingested text first, followed by synonyms added through annotation, and lastly related 

terms added through concept expansion. 

Search User Interface 

Dug’s user interface (UI) is a stand-alone React JS-based web application designed to provide an 

intuitive interface for navigating large collections of data. Dug’s minimalist UI design is 

intended to reduce the burden on users to think through search criteria, and instead, empower 

them to discover search terms they are interested in exploring. As shown in Fig. 5, Dug provides 

a simple, Google-like search box that prioritizes exact phrase matching (AND logic) over partial 

matching (OR logic). Other features inspired by popular search engines include auto-generated 

tabbing of search results based on data type. For example, if a user’s query returns 50 proteomics 

datasets, 10 genomics datasets, and 3 imaging datasets, Dug automatically creates tabs for each 

data type.  
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Fig. 5: Dug’s UI aggregates search results for user queries (red) into higher-order ontological 

concepts (blue) based on NLP annotation. Links to knowledge graphs (orange) explain 

biological relationships between the query and each concept. Concepts may not contain 
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knowledge graph links if they are synonymous with the search query (e.g., heart attack vs. 

myocardial infarction) or if TranQL did not return any answers during concept expansion.  

 

Dug’s UI can organize search results in two distinct ways: by variable and by concept. When 

organized by variable, Dug returns a list of study variables organized by relevance. Each result 

contains general information about the variable returned: parent study, external links, variable 

name, and any descriptions parsed from the original metadata file. When organized by concept as 

in Fig. 5, Dug aggregates results into higher-level ontological concepts. Users can then click on 

browser disclosures to see datasets of interest from each concept group. In this way, Dug can 

also be used as a preliminary harmonization step to create de novo groups of similar variables 

based on NLP annotations (Fig. 5). By providing both approaches, Dug’s concept-based search 

gives users a more exploratory look at the data landscape, while its variable-based search allows 

users to drill down on specific variables of interest.  
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Fig. 6: Dug results show datasets with variables relevant to a user’s query, and knowledge 

graph disclosures for understanding why Dug considered those results relevant.  

 

The defining feature of Dug’s UI is its ability to explain why it returns certain results (Fig. 6). 

When Dug returns a result based on text added during concept expansion, the UI fetches and 

renders the corresponding knowledge graph answer from the Knowledge Graph index to explain 

the connection. For knowledge graph answers containing PubMed links, Dug also renders links 

to peer-reviewed literature supporting those specific relationships. 

Implementation 

The Dug search app is implemented in Python3.7 (https://python.org) and is available via 

GitHub (https://github.com/helxplatform/dug). Dug packages its core code and 3rd party services

into a single Dug container service deployable locally via docker-compose 

 

in 

es 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451461doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451461


(https://docs.docker.com/compose/) or on Kubernetes (https://kubernetes.io/) clusters via a Dug 

helm chart. In addition to Elasticsearch, Dug utilizes Redis (https://redis.io/) to cache API 

requests and minimize redundant calls to external services. Dug’s core services are externally 

configurable from a single file that allows users to specify annotation modules, external API 

endpoints, ontology normalization services, and query templates that will be used during concept 

expansion. Dug’s ingest architecture leverages the Pluggy framework 

(https://pluggy.readthedocs.io/en/latest/) to define new metadata parser modules. Dug also 

provides a makefile script to install the service locally. Lastly, all major commands (e.g., crawl, 

index, search) can be invoked either from the command line or via API calls to the service 

directly.  

Deployment on BioData Catalyst 

To demonstrate Dug’s utility in a production environment, we deployed Dug on the NHLBI’s 

BioData Catalyst ecosystem and indexed the TOPMed freeze 5b and 8 studies (excluding parent 

studies) available on the ecosystem. Public data dictionaries downloaded directly from dbGaP 

were ingested and indexed for each of the 76 datasets included in these freezes.  

 

Discussed in detail below, 15,911 of these variables were also manually harmonized into 65 

higher-order groups called “phenotype concepts” by data curation experts at the TOPMed Data 

Coordinating Center (DCC) (Stilp et al., 2021). To facilitate browsing by these expertly curated 

groups within Dug, we annotated ingested variables with phenotype concepts as though they 

were external ontology identifiers so the underlying variables could be aggregated by these 

phenotype concepts in the web portal. 
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.  

Evaluation 

We evaluated Dug’s ability to return relevant study variables using the TOPMed phenotype 

concepts dataset as our framework for evaluation. The 65 TOPMed harmonized phenotypes 

developed by Stilp et al. (2021) were created to enable interoperability between TOPMed 

datasets by manually combining semantically similar dbGaP variables under a single term. For 

instance, the dbGaP variable names of “HOSPITALIZED FOR HEART ATTACK,” 

“NONFATAL MI,” and “cardiac episode: ECG'' would all relate to the TOPMed phenotype 

concept, “myocardial infarction.”  

For each of the 65 TOPMed phenotype concepts, we queried concept titles (e.g., “myocardial 

infarction”) against Dug’s indexed collection of dbGaP variables to see how well Dug could 

recapitulate the manually curated set of variables. To quantify Dug’s performance, we used the 

standard information retrieval metrics of recall, precision, and F-score (F1), which is the 

weighted harmonic mean of precision and recall. We chose to report each of these scores at the 

10th result (P@10, R@10, F1@10), at the 50th result (P@50, R@50, F1@50) and at the nth result 

(P, R, F1) for every search. While (P, R, F1)@10 is a fairly standard metric, we chose (P, R, 

F1)@50 as an estimate to the maximum number of results a person would reasonably scroll 

through, assuming 25 results per page (Jansen and Spink, 2005). 

Within this framework, each variable that belongs to a given TOPMed phenotype concept 

represents a condition positive (P) that we would reasonably expect Dug to return. Stop words 

(e.g., “the,” “in,” “of”) were removed, and any known abbreviations were expanded and added to 
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the query. For instance, “Resting arm systolic BP” would become “Resting arm systolic BP 

blood pressure.” True positive (TP) results were defined as variables returned by the TOPMed 

phenotype concept to which they belonged. Conversely, false positives (FP) were defined as 

variables returned by any TOPMed phenotype concept to which they did not belong.  From these 

values, the recall, precision, and F-score are calculated at results returned (10, 50, or n) for each 

TOPMed phenotype concept query. 
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To contextualize Dug’s retrieval metrics against a more traditional search strategy, we evaluated 

Dug’s semantic search capabilities against the default, lexical Elasticsearch scoring algorithm 

that considered only fields available in the original metadata file.  

To evaluate Dug’s semantic retrieval capabilities, a secondary evaluation was performed as 

above, except instead of the expanded phenotype concept names, reasonable synonyms from the 

Unified Medical Language System (UMLS) (Bodenreider, 2004) were substituted. We 

specifically chose only synonyms containing no words in common with the original concept 

query; if no reasonable synonym could be chosen for a given TOPMed phenotype, it was 
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removed from the evaluation. These synonyms were then used as the query for each TOPMed 

phenotype concept and information retrieval metrics calculated separately as before.  

Results 

The initial Dug deployment on the NHLBI Biodata Catalyst ecosystem successfully indexed 

15,991 study variables from 76 genomics datasets in just over 39 minutes. This deployment 

provides comprehensive search to BioData Catalyst program members and research fellows over 

genomics datasets comprising TOPMed freezes 5b and 8. In total, Dug augmented these study 

variables with 573 ontological concepts and 11,752 knowledge graph answers.  

Evaluation 

er 
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Fig 7: Dug vs default Elasticsearch evaluation metrics. Left: Recall, R@10, R@50 when using 

TOPMed phenotype concept titles to search for underlying variables. Right: Recall, R@10, 

R@50 when using UMLS synonyms of TOPMed phenotype concept titles to search for 

underlying variables. When using phenotype concept names as queries, Dug outperforms lexical 

Elasticsearch in overall recall, and is similar in R@10 and R@50. When using synonyms of 

phenotype concept names as queries, Dug outperforms lexical Elasticsearch in every recall 

metric by a wider margin.  

 

Shown in Fig. 7, Dug search shows superior recall metrics compared to default Elasticsearch 

when querying both TOPMed phenotype concept names and their synonyms against dbGaP 

variables indexed on BioData Catalyst. Dug’s recall (0.28 mean recall) particularly outperforms 

default Elasticsearch (0.11 mean recall) when TOPMed phenotype synonyms were used as 

queries. There was little difference between recall @ 10 and recall @ 50 metrics between search 

modalities on phenotype concept names. When searching on synonyms, the differences between 

search types were more apparent. While median recall of synonyms was low for both Dug 

semantic search and Elasticsearch, the upper quartile in all recall metrics was much higher for 

Dug semantic search than Elasticsearch. Upon closer inspection, Dug’s semantic variable 

annotation provided synonyms that matched with the synonym queries for a large handful of the 

phenotype concepts, but missed the mark with others, resembling a binary distribution 

(Supplemental fig. 1). Overall, Dug matches or exceeds default Elasticsearch on the TOPMed 

phenotype concept reference dataset, owing to its semantic annotation and concept expansion 

modules.  
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Dug also generally returned more results than Elasticsearch for a given search. On one hand, this 

resulted in a slightly lower precision and F-score for Dug relative to Elasticsearch, however this 

finding is not unexpected given that Dug was designed explicitly to make exploratory 

connections. Overall median precision for Dug was 0.06, whereas for Elasticsearch it was 0.28. 

Overall median F1 was 0.10 for Dug and 0.42 for Elasticsearch. Dug and Elasticsearch metrics 

@10 and @50 were similar: P@10 and P@50 were 1.0 and 0.74 respectively for Dug; for 

Elasticsearch they measured 1.0, and 0.82. F1@10 and F1@50 were 0.20 and 0.41 for Dug, 0.20 

and 0.50 for Elasticsearch. In general, Dug trades off an increase in overall recall for a decrease 

in overall precision, with all metrics @10 and @50 relatively similar between the two search 

modalities. 

Discussion  

The exponential increase in publicly available datasets over the past decade has created a need 

for comprehensive search tools that can identify datasets relevant to a researcher's particular 

scientific question. To help researchers better navigate this new data landscape, we created Dug: 

a semantic search tool for biomedical datasets that leverages ontological knowledge graphs to 

intelligently suggest relevant connections derived from peer-reviewed research.  

 

The results of our evaluation demonstrate Dug’s ability to find the correct datasets regardless of 

how a user lexically expresses a query. Though Dug’s recall increase was modest when using the 

original TOPMed phenotype concepts as test queries, many of the variables included in these 

phenotype concepts were lexical matches that wouldn’t benefit from semantic annotation. In 
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hindsight, this could be because the 65 TOPMed Harmonized Phenotypes were created by 

subject matter experts parsing through dbGaP variables via keyword searches looking for lexical 

matches. Fortunately, this made our synonym query dataset an excellent test of Dug’s semantic 

recall due to the non-overlapping requirement between synonyms and the original queries. 

Indeed, for many of our test queries, Dug returns almost the exact same set of results regardless 

of the lexical expression of the underlying concept. Moreover, because Dug abstracts out the 

NLP tool used for metadata annotation, Dug will be able to improve over time as new tools for 

ontological annotation are developed.  

 

Though we present here only the specific deployment of Dug on the BioData Catalyst platform, 

Dug’s modular design and its stand-alone companion web portal can flexibly fit myriad use 

cases. For example, a centrally hosted version of Dug could index multiple data repositories to 

service a much larger user base. On the other hand, smaller data coordinating centers like the 

NIDDK central repository (Rasooly et al., 2015; Cuticchia et al., 2006) or large data ecosystem 

initiatives like the NIH’s HEAL Data Ecosystem (U.S. Department of Health and Human 

Services) could also use Dug to search across non-standardized data from diverse consortium 

members via a single portal without the need for significant manual curation.  

 

Current and future work is centered around addressing known limitations and responding to user 

feedback from the BioData Catalyst consortium. A principal concern at the moment is 

parallelizing the indexing process to be able to index multiple datasets simultaneously and 

increase the throughput for larger datasets. Additionally, we are evaluating various strategies for 

further improving ranking search results by relevance based on input from current users. At 
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present, we believe Dug provides a powerful, flexible tool for searching intuitively across 

complex data resources that are increasingly common in the biomedical data landscape.  
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